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Video Captions: 30 

Video S1: A demonstration of the IMFs derived from the Ichetucknee year-long timeseries 31 

through EEMD. The timeseries is shown in black, data gaps are highlighted in grey, and 32 

successive IMFs are displayed overlain on each other in blue, beginning from the highest 33 

frequency IMF and ending with the overall trend in the data. 34 

Video S2: A demonstration of the IMFs derived from the Potomac year-long timeseries through 35 

EEMD. The timeseries is shown in black, data gaps are highlighted in grey, and successive IMFs 36 

are displayed overlain on each other in blue, beginning from the highest frequency IMF and 37 

ending with the overall trend in the data. 38 

Video S3: A demonstration of the IMFs derived from the Connecticut year-long timeseries 39 

through EEMD. The timeseries is shown in black, data gaps are highlighted in grey, and 40 

successive IMFs are displayed overlain on each other in blue, beginning from the highest 41 

frequency IMF and ending with the overall trend in the data. 42 

 43 
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Appendix S1: A model for the background variability - White versus colored noise  45 

To illustrate why the background concentration time series may follow a Lorentzian spectrum 46 

(‘brown noise’ instead of ‘white noise’), the following argument and simplified model is offered. 47 

If the concentration dynamics underlying the chemical constituent C are given by a simplified 48 

balance 49 

𝑑𝐶

𝑑𝑡
= −𝜏 𝐶 + 𝐼𝑐(𝑡), 50 

where 𝜏 is the inverse reaction or transformation time scale, and 𝐼𝑐(𝑡) is a time series of sources 51 

or sinks of C (due to stochastic hydrological additions or biological activities or both), then it can 52 

be shown that the Fourier power spectrum of C, defined as 𝐸𝑐(𝑓), is given as 53 

𝐸𝑐(𝑓) =
𝐸𝐼(𝑓)

𝜏2 + 𝑓2
, 54 

where 𝐸𝐼(𝑓) is the Fourier spectrum of the sources and sinks 𝐼𝑐(𝑡), and 𝑓 is the frequency (i.e. 55 

inverse timescale)1.  In this reduced dynamical system featuring a balance between changes in 56 

storage (dC/dt), a first-order reaction or transformation loss (−𝜏 𝐶), and time-dependent sources 57 

and sinks 𝐼𝑐(𝑡) for C, diel patterns can arise when 𝐸𝐼(𝑓) itself exhibits diurnal variations (e.g., 58 

due to photochemical activities driven by variability in incident shortwave radiation with 59 

stochasticity originating from clouds and water level/turbidity changes). At high frequencies 60 

(𝑓/𝜏>>1) and for an 𝐼𝑐(𝑡) exhibiting uncorrelated (white-noise) structure, the simplified model 61 

here predicts 𝐸𝑐(𝑓)~1/𝑓
2 (brown noise)2.  Likewise, at low frequencies (𝑓/𝜏<<1), 𝐸𝑐(𝑓) ≈62 

𝜏−2𝐸𝐼(𝑓) and the concentration spectrum scales as the ‘input’ or 𝐸𝐼(𝑓) spectrum with no 63 

frequency modulations.  White noise structure is characterized by  𝛼 = 0, where 𝛼 is the slope of 64 

the power spectrum, meaning that 𝐸𝐼(𝑓) is a constant independent of f. Brown noise structure, 65 
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often produced by random walks, has 1/𝑓2 scaling and shows a decreasing slope with frequency 66 

in the power spectra. When 𝐸𝐼(𝑓) maintains white noise properties (𝛼 = 0) across all 67 

frequencies,  𝐸𝑐(𝑓) reduces to the so-called ‘Lorentzian’ spectrum (flat at low frequency and 68 

1/𝑓2at higher frequencies).  In the analysis here, 𝐸𝐼(𝑓) is rarely described by ‘white-noise’ and 69 

at short times or high frequencies, it may exhibit its own statistical structure so that 𝐸𝐼(𝑓)~𝑓
−𝛽 .  70 

