## Supporting Information for

# A Comparative Study of Redox-Active DithiafulvenylFunctionalized 1,3,6,8-Tetraphenylpyrene Derivatives 

Farshid Shahrokhi, Maryam F. Abdollahi, and Yuming Zhao*<br>Department of Chemistry, Memorial University of Newfoundland St. John's, NL, Canada A1B 3X7<br>*Email: yuming@mun.ca

## Table of Content

1. NMR Spectra of Compounds 5, and 7-9 ..... S-2
2. Protonation/Deuterium Exchange Studies ..... S-19
3. UV-Vis Spectroscopic Data ..... S-22
4. Fluorescence Spectroscopic Data ..... S-25
5. X-ray Single Crystallographic Data of 5c and 10 ..... S-30
6. Rotational Properties of Compound 5c ..... S-33

## 1. NMR Spectra of Compounds 5, and 7-9



Fig. S-01 ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound 5a.


Fig. S-02 ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{5 b}$.


Fig. S-03 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{5 b}$.


Fig. S-04 ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{5 c}$.


Fig. S-05 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{5 c}$.


Fig. S-06 ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{7 a}$.


Fig. S-07 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{7 a}$.


Fig. S-08 ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{7 b}$.


Fig. S-09 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{7 b}$.


Fig. S-10 ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{8 a}$.


Fig. S-11 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{8 a}$.


Fig. S-12 ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{8 b}$.


Fig. S-13 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{8 b}$.


Fig. S-14 ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{9 a}$.


Fig. S-15 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{9 a}$.


Fig. S-16 ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{9 b}$.


Fig. S-17 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{9 b}$.

## 2. Protonation/Deuterium Exchange Studies

Each sample of DTF-TPPys $7-9(0.006 \mathrm{mmol})$ was dissolved with 0.60 mL of $\mathrm{CDCl}_{3}$. To each of the solutions, TFA $(0.01 \mathrm{~mL}, 0.130 \mathrm{mmol})$ was added and the mixture was shaken for 30 seconds (a dramatic color change from yellow to dark red was observed). After the TFA treatment, 0.60 mL of $\mathrm{D}_{2} \mathrm{O}$ was added and the resulting mixture was neutralized with excess $\mathrm{NaHCO}_{3}$. At last, the organic layer was separated, dried over $\mathrm{CaCl}_{2}$, and filtered to yield corresponding deuterated DTF-TPPy. The proton/deuterium exchange efficiencies of all compounds were assessed based on ${ }^{1} \mathrm{H}$ NMR analysis using the following equations,

$$
\left(\frac{I_{V}}{I_{A r}}\right)_{\text {before }}=R_{1} \quad\left(\frac{I_{V}}{I_{A r}}\right)_{\text {after }}=R_{2}
$$

Where $I_{\mathrm{v}}$ is the integral of the vinylic proton of DTF group, and $I_{A r}$ refers to total integral of all aromatic (pyrenyl and phenyl) proton signals. Proton/deuterium exchange efficiency is calculated using the following equation.

$$
\text { Proton/Deuterium Exchange Efficiency }=\left(\frac{R_{1}-R_{2}}{R}\right) \times 100 \%
$$

In order to examine the reversibility of the DTF proton/deuterium exchange reactions, the deuterated samples in $\mathrm{CDCl}_{3}$ were subsequently subjected to TFA treatment, quenched with $\mathrm{H}_{2} \mathrm{O}$ instead of $\mathrm{D}_{2} \mathrm{O}$. The resulting solutions were then neutralized with $\mathrm{NaHCO}_{3}$, and the organic layers were separated, dried over $\mathrm{CaCl}_{2}$, and examined by ${ }^{1} \mathrm{H}$ NMR. In all cases, the vinylic proton signals were found to be fully recovered based on their relative integrals in the ${ }^{1} \mathrm{H}$ NMR spectra.


