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Computational Details

The geometry of aqueous pyrimidine was optimized at the DFT/PBE01 with the def2-

QZVPPD2 basis set, using the D3BJ3,4 correction. The RIJCOSX approximation5 was used

with the def2/J6 auxiliary basis. The conductor-like polarizable continuum model7 (CPCM)

was used using the Gaussian charge scheme8 with a scaled Van der Waals cavity with radii

from Bondi.9 The normal modes were computed at the same level of theory using numerical

second derivatives for constructing the Hessian. All electronic structure calculations used

the Orca package.10

Electronic RIXS Calculations As mentioned in the main text, the purely electronic

RIXS scattering amplitudes are computed within the RSA-TD-DFT method described in

detail within ref.11 The ground-state Kohn-Sham orbitals used as reference were computed

at the same level of theory described above, except that the smaller def2-TZVP(-f)2 basis

set was adopted.

RIXS simulations for the optimized geometry The linear response equations were

solved with the restricted subspaces defined as (Nc,No,Nu) ≡ (2,15,20), where Nc is the

number of core orbitals included (the 1a1 and 2b1 N1s orbitals), No is the number of occupied

valence orbitals included and Nu is the number of unoccupied orbitals considered. A total of

320 roots was computed comprising the manifold of valence excited state and the 20 lowest

core-excited states. The electronic transition dipole moments were computed from the Orca

output using Multifwn.12

RIXS simulations sampled from Molecular Dynamics The effect of the hydrogen

bonding interactions and thermal geometrical distortions was assessed by computing also an

averaged RIXS spectrum sampled from molecular dynamics simulations (see Sec. further

below). From the MD snapshots we constructed a minimally solvated snapshot including

pyrimidine and the first solvation shell at the nitrogen atoms, more specifically All water
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molecules with a hydrogen within the distance to the first minimum in the N−H radial

distribution (See Fig. 2) function were included explicitly. A CPCM layer was added around

the minimally solvated cluster to account for the bulk liquid effects. The same level of

theory from the previous section was used. A similar orbital truncation was used, except

the subspaces were (2,No,20) where No = 15 + 4× nH2O, where each explicit water molecule

adds 4 occupied orbitals to the calculation (removing the O1s orbitals).

Energy shifts A rigid shift of 11.125 eV was applied to the simulated X-ray absorption

spectra of the isolated molecule and the MD-sampled structures presented in Fig. 1 and Fig. 2

of the main manuscript. The core-excited state potentials in Fig. 3a of the main manuscript

were shifted by 11.179 eV with respect to the vertical point of the RSA-TD-DFT potentials

to align the experimental and theoretical detuning axis.

Molecular coordinates The molecular coordinates used to define the symmetry planes

and dipole moment orientations discussed in the main article result from the atom positions

in Tab. 1.

Table 1: Optimized cartesian coordinates for pyrimidine with implicit solvation.

Element x [Å] y [Å] z [Å]
N 0.6832 1.1868 0.0000
N 0.6832 -1.1868 0.0000
C 1.2782 0.0000 0.0000
C -0.6484 1.1770 0.0000
C -0.6484 -1.1770 0.0000
C -1.3749 0.0000 0.0000
H 2.3636 0.0000 0.0000
H -1.1452 2.1414 0.0000
H -1.1452 -2.1414 0.0000
H -2.4559 0.0000 0.0000
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Normal Modes of Pyrimidine

Table 2 collects the normal modes computed as described above.

Table 2: Normal modes of aqueous pyrimidine computed at the DFT/PBE0 level
with the def2-QZVPPD basis set, using the D3BJ correction and the CPCM
model. Modes are order in ascending frequency, the classic label in terms of
Wilson’s13–15 notation is also given.

mode irrep. frequency (cm-1) frequency (eV) Wilson’s notation
1 b1 347.06 0.043 16b
2 a2 404.54 0.050 16a
3 b2 633.74 0.079 6b
4 a1 691.80 0.086 6a
5 b1 737.91 0.091 4
6 b1 833.96 0.103 10b
7 b1 997.11 0.124 5
8 a2 1023.14 0.127 17a
9 a1 1023.43 0.127 12
10 b1 1046.20 0.130 17b
11 a1 1091.32 0.135 1
12 b2 1100.22 0.136 18b
13 a1 1170.36 0.145 9a
14 b2 1230.73 0.153 14
15 b2 1275.59 0.158 15
16 b2 1396.40 0.173 3
17 a1 1447.11 0.179 19a
18 b2 1505.56 0.187 19b
19 a1 1632.62 0.202 8a
20 b2 1638.06 0.203 8b
21 a1 3175.59 0.394 20a
22 a1 3181.37 0.394 13
23 b2 3182.14 0.395 7b
24 a1 3228.31 0.400 2
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Core-Excited Potential Energy Scans along the Normal