This noise structure for 𝐸𝐼(𝑓) leads to a concentration spectrum given by  𝐸𝑐(𝑓)~𝑓
−2−𝛽  for 71 

𝑓/𝜏>>1.  That is, concentration spectra here resemble ‘black-noise’ when 𝛽 > 0.  72 

The goal of the work here is to detect and isolate diel modes superimposed on a concentration 73 

spectrum given as 𝐸𝑐(𝑓)~𝑓
−2−𝛽.  In summary, the conjecture here is that at 𝑓/𝜏>>1 (high 74 

frequency range), 𝐸𝐼(𝑓) can be decomposed into a background ‘noise’ characterized by 75 

𝐸𝐼(𝑓)~𝑓
−𝛽  (where 𝛽 ≥ 0) and other deterministic modes of variability (i.e. single spike at a 76 

fixed frequency) due to biological activity.  It is these deterministic modes that we seek to detect 77 

from measured 𝐸𝑐(𝑓) using Empirical Mode Decomposition analysis.   78 

In the Lorentzian synthetic timeseries models we produced, we introduced the diel , seasonal, and 79 

tidal signals as a timeseries of sources and sinks 𝐼𝑐(𝑡). We chose the decay rate 𝜏 to be one 80 

month so that the diel frequency 𝑓𝑑𝑖𝑒𝑙  would be in the realm of 𝑓/𝜏>>1 (high frequency range) 81 

where 𝐸𝐼(𝑓)~𝑓
−𝛽 . Choosing a 𝜏 of this magnitude produces timeseries power spectra similar to 82 

many signals reported in the literature3, 4, and to signals of the measured timeseries in this work 83 

(Appendix S2, Figures S3, S4).  84 

 85 

  86 
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Appendix S2: Fast Fourier Transform and Wavelet Transform 87 

Fourier Analysis 88 

Fourier Transform in general and Fast Fourier Transforms (FFT) in particular are common 89 

methods for converting data from the time domain (e.g. a time-series of a water quality 90 

constituent) into the “power” of different frequencies1.  This method can efficiently decompose a 91 

time series into a summation of sinusoidal waves, with each wave representing the ‘energy’ (also 92 

‘activity’, ‘variability’ or ‘variance’) of a frequency in the series ranging from half the sampling  93 

frequency (or the “Nyquist Frequency”) to the inverse of the record duration5. The energy of a 94 

certain frequency is determined by the squared amplitude of the associated wave. Fourier 95 

transforms are energy preserving in that the sum of the squared amplitudes of all frequencies 96 

recovers the energy of the original time series.  Practically for the scientist, the precise definition 97 

of the sampling interval n and the normalization of the series of length N are incorporated 98 

differently in different software packages, necessitating caution when comparing activity across 99 

methods. 100 

One major drawback to Fourier analysis is its inability to sense locality of events in time.  For 101 

example, a time series characterized by a single ‘spike’ in time affects all the amplitudes 102 

describing the Fourier decomposition. All FFT methods assume linearity (i.e. all time-series are a 103 

linear combination of sine waves with different amplitudes, frequencies and periods) and 104 

stationarity (i.e. the median value does not change with time) of the time series.  105 

To illustrate the use of Fast Fourier Transformation (FFT) compared to the method developed in 106 

this manuscript, we performed FFT on the synthetic and measured time series using the base R 107 

`spectrum()` and `fft()` functions. Gaps in the timeseries were filled with a linear spline. We 108 
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identified peaks in the power spectra using the pracma package in R, then filtering peaks by 109 

comparing them to 1/f2 (𝛼 = 2)  scaling. The 1/f2 scaling is representative of chemical 110 

constituents in channels with more catchment filtering, usually rivers of higher Strahler stream 111 

orders4.  112 

The resulting power spectra from the spectrum() R function show that the synthetic data sets 113 

initially all had scaling significantly steeper than 1/f or 1/f2, and converged on 1/f2 scaling when 114 

environmental variability was added to the series. The component frequencies for the linear 115 

timeseries were correctly identified (Figure S3a,d), however the non-linear series created by a 116 

pulse and exponential decay signal produced a large number of high harmonics in the power 117 

spectra (Figure S3g). This is consistent with spurious frequencies attributed to windowing and 118 

finite-size effects acting on low frequency trends6. The diel frequency had an energy in the range 119 

of 1.3-4.4 for the synthetic series, with the lower energies associated with the signals that had 120 

observational error (i.e. gaps) introduced, and signals resulting from the pulse-decay function.  121 