Fig. S-18 Expanded ${ }^{1} \mathrm{H}$ NMR spectra ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{7 a}$ before and after treatments of $\mathrm{TFA} / \mathrm{D}_{2} \mathrm{O}$, and then TFA/ $\mathrm{H}_{2} \mathrm{O}$.


Fig. S-19 Expanded ${ }^{1} \mathrm{H}$ NMR spectra $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 7b before and after treatments of $\mathrm{TFA} / \mathrm{D}_{2} \mathrm{O}$, and then TFA/ $\mathrm{H}_{2} \mathrm{O}$.


Fig. S-20 Expanded ${ }^{1} \mathrm{H}$ NMR spectra ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 8a before and after treatments of $\mathrm{TFA} / \mathrm{D}_{2} \mathrm{O}$, and then TFA/ $\mathrm{H}_{2} \mathrm{O}$.


Fig. S-21 Expanded ${ }^{1} \mathrm{H}$ NMR spectra $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8 b}$ before and after treatments of $\mathrm{TFA} / \mathrm{D}_{2} \mathrm{O}$, and then TFA/ $\mathrm{H}_{2} \mathrm{O}$.


Fig. S-22 Expanded ${ }^{1} \mathrm{H}$ NMR spectra ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{9 a}$ before and after treatments of $\mathrm{TFA} / \mathrm{D}_{2} \mathrm{O}$, and then TFA/ $\mathrm{H}_{2} \mathrm{O}$.


Fig. S-23 Expanded ${ }^{1} \mathrm{H}$ NMR spectra $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{9 b}$ before and after treatments of $\mathrm{TFA} / \mathrm{D}_{2} \mathrm{O}$, and then TFA/ $\mathrm{H}_{2} \mathrm{O}$.

## 3. UV-Vis Spectroscopic Data



Fig. S-24 UV-Vis absorption spectra of compounds $\mathbf{5 a}, \mathbf{5 b}$, and $5 \mathbf{c}$ measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.


Fig. S-25 UV-Vis absorption spectra of 5a measured in various organic solvents.


Fig. S-26 UV-Vis absorption spectra of 7a measured in various organic solvents.


Fig. S-27 UV-Vis absorption spectra of 7b measured in various organic solvents.


Fig. S-28 (A) UV-Vis absorption spectra of 9 a measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at various concentrations. (B) Normalized UV-Vis absorption spectra of 9 a measured at various concentrations. The arrow indicates the increasing trend of absorption tail from 450 to 650 nm with increasing concentration.


Fig. S-29 (A) UV-Vis absorption spectra of $9 \mathbf{b}$ measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at various concentrations. (B) Normalized UV-Vis absorption spectra of 9b measured at various concentrations. The arrow indicates the increasing trend of absorption tail from 450 to 650 nm with increasing concentration.

## 4. Fluorescence Spectroscopic Data



Fig. S-30 Normalized fluorescence spectra of 5a measured in various organic solvents.


Fig. S-31 Normalized fluorescence spectra of 7a measured in various organic solvents (top). Photographic image of the solutions of $7 \mathbf{7 a}$ in various solvents under UV light (bottom). Solvents (from left to right): $\mathrm{Et}_{2} \mathrm{O}$, acetone, EtOAc, toluene, benzene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF.


Fig. S-32 Correlation of observed Stokes shift $(\Delta v)$ of 7 a and solvent orientation polarizability ( $\Delta f$ ).

Table S-01 Summary of UV-Vis absorption and fluorescence data of compounds 5a, b, and $\mathbf{c}$ measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

| Compound | UV-Vis absorption <br> $\lambda_{\text {max }} / \mathbf{n m}\left(\boldsymbol{\varepsilon} / \mathbf{m o l}^{\mathbf{- 1}} \mathbf{L ~ c m}^{\mathbf{- 1}}\right)$ | Fluorescence <br> $\boldsymbol{\lambda}_{\text {em }} / \mathbf{n m}$ |
| :--- | :---: | :---: |
| $\mathbf{5 a}$ | $401\left(2.79 \times 10^{4}\right), 303\left(3.17 \times 10^{4}\right)$ | 465 |
| $\mathbf{5 b}$ | $387\left(3.90 \times 10^{4}\right), 298\left(5.09 \times 10^{4}\right)$ | 429 |
| $\mathbf{5 c}$ | $380\left(2.88 \times 10^{4}\right), 294\left(3.69 \times 10^{4}\right)$ | 435 |