Modes

To identify which modes of pyrimidine are active upon core-excitation, we performed energy

scans for both the ground state and the two near-degenerate core-excited states. The core-

q1
387.6
387.7
387.8
387.9
388.0

1
b1

q2

2
a2

q3

3
b2

q4

4
a1

q5

5
b1

q6

6
b1

q7
387.6
387.7
387.8
387.9
388.0

Po
te

nt
ia

l e
ne

rg
y 

[e
V]

   
   

   
   

   
   

  

7
b1

q8

8
a2

q9

9
a1

q10

10
b1

q11

11
a1

q12

12
b2

q13
387.6
387.7
387.8
387.9
388.0

13
a1

q14

14
b2

q15

15
b2

q16

16
b2

q17

17
a1

q18

18
b2

1 0 1
q19

387.6
387.7
387.8
387.9
388.0

19
a1

1 0 1
q20

20
b2

1 0 1
q21

21
a1

1 0 1
q22

22
a1

1 0 1
q23

23
b2

1 0 1
q24

24
a1

Fig. S 1: Potential energy scans along the 24 normal modes of pyrimidine for the ground
state (dashed gray line, the minimum of this curve was shifted to the vertical excitation
energy for comparison) and two diabatic core-excited states |1s−1N1

2a12〉 and |1s−1N2
2a12〉 (cyan

and magenta). Modes are labelled in ascending frequency, the corresponding irreducible
representation is also shown. Note that qνi are dimensionless normal mode coordinates.

excited states were computed both at the TD-DFT level and using the Z+1 approximation.

The Z+1 approximation was shown in ref.11 to be more robust, therefore we adopted those

results and they are shown in Fig. 1
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Final RIXS cross-section

Using the definition of the scattering amplitude Ff,νf from the main text the double differ-

ential RIXS cross-section reads

σ(ω′, ω) = r20
ω′

ω

∑
f,νf

|Ff,νf |2∆(ω − ω′ − ωf0 − (ενf − ε0),Γf ), (1)

where ω and ω′ are the incoming and outgoing photon frequencies, respectively. ωf0 =

(εf − ε0)/~ is the transition frequency difference between the initial state and final state.

And where ∆(x,Γ) = Γ/π(x2 + Γ2) is the normalized Lorentzian lineshape function .

Average over orientations

We need to average the cross-section over all orientations, as the molecules in solution are

randomly oriented. Expressing the dot products explcitly as e · µnm =
∑

α eαµ
α
nm, α ∈

{x, y, z}, let us write the averaged RIXS cross-section as

σ(ω′, ω) = r20
ω′

ω

∑
α,β,γ,δ

e′αe
′
βeγeδ

∑
f,k,k′

µαfkµ
β
k′fµ

γ
k0µ

δ
0k′

×
∑
νf

〈Ψk′(ω)|νf〉〈νf |Ψk(ω)〉∆(ω − ω′ − ωf0 − (ενf − ε0),Γf ) (2)

following Gel’mukhanov and Ågren16 let us carry out the average by averaging over the

photon polarization tensor in Eq. (2)

e′αe
′
βeγeδ =

1

30

[
δαβδγδ(3 + cos2 χ) + (δαγδβδ + δαδδβγ)

1

2
(1− 3 cos2 χ)

]
, (3)

where χ is the angle between the incoming polarization and the detection direction.
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Effective anti-symmetric wave packet

In our model, we take into account two vibrational modes, namely the 8a and 8b modes of

pyrimidine. Although excitation into the symmetric 8a mode is important for describind the

lineshape (specially for the elastic band) it does not contribute to the symmetry breaking.