The spectrum() function applies various normalization and smoothing functions, such that the 122 

total energy of the transformed signal differs from the total energy of the original timeseries, in 123 

violation of Parseval’s theorem. To estimate the recovery of signal strength through FFT, we 124 

therefore used the fft() R function instead. The amplitudes of the recovered diel signals were 125 

closest to original (0.102 mg/l) for the clean S&D Sin and S,D&T Sin signals. FFT of the clean 126 

Pulse-Decay signal returned signal of amplitude 0.074 mg/l. Introduction of environmental 127 

variability and observational energy reduced the amplitude of the recovered diel signal to 0.067 128 

mg/l for the S&D Sin and S,D&T Sin signals, and to 0.047 mg/l for the Pulse-Decay signal. 129 

The concentration power spectra of the three measured data series using the spectrum() function 130 

showed an approximate 1/f2 scaling, consistent with catchment and hillslope filtering of 131 
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environmental variability3, 4, 7 (Figure S4). Superimposed on this power-law behavior, the 132 

Ichetucknee showed a strong peak at daily frequencies, as well as a number of harmonics. 133 

Though only the largest of these harmonics was detected with our peak detection algorithm, 4 134 

other higher harmonics can be seen visually. The Connecticut had tidal peaks strong enough to 135 

be detected by our peak detection criteria, a peak at the diel frequency could still be seen visually 136 

but was not strong enough to pass the peak detection criteria. The Potomac had no peaks strong 137 

enough for detection through our algorithm, however a small peak near the diel frequency can be 138 

seen. All three spectra flattened into white noise at frequencies commensurate to 5000/year or 139 

about a 2-hour period commensurate with the Nyquist frequency (defined as twice the sampling 140 

frequency). Diel signal amplitude extracted using the fft() function indicated a diel amplitude of 141 

0.012 mg/l for the Ichetucknee, 0.001 mg/l for the Connecticut, and 0.004 mg/l for the Potomac. 142 

Wavelet Transforms 143 

Wavelet transforms have some ‘time-frequency’ localization capabilities that circumvent the 144 

limitations of Fourier analysis in this regard. Full properties of wavelets are reviewed elsewhere8 145 

and are not repeated here. In wavelet analysis, a kernel of a given shape, amplitude and 146 

frequency is compared to the data at different time steps and the wavelet power of that frequency 147 

at that time is related to the goodness of fit.  Unlike Fourier analysis, the wavelet kernel is not 148 

unique and numerous kernels or basis functions are allowed provided they satisfy a number of 149 

normalizing properties not discussed here. Like FFT, normalization methods differ amongst 150 

software packages, and the shapes of the kernels can impact the results under certain 151 

circumstances (e.g. symmetric versus asymmetric wavelets, degree of localization in frequency 152 

versus time, etc.) though wavelets under certain conditions (especially in detection of power-153 

laws) are insensitive to kernel shape as demonstrated elsewhere9. A review article by Torrence 154 
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and Compo10 presents a clear explanation of how to use wavelets and how to link frequencies in 155 

Fourier and wavelet analyses depending on choices made about the wavelet basis function. 156 

Wavelet transforms are beneficial in decomposing signals in both space and time, however there 157 

are several circumstances under which empirical methods may be preferred. Tradeoffs exist, 158 

where better locality in one domain (say time) can be achieved if appropriate wavelet analyzing 159 

functions are selected, but this gain comes at a loss of resolution in the other domain (say 160 

frequency) and vice-a-versa. No wavelet transform can be fully accurate in both time and 161 

frequency domains simultaneously. Practically, this can mean a loss of timeseries properties such 162 

as phases of oscillations. Another drawback is redundancy – a time series of length N results in 163 