Table S-02 Summary of UV-Vis absorption and fluorescence data of compounds 5a in various organic solvents

| Solvent | UV-Vis absorption <br> $\lambda_{\text {max }} / \mathbf{n m}\left(\boldsymbol{\varepsilon} / \mathbf{m o l}^{-1} \mathbf{L ~ c m}^{-1}\right)$ | Fluorescence <br> $\lambda_{\text {em }} / \mathbf{n m}$ |
| :--- | :---: | :---: |
| acetone | $395\left(2.75 \times 10^{4}\right)$ | 460 |
| benzene | $399\left(3.00 \times 10^{4}\right), 302\left(3.89 \times 10^{4}\right)$ | 455 |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $400\left(2.79 \times 10^{4}\right), 302\left(3.18 \times 10^{4}\right)$ | 456 |
| EtOAc | $395\left(3.02 \times 10^{4}\right), 300\left(3.98 \times 10^{4}\right)$ | 455 |
| THF | $398\left(2.87 \times 10^{4}\right), 303\left(3.38 \times 10^{4}\right)$ | 457 |
| toluene | $399\left(2.55 \times 10^{4}\right), \mathrm{Sh} 303\left(3.98 \times 10^{4}\right)$ | 455 |

Table S-03 Summary of UV-Vis absorption and fluorescence data of compounds 7a in various organic solvents

| Solvent | UV-Vis absorption <br> $\lambda_{\text {max }} / \mathbf{n m}\left(\boldsymbol{\varepsilon} / \mathbf{m o l}^{-\mathbf{1}} \mathbf{L} \mathbf{c m}^{\mathbf{- 1}}\right)$ | Fluorescence <br> $\boldsymbol{\lambda}_{\mathrm{em}} /(\mathbf{n m})$ |
| :--- | :---: | :---: |
| $\mathrm{Et}_{2} \mathrm{O}$ | $488\left(\mathrm{sh}, 1.75 \times 10^{4}\right), 418\left(6.60 \times 10^{4}\right), 392\left(6.56 \times 10^{4}\right)$ | 455 |
| acetone | $498\left(\mathrm{sh}, 2.17 \times 10^{4}\right), 398\left(6.44 \times 10^{4}\right)$ | 468 |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $420\left(\mathrm{sh}, 5.65 \times 10^{4}\right), 387\left(6.76 \times 10^{4}\right)$ | 539 |
| THF | $420\left(\mathrm{sh}, 6.05 \times 10^{4}\right), 387\left(7.23 \times 10^{4}\right)$ | 536 |
| benzene | $422\left(\mathrm{sh}, 6.61 \times 10^{4}\right), 387\left(7.94 \times 10^{4}\right)$ | 499 |
| EtOAc | $416\left(\mathrm{sh}, 6.50 \times 10^{4}\right), 388\left(7.39 \times 10^{4}\right)$ | 462 |
| toluene | $421\left(\mathrm{sh}, 6.04 \times 10^{4}\right), 388\left(7.18 \times 10^{4}\right)$ | 495 |