Therefore, in Fig. 3 of the main text, we use for illustration purposes an effective wave packet

|Ψ̃k(ω)〉 where we sum over the contributions of the symmetric mode

|Ψ̃k(ω)〉 =
∑
ν′

(s)
k

〈ν ′(s)k |Ψk(ω)〉, (4)

= ı
∑
ν′

(s)
k

∑
νk

〈ν ′(s)k |νk〉〈νk|ν0〉
ω − ωk0 − (ενk − εν0) + ıΓ

, (5)

since |νk〉 = |ν(s)k 〉|ν
(a)
k 〉 and ενk = ε

ν
(s)
k

+ ε
ν
(a)
k

, for simplicity we label the mode 8a as (s) and

8b as (a). Hence, we have 〈ν ′(s)k |νk〉 = δ
ν′

(s)
k ν

(s)
k
|ν(a)k 〉

|Ψ̃k(ω)〉 = ı
∑
ν′

(s)
k

∑
ν
(a)
k ,ν

(s)
k

δ
ν′

(s)
k ν

(s)
k
〈ν(s)k |ν

(s)
0 〉|ν

(a)
k 〉〈ν

(a)
k |ν

(a)
0 〉

ω − ωk0 − (ε
ν
(s)
k

+ ε
ν
(a)
k
− ε

ν
(s)
0
− ε

ν
(a)
0

) + ıΓ
, (6)

= ı
∑

ν
(a)
k ,ν

(s)
k

〈ν(s)k |ν
(s)
0 〉|ν

(a)
k 〉〈ν

(a)
k |ν

(a)
0 〉

ω − ωk0 − (ε
ν
(s)
k

+ ε
ν
(a)
k
− ε

ν
(s)
0
− ε

ν
(a)
0

) + ıΓ
(7)

= ı
∑
ν
(s)
k

〈ν(s)k |ν
(s)
0 〉|ψ

(a)

k,ν
(s)
k

〉 (8)

where the partial wave packets ψ
(a)

k,ν
(s)
k

are formally equivalent to the intermediate wave packets

described in the mixed nd+md RIXS model described by Vaz da Cruz et al..17

Incoming photon bandwidth and spectrometer resolution

The RIXS spectra were computed using the core-excited state lifetime broadening for ni-

trogen Γ = 0.06 eV. The final state broadening Γf was chosen as 0.05 eV to be able to

distinguish the individual vibrational excitations. For comparison to the experimental spec-
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tra, RIXS spectra were simulated with a 0.02eV excitation energy spacing and convoluted on

the excitation energy axis with a 0.25eV Gaussian broadening to account for the finite exci-

tation bandwidth and a 0.4eV gaussian broadening on the emission energy scale to account

for the spectrometer resolution.

Self-absorption correction

The absorption and emission of the photons in the dense sample causing self-absorption

effects, which mainly affect the electronically elastic emission channel, is accounted for using

the expression18,19

σ̃RIXS(ω, ω′) =
σRIXS(ω, ω′)

1 + σXAS(ω′)
σXAS(ω)

. (9)

Physico-Chemical Picture

Let us try to give deeper insight into the symmetry breaking and detuning dependence

observed. Starting from the scattering amplitudes, we have two equivalent pictures

localized: Ff,νf = F
(1)
f,νf

+ F
(2)
f,νf

(10)

delocalized: Ff,νf = F
(1b2)
f,νf

+ F
(1a1)
f,νf

(11)

ignoring the vibrational motion, both yield the same final state intensities at the ground-state

minimum geometry. The two pictures are connected by the linear combinations

µf,1b2 =
1√
2

(µf,1sN1
− µf,1sN2

), µf,1a1 =
1√
2

(µf,1sN1
+ µf,1sN2

), (12)

which yields the following relations

µz1b2,2a2 =
√

2µz1sN1
,2a2

, µx7b2,1b2 =
√

2µx7b2,1sN1
, µy11a1,1b2 =

√
2µy11a1,1sN1

. (13)
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Lastly, we have the following symmetry relations

µx7b2,1sN1
= −µx7b2,1sN2

, µy7b2,1sN1
= µy7b2,1sN2

,

µx11a1,1sN1
= µx11a1,1sN2

, µy11a1,1sN1
= −µy11a1,1sN2

. (14)

Role of nuclear dynamics

To analyse the main effect of symmetry breaking, and to compare with the experiment,

instead of dealing with the differential cross-section as in the main text, let us work with the

integral RIXS cross-section for a given final state f

Sf (ω) =

∫ ∞
−∞

dω′σf (ω
′, ω), σf =

∑
νf

|Ff,νf |2∆(ω − ω′ − ωf0 − (ενf − ε0),Γf ) (15)

since Ff,νf does not depend on ω′ and the Lorentzian ∆(x,Γ) is normalized, we obtain