𝑁2 wavelet coefficients (N coefficients required for all frequencies at every time instant for 164 

continuous wavelet transforms) – a huge redundancy in information content that is 165 

‘manufactured’ by the transform, not the process under consideration11, 12. This manufacturing of 166 

information can produce bands of energy that are not descriptive of the underlying timeseries. 167 

Orthonormal wavelet transforms may be used to preserve the precise information content of a 168 

series without redundancy, but the arrangements of the wavelet coefficients require a courser 169 

resolution of the frequency-time wavelet half-plane making detection of some patterns more 170 

difficult 13, 14. 171 

To demonstrate the use of wavelets, we used the WaveletComp package in R to compute 172 

continuous wavelets of our synthetic (Figure S5) and measured timeseries (Figure S6). Wavelet 173 

analysis of the synthetic timeseries were constant throughout time, and showed the same 174 

frequencies as the Fourier transform, including the first harmonics from the pulsed decay signal. 175 

The resolution of frequency in the Wavelet analysis is courser than Fourier, with wide bands 176 

appearing around the 24 hr periodicity rather than narrow and discrete horizontal bands (Figure 177 
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S5). The diel and tidal frequencies became more difficult to identify once environmental 178 

variability was added to the timeseries. The wavelet of the Potomac and Connecticut had very 179 

low power at most frequencies, with short durations (1-5 days) of slight power increases at the 180 

diel (Potomac & Connecticut) and tidal (Connecticut only) frequencies that are difficult to 181 

visually identify. The Ichetucknee showed consistent power at the diel frequency that was 182 

interrupted only by gaps in the data. All wavelet analyses showed significant distortion at the 183 

ends of the timeseries – an artifact of windowing and mathematical assumptions made about the 184 

form of the signal extrapolated past the ends of the measured or simulated timeseries. 185 

  186 
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Appendix S3: Estimation of N-uptake and Gross Primary Productivity 187 

The N uptake predicted by the diel IMFs were calculated using a procedure described 188 

elsewhere15, where the nighttime peaks of the timeseries were assumed to represent no 189 

autotrophic uptake, and the concentration differences between the diel trace and a linear spline 190 

that connected concentration peaks represented concentration deficits due to autotrophic 191 

biological uptake. We calculated this concentration deficit for each timestep and converted to a 192 

mass deficit though multiplication with the absolute value of simultaneous high-resolution 193 

sampled flowrate. Using the absolute value of discharge was necessary because of flow reversals 194 

in the Connecticut River on 160 of the days in the time series. After converting to mass deficits 195 

at each timestep, we summed the deficits at each timestep to a daily value. The conversion from 196 

concentration to mass allows for a consistent, biologically meaningful, interpretation of values 197 

across flow conditions. The same concentration deficit on a high flow day would indicate more 198 

N-uptake than the same concentration deficit on a low flow day, and by converting to mass 199 

uptake, this difference is more readily apparent. 200 

The GPP estimates for the Potomac and Connecticut rivers were determined earlier using the 201 

StreamMetabolizer R package, which partitions changes in dissolved oxygen to GPP, ecosystem 202 

respiration and air-water gas exchange16, and we accessed them through the StreamPulse data 203 

portal (data.streampulse.org). As the Connecticut River experiences flow reversals, and as these 204 

days were excluded from the published data set, we used the available oxygen data for the 205 

Connecticut River to remodel GPP using the StreamMetabolizer package17. Though flow 206 

reversals result in suboptimal metabolism estimates, given the high number of flow reversal days 207 

and the nature of our study, we decided that an increased number of less precise GPP estimates 208 

was preferable to fewer precise estimates. The GPP estimates derived here closely matched 209 
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published estimates for overlapping days. As these published estimates represent an ensemble of 210 

model fits, we used the mean and standard deviation of daily values in our calculations. GPP was 211 

estimated for the Ichetucknee using a 2 station approach, with the upstream O2 concentration 212 

treated as a constant arising from the flow-weighted concentrations of the Ichetucknee’s 213 

contributing springs15, and gas evasion estimated from correlations among discharge, velocity, 214 

and gas exchange (as measured from floating domes). 215 

 All GPP estimates were provided as areal mass oxygen production, and were converted to 216 

estimates of N-uptake using a C:O2 molar productivity ratio of 0.52 ± 0.15 for the Potomac and 217 