Table S-04 Summary of UV-Vis absorption and fluorescence data of compounds 7b in various organic solvents

| Solvent | UV-Vis absorption <br> $\lambda_{\text {max }} / \mathbf{n m}\left(\varepsilon / \mathbf{m o l}^{-1} \mathbf{L ~ c m}^{-1}\right)$ | Fluorescence <br> $\lambda_{\text {em }} /(\mathbf{n m})$ |
| :--- | :---: | :---: |
| acetone | $416\left(\mathrm{sh}, 5.24 \times 10^{4}\right), 382\left(6.49 \times 10^{4}\right)$ | 572 |
| benzene | $419\left(\mathrm{sh}, 7.42 \times 10^{4}\right), 387\left(8.71 \times 10^{4}\right)$ | 498 |
| EtOAc | $419\left(\mathrm{sh}, 5.74 \times 10^{4}\right), 382\left(6.90 \times 10^{4}\right)$ | 514 |
| $\mathrm{Et}_{2} \mathrm{O}$ | $414\left(\mathrm{sh}, 6.39 \times 10^{4}\right), 383\left(7.64 \times 10^{4}\right)$ | 495 |
| hexane | $418\left(\mathrm{sh}, 6.44 \times 10^{4}\right), 382\left(7.99 \times 10^{4}\right)$ | 487 |
| THF | $419\left(\mathrm{sh}, 6.84 \times 10^{4}\right), 386\left(8.02 \times 10^{4}\right)$ | 523 |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $420\left(\mathrm{sh}, 6.05 \times 10^{4}\right), 388\left(7.00 \times 10^{4}\right)$ | 538 |
| toluene | $419\left(\mathrm{sh}, 6.47 \times 10^{4}\right), 387\left(7.67 \times 10^{4}\right)$ | 495 |

## 5. X-ray Single Crystallographic Data of 5c and 10



Fig. S-33 X-ray crystal structure of 5c (non-hydrogen atoms are represented by displacement ellipsoids at the 50\% probability level).


Fig. S-34 X-ray crystal structure of 10 (non-hydrogen atoms are represented by displacement ellipsoids at the $50 \%$ probability level).

Table S-05 Crystal data and structure refinement of 5c

| Empirical formula | C 50 H 38 O 4 |
| :--- | :--- |
| Formula weight | 702.80 |
| Temperature/K | $100(2)$ |
| Crystal system | monoclinic |
| Space group | $\mathrm{P} 21 / \mathrm{c}$ |
| $\mathrm{a} / \AA$ | $11.1936(2)$ |
| $\mathrm{b} / \AA$ | $21.2734(3)$ |
| $\mathrm{c} / \AA$ | $7.72170(10)$ |
| $\beta /{ }^{\circ}$ | $109.217(2)$ |
| Volume $/ \AA 33$ | $1736.28(5)$ |
| Z | 2 |
| $\rho c a l c g / \mathrm{cm} 3$ | 1.344 |
| $\mu /$ mm-1 | 0.661 |
| $\mathrm{~F}(000)$ | 740.0 |
| Crystal size/mm3 | $0.311 \times 0.172 \times 0.161$ |
| Radiation | $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$ |
| $2 \theta$ range for data collection $/{ }^{\circ}$ | 8.312 to 154.568 |
| Index ranges | $-13 \leq \mathrm{h} \leq 14,-26 \leq \mathrm{k} \leq 25,-9 \leq 1 \leq 9$ |
| Reflections collected | 18375 |
| Independent reflections | $3637[\mathrm{Rint}=0.0374, \mathrm{Rsigma}=0.0277]$ |
| Data/restraints/parameters | $3637 / 14 / 324$ |
| Goodness-of-fit on F2 | 1.100 |
| Final R indexes [I>=2 $\sigma$ (I) $]$ | $\mathrm{R} 1=0.0878$, wR2 $=0.2557$ |
| Final R indexes [all data] | $\mathrm{R} 1=0.0908$, wR2 $=0.2582$ |
| Largest diff. peak/hole $/ \mathrm{e} \AA-3$ | $0.43 /-0.52$ |