Sf (ω) =
∑
νf

|Ff,νf |2 = F †f,νfFf,νf , (16)

where the scattering amplitude reads

Ff,νf = F
(1)
f,νf

+ F
(2)
f,νf

, F
(k)
f,νf

= −ı(e′ · µfk)(e · µk0)× 〈νf |Ψk(ω)〉, (17)

substituting this equation into Eq. (16), we get

Sf (ω) = S
(1)
f + S

(2)
f + S

(int)
f , (18)

Sf (ω) =
∑
νf

|F (1)
f,νf
|2 + |F (2)

f,νf
|2 + 2Re[F

(1)†
f,νf

F
(2)
f,νf

], (19)

where the first two terms are the cross-section for independent scattering via either nitrogen

atom, and the last term is the interference term between the two channels. Let us analyse
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the first two terms,

S
(k)
f = |F (k)

f,νf
|2 = (e′ · µfk)

2(e · µk0)
2 ×

∑
νf

〈Ψk(ω)|νf〉〈νf |Ψk(ω)〉

S
(k)
f = (e′ · µfk)

2(e · µk0)
2 × 〈Ψk(ω)|Ψk(ω)〉 (20)

where we used
∑

νf
|νf〉〈νf | = 1, also note that Ψk(ω) is not normalized and 〈Ψk(ω)|Ψk(ω)〉 =

σXAS
vib . Now, let us turn our attention to the interference term

S
(int)
f = 2(e′ · µf,1sN1

)(e · µ1sN1
,2a2)(e

′ · µf,1sN2
)(e · µ1sN2

,2a2)Re〈Ψ1(ω)|Ψ2(ω)〉, (21)

where 〈Ψ1(ω)|Ψ2(ω)〉 is the overlap between the two core-excited wave packets.

Symmetry breaking as a function of detuning

Using the core-excited symmetry breaking parameter, as defined in the main text

ζ(ω) = 1− Re
〈Ψ1(ω)|Ψ2(ω)〉
〈Ψ1(ω)|Ψ1(ω)〉

, (22)

noting that 〈Ψ1(ω)|Ψ2(ω)〉 = 〈Ψ2(ω)|Ψ2(ω)〉 and introducing the vibrationally compensated

integral cross-section S̃f = Sf/〈Ψ1(ω)|Ψ1(ω)〉 we arrive at the following expression

S̃f (ω) = (e′ · µf,1sN1
)2(e · µ1sN1

,2a2)
2 + (e′ · µf,1sN2

)2(e · µ1sN2
,2a2)

2 + (23)

2(e′ · µf,1sN1
)(e · µ1sN1

,2a2)(e
′ · µf,1sN2

)(e · µ1sN2
,2a2)(1− ζ(ω)). (24)
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For large detuning Ω << 0, the wave packets remain at the vertical excitation point and do

not move leading to maximal overlap between the two core-excited states, so that

ζ(ω)→ 0 (25)

S̃f (ω) =
[
(e′ · µf,1sN1

)(e · µ1sN1
,2a2) + (e′ · µf,1sN2

)(e · µ1sN2
,2a2)

]2
(26)

S̃f (ω) =
[
(e′ · µf,1b2)(e · µ1b2,2a2) + (e′ · µf,1a1)(e · µ1a1,2a2)

]2
(27)

S̃f (ω) = (e′ · µf,1b2)
2(e · µ1b2,2a2)

2 (28)

as it can be seen, in this limit symmetry breaking is quenched, and the localized and delo-

calized picture lead to the same result with partial cancellation of the emission transition

dipoles, as well as the closing of the forbidden 1a1 scattering channel.

In the case of resonant excitation Ω = 0, the wave packets are spread in opposite directons,

and their overlap is minimized. In this case 0 < ζ(ω) ≤ 1. For a clearer qualitative picture,

let us assume the extreme case so that

ζ(ω)→ 1

S̃f (ω) = (e′ · µf,1sN1
)2(e · µ1sN1

,2a2)
2 + (e′ · µf,1sN2

)2(e · µ1sN2
,2a2)

2 (29)

in this limit, symmetry breaking is maximum, and we obtain a result which corresponds to

the sum of intensities for scattering via either nitrogen atom.