Table S-06 Crystal data and structure refinement of $\mathbf{1 0}$

| Empirical formula | $\mathrm{C}_{52} \mathrm{H}_{50} \mathrm{O}_{8}$ |
| :--- | :--- |
| Formula weight | 802.92 |
| Temperature/K | $100(2)$ |
| Crystal system | orthorhombic |
| Space group | $P b c n$ |
| $a / \AA$ | $15.66880(10)$ |
| $b / \AA$ | $9.35570(10)$ |
| $c / \AA$ | $56.7594(5)$ |
| Volume $/ \AA^{3}$ | $8320.51(13)$ |
| $Z$ | 8 |
| $\rho_{\text {calcg }} / \mathrm{cm}^{3}$ | 1.282 |
| $\mu / \mathrm{mm}^{-1}$ | 0.686 |
| $\mathrm{~F}(000)$ | 3408.0 |
| Crystal size $/ \mathrm{mm}^{3}$ | $0.095 \times 0.079 \times 0.056$ |
| Radiation | $\mathrm{Cu} K \alpha(\lambda=1.54184)$ |
| $2 \theta$ range for data collection $/{ }^{\circ}$ | 6.228 to 154.818 |
| Index ranges | $-13 \leq h \leq 19,-11 \leq k \leq 11,-71 \leq l \leq 69$ |
| Reflections collected | 56336 |
| Independent reflections | $8698\left[R_{\text {int }}=0.0445, R_{\text {sigma }}=0.0326\right]$ |
| Data/restraints/parameters | $8698 / 0 / 549$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.037 |
| Final $R$ indexes [I>=2 $\sigma(\mathrm{I})]$ | $R_{1}=0.0570, w R_{2}=0.1608$ |
| Final $R$ indexes [all data | $R_{1}=0.0691, w R_{2}=0.1716$ |
| Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$ | $0.48 /-0.25$ |

## 6. Rotational Properties of Compound 5c

The rotational properties of compound $\mathbf{5 c}$ were investigated by variable-temperature (VT) NMR analysis in conjunction with $a b$ initio modeling. VT NMR analysis was performed on a Bruker AVANCE 500 spectrometer equipped with a TXI inverse triple resonance probe.


Fig. S-35 VT ${ }^{1} \mathrm{H}$ NMR spectra ( 500 MHz , DMSO- $d_{6}$ ) of $\mathbf{5 c}$ showing the region of aldehyde and aromatic proton signals measured at different temperatures.


Fig. S-36 VT ${ }^{1} \mathrm{H}$ NMR spectra ( 500 MHz , DMSO- $d_{6}$ ) of $\mathbf{5 c}$ showing the region of aldehyde proton signals measured at different temperatures.

To further assess the rotational energy barriers in the structure of $\mathbf{5 c}$, a model compound $\mathbf{1 1}$ was modeled at the B3LYP-D3/6-31G(d) level using the Spartan'18 software package (Wavefunction Inc., Irvine, CA, USA). Our computational results disclose two rotational transition states (namely TS-1 and TS-2). As shown in Scheme S-1, the TS-1 has a lower rel. G (22.77 kcal/mol) than TS$2(30.64 \mathrm{kcal} / \mathrm{mol})$. The interconversion among the atropisomers of $\mathbf{5 c}$ will require to overcome an energy barrier of at least $22.77 \mathrm{kcal} / \mathrm{mol}$.

Rel $G(\mathrm{kcal} / \mathrm{mol})$

$0.00 \mathrm{kcal} / \mathrm{mol}$

TS-1



Scheme S-01 Two rotational transition states for model compound 11 and their relative Gibbs free energies (in kcal/mol).


Fig. S-37 Optimized geometries of model compound 11 (A) in the ground state, (B) rotational transition state TS-1, and (C) rotational transition state TS-2. Calculations performed at the B3LYP-D3/6-31G(d) level of theory.

Cartesian coordinates of optimized geometry of $\mathbf{1 1}(E=-960.185093$ Hartree, $G=-959.934043$ Hartree, dipole moment = 3.65 Debye)

| H | -0.424333 | 0.799271 | -3.196802 |
| :--- | ---: | ---: | ---: |
| C | -0.333994 | 0.914550 | -2.120140 |
| C | -0.159423 | 1.200720 | 0.662475 |
| C | -0.119154 | -0.228442 | -1.336944 |
| C | -0.467128 | 2.174441 | -1.550433 |
| C | -0.397932 | 2.343101 | -0.160047 |
| C | -0.008014 | -0.093084 | 0.069443 |
| H | -0.644199 | 3.039271 | -2.184650 |
| C | -0.081010 | 1.354737 | 2.078906 |
| C | 0.052017 | 1.651844 | 4.871044 |
| C | 0.170414 | 0.221585 | 2.909552 |
| C | -0.259031 | 2.642073 | 2.671098 |
| C | -0.190392 | 2.764839 | 4.067492 |
| C | 0.233543 | 0.393483 | 4.300981 |
| H | -0.329150 | 3.744247 | 4.518160 |
| H | 0.425082 | -0.471335 | 4.931371 |
| H | 0.101530 | 1.766687 | 5.950181 |
| C | -0.566091 | 3.625658 | 0.461304 |


| H | -0.749623 | 4.485864 | -0.177801 |
| :--- | ---: | ---: | ---: |
| C | -0.503610 | 3.768275 | 1.813182 |
| H | -0.637502 | 4.745850 | 2.269165 |
| C | 0.274442 | -1.207852 | 0.933923 |
| H | 0.431822 | -2.184690 | 0.489305 |
| C | 0.357767 | -1.056538 | 2.284086 |
| H | 0.575175 | -1.915208 | 2.914910 |
| C | -0.099315 | -1.565478 | -2.002457 |
| C | -0.247161 | -4.065184 | -3.317618 |
| C | 0.849803 | -1.922684 | -2.986922 |
| C | -1.108469 | -2.492409 | -1.690896 |
| C | -1.183211 | -3.725176 | -2.335139 |
| C | 0.760329 | -3.164976 | -3.636949 |
| H | -1.852042 | -2.226292 | -0.945391 |
| H | -1.979095 | -4.418806 | -2.076487 |
| H | 1.511942 | -3.398683 | -4.384816 |
| H | -0.306638 | -5.024938 | -3.823301 |
| C | 1.998215 | -1.045761 | -3.332927 |
| H | 2.124148 | -0.146699 | -2.699777 |
| O | 2.780286 | -1.282264 | -4.237080 |

Cartesian coordinates of optimized geometry of TS-1 $(E=-960.152583$ Hartree, $G=-959.897750$
Hartree, dipole moment $=3.91$ Debye, imaginary frequency $=\mathrm{i} 31 \mathrm{~cm}^{-1}$ )

| H | 0.410908 | 0.797889 | -3.102001 |
| :--- | ---: | ---: | ---: |
| C | 0.244657 | 0.863978 | -2.034902 |
| C | 0.128205 | 1.173953 | 0.724554 |
| C | 0.205495 | -0.314633 | -1.256563 |
| C | 0.096693 | 2.131626 | -1.499053 |
| C | -0.068947 | 2.307060 | -0.120077 |
| C | 0.360617 | -0.126456 | 0.160525 |
| H | 0.089447 | 2.996258 | -2.157875 |
| C | 0.103127 | 1.359682 | 2.141855 |
| C | -0.011535 | 1.703180 | 4.934359 |
| C | 0.417544 | 0.278195 | 3.015349 |
| C | -0.230034 | 2.634166 | 2.695486 |
| C | -0.296593 | 2.775635 | 4.090395 |
| C | 0.355908 | 0.468843 | 4.404740 |
| H | -0.569571 | 3.741294 | 4.509163 |
| H | 0.601239 | -0.360860 | 5.063389 |
| H | -0.066346 | 1.834663 | 6.011591 |
| C | -0.372170 | 3.581903 | 0.458074 |
| H | -0.530227 | 4.424328 | -0.211135 |
| C | -0.474405 | 3.734656 | 1.806472 |