Evaluating these expressions for all the relevant final states, and using the symmetry

relationshipts between the transiton dipole moments from Eq. 14 we obtain for the two
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extreme cases

Ω << 0, (30)

S2a2 = 4(e′zez)
2(µz1sN1

,2a2
)4Svib(ω),

S7b2 = 4(ezµ
z
1sN1

,2a2
)2(e′xµ

x
7b2,1sN1

)2Svib(ω),

S11a1 = 4(ezµ
z
1sN1

,2a2
)2(e′yµ

y
11a1,1sN1

)2Svib(ω),

Ω = 0, (31)

S2a2 = 2(e′zez)
2(µz1sN1

,2a2
)4Svib(ω),

S7b2 = 2(ezµ
z
1sN1

,2a2
)2
[
(e′yµ

y
7b2,1sN1

)2 + (e′xµ
x
7b2,1sN1

)2
]
Svib(ω),

S11a1 = 2(ezµ
z
1sN1

,2a2
)2
[
(e′xµ

x
11a1,1sN1

)2 + (e′yµ
y
11a1,1sN1

)2
]
Svib(ω).

Details of the Molecular Dynamics Simulations

All molecular dynamics simulations were carried out with the Gromacs package.20 To model

aqueous pyrimidine we adopted the accurate force field and charges derived from quantum-

chemical calculations reported by Cacelli et al.,21 while water was modelled by the flexible

single point charge miodel (SPC/Fw ) described by Wu et al.22

Initially, a single pyrimidine molecule was placed in a cubic box of length 3.4 nm, the

box was filled with 1280 water molecules using the gmx solvate tool from Gromacs. All

calculations used periodic boundary conditions, the temperature was controlled by a modi-

fied Berendsen thermostat (0.1 ps time-constant) and in NPT runs the Parrinello-Rahman

pressure-coupling (2 ps time-constant) was used. For the calculation of the Coulomb and

van der Waals term a cut-off of 1.4 nm was employed, while long-range electrostatics were

treated via the particle mesh Ewald (PME) procedure. The initially generated system was

first optimized. Next, the system was equilibrated in two steps: first an NVT equilibration

at T = 298 K was run for 500 ps (∆t = 0.5 fs), followed by an NPT equilibration at T = 298

K and P = 1 bar, which was also run for 500 ps (∆t = 0.5 fs). Throughout the equilibration
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steps, the coordinates of the complex were constrained to the center of the simulation box.

Lastly, a production NPT run was carried out for 10 ns (∆t = 0.2 fs, T = 298 K and P

= 1 bar). From the final run snapshots were collect every 1 ps. They were subsequently

used for analysis of the radial distribution functions and for sampling explicitly solvated

configurations for the RIXS spectral calculations.
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Radial distribution function
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Fig. S 2: Radial distribution functions between the nitrogens of pyrimidine and the hydrogen
atoms (blue line) and oxygen atoms of the solvent water molecules.

Hydrogen bond statistics

The hydrogen bonding properties of pyrimidine and water were primarily analysed via the

radial distribution functions, computed with the gmx rdf tool. Hydrogen bond statistics

were computed with the gmx hbond tool. The obtained results are shown in Tab. 3

Table 3: Hydrogen bonding analysis from the MD simulation of pyrimidine in
aqueous solution. The rNH distance corresponds to the maximum of the gXH(r)
and gHO(r) pair-correlation functions. The average number of donated HBs (nHB)
from water to pyrimidine is defined via the criteria ∠NHO < 20◦ and rN−O < 3.5 Å.

rN−H rN−O (Å) ∠NOH (◦) nHB
N1 1.77 2.83 ± 0.16 10.23 ± 4.82 1.04 ± 0.51
N2 1.77 2.83 ± 0.16 10.29 ± 4.84 1.05 ± 0.52
N1 + N2 1.77 2.83 ± 0.16 10.26 ± 4.83 2.08 ± 0.72
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Molecule Using Frequency Control Over Nuclear Dynamics in Resonant X-Ray Scat-

tering. Phys. Chem. Chem. Phys. 2017, 19, 19573–19589.

S16



(19) Sun, Y.-P. Spontaneous and Stimulated X-Ray Raman Scattering. Ph.D. thesis, KTH

Royal Institute of Technology, Stockholm, 2011.

(20) Lindahl,; Abraham,; Hess,; van der Spoel, GROMACS 2019 Source code.

doi:10.5281/zenodo.2424363, Zenodo, 2018.

(21) Cacelli, I.; Ferretti, A.; Prampolini, G. Perturbative Multireference Configuration Inter-

action (CI-MRPT2) Calculations in a Focused Dynamical Approach: A Computational

Study of Solvatochromism in Pyrimidine. J. Phys. Chem. A 2015, 119, 5250–5259.

(22) Wu, Y.; Tepper, H. L.; Voth, G. A. Flexible Simple Point-Charge Water Model With

Improved Liquid-State Properties. J. Chem. Phys. 2006, 124, 024503.

S17