| H | -0.725286 | 4.701723 | 2.235294 |
| :--- | ---: | ---: | ---: |
| C | 0.830840 | -1.136650 | 1.073424 |
| H | 1.265018 | -2.043612 | 0.674981 |
| C | 0.852364 | -0.949352 | 2.422913 |
| H | 1.239400 | -1.732989 | 3.070376 |
| C | -0.012585 | -1.628664 | -1.927755 |
| C | -0.107953 | -4.194394 | -3.208572 |
| C | -0.171735 | -1.758459 | -3.346407 |
| C | -0.121478 | -2.838952 | -1.205469 |
| C | -0.160640 | -4.087530 | -1.819976 |
| C | -0.148325 | -3.023426 | -3.955515 |
| H | -0.212474 | -2.816602 | -0.130633 |
| H | -0.235317 | -4.978397 | -1.201180 |
| H | -0.230787 | -3.058184 | -5.038000 |
| H | -0.103751 | -5.164561 | -3.697485 |
| C | -0.631759 | -0.685161 | -4.277175 |
| H | -1.382360 | 0.008893 | -3.846084 |
| O | -0.337183 | -0.619042 | -5.457083 |

Cartesian coordinates of optimized geometry of Ts-2 $(E=-960.139042$ Hartree, $G=-959.885215$
Hartree, dipole moment $=3.16$ Debye, imaginary frequency $=169 \mathrm{~cm}^{-1}$ )

| H | -1.163439 | 0.447207 | -3.055558 |
| :--- | ---: | ---: | ---: |
| C | -0.810154 | 0.671224 | -2.058661 |
| C | -0.180675 | 1.306552 | 0.567273 |
| C | -0.207476 | -0.356946 | -1.292032 |
| C | -1.015585 | 1.959845 | -1.605970 |
| C | -0.661998 | 2.326161 | -0.304700 |
| C | 0.009772 | -0.044239 | 0.092511 |
| H | -1.468045 | 2.694315 | -2.267519 |
| C | 0.084032 | 1.653925 | 1.931721 |
| C | 0.584899 | 2.328045 | 4.626728 |
| C | 0.499169 | 0.660049 | 2.864385 |
| C | -0.089619 | 2.999419 | 2.385222 |
| C | 0.171083 | 3.310182 | 3.729056 |
| C | 0.745435 | 1.012835 | 4.200680 |
| H | 0.036850 | 4.334935 | 4.066251 |
| H | 1.054420 | 0.241223 | 4.901394 |
| H | 0.774563 | 2.588785 | 5.664084 |
| C | -0.824286 | 3.668069 | 0.168944 |
| H | -1.184928 | 4.417579 | -0.531138 |
| C | -0.542741 | 3.995518 | 1.458003 |
| H | -0.670246 | 5.015375 | 1.811905 |
| C | 0.354834 | -1.006546 | 1.097223 |
| H | 0.354410 | -2.049121 | 0.845267 |


| C | 0.590826 | -0.686861 | 2.398559 |
| :--- | ---: | ---: | ---: |
| H | 0.823688 | -1.474318 | 3.111076 |
| C | 0.071578 | -1.625006 | -2.082076 |
| C | -0.121481 | -3.785671 | -3.980865 |
| C | 0.113369 | -2.997354 | -1.669841 |
| C | 0.167955 | -1.446111 | -3.486635 |
| C | 0.077065 | -2.479303 | -4.414454 |
| C | -0.063767 | -4.026550 | -2.614367 |
| H | 0.319854 | -0.448859 | -3.878314 |
| H | 0.151223 | -2.251031 | -5.474276 |
| H | -0.095285 | -5.043744 | -2.236761 |
| H | -0.253178 | -4.604100 | -4.682543 |
| C | 0.621074 | -3.585397 | -0.391035 |
| H | 1.584372 | -3.151598 | -0.051502 |
| O | 0.162435 | -4.568487 | 0.157966 |