Connecticut which reflects a distribution of autotrophic respiration quotients18-20, and a C:O2 218 

molar productivity ratio of 0.5 for the Ichetucknee to be consistent with previous work15.  A C:N 219 

biomass molar ratio of 25:115, 21 was used for the Ichetucknee and 16.1 ± 5.46 :122 for the 220 

Potomac and Connecticut. Estimates of autotrophic N-uptake from these two methods were 221 

compared to assess how well the EEMD method isolated the diel signal from complex data 222 

series. These two metrics are nearly identical for previous work on the Ichetucknee River15.  223 

 224 

  225 
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Appendix S4: Solute footprint estimation 226 

We estimated the areal concentration footprint of a diel nitrate excursion using the width of a 227 

river and a one-dimensional advection-dispersion equation23 rearranged to solve for longitudinal 228 

distance travelled by the excursion24: 229 

𝑥 =  

𝑢

(

 1
4𝐷
(

𝑢𝑇

erfc−1 (1 − 2
𝐶𝜏
𝐶0
)
)

2

 +  𝑇

)

 

1000
 230 

where x is the longitudinal distance travelled by the excursion (in km), u is water velocity (in m 231 

s-1), T is the time duration of the excursion (in s), D is the dispersion rate (in m2 s-1), erfc() is the 232 

complementary error function, 𝐶𝜏 is the concentration downstream at location x and time τ (in 233 

mg l-1), and 𝐶0  is the magnitude of the concentration perturbation (in mg l -1). We calculated this 234 

value for each river assuming a stream with no nitrate gets a 12-hour pulse (T = 43,200 s) of 235 

magnitude equal to the diel nitrate range exhibited by the measured timeseries (𝐶0  = diel range 236 

on each day). The 𝐶𝜏 was defined as 
𝐶0
2⁄ , or complete mixing of the water. We parameterized 237 

𝐷 =  𝛼𝑢∗ℎ where 𝛼 is specified as a distribution derived from published work25, h is the gage 238 

height (in m) and 𝑢∗ was parameterized as the slope of the relation between u and (1/κ) log(h) 239 

from USGS site visits where κ ≈ 0.41 is the van Karman’s constant. For each site, we used data 240 

reported by the USGS from site visits to relate u to discharge (in m3 s-1), and to relate depth of 241 

flow (h) and channel width (w) to u. For each day in the timeseries, average discharge was 242 

converted to u, h, and w times using these relations, and footprints were computed as the product 243 

of distance x (in km) and width w (in km) of the river reach. This computation was performed 244 

10,000 times for each day sampling the distributions of u, h, w, and 𝛼. The mean and standard 245 
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error of the resulting concentration footprints were used in creating the vertical error bars in 246 

Figure S7 and are reported in the text. This approach may over-estimate the areal footprint 247 

because of 3 implicit assumptions: (i) lateral dispersion is ignored in the estimation of x, (ii) bulk 248 

estimates of u and D are used, which overestimate the local advection and dispersion in the 249 

vicinity of the biological sink (i.e. river bed and sides), and (iii) the flow field is assumed to be 250 

uniform along x (channel section irregularities act as ‘retardation’ factors due to the presence of 251 

bends and dead-zones). 252 

253 
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Supporting Figures: 254 

 255 

 256 

Figure S1: Synthetic time series used for illustrating detection and separation of diel patterns 257 

from other modes of variability. a) seasonal and diel sinewaves superimposed on each other b) 258 

seasonal, diel and tidal sinewaves superimposed on each other and c) seasonal sinewave and diel 259 

pulse-decay patterns superimposed on each other. Subsections i) show the simple time series, ii) 260 

show the time series with environmental variability included, and iii) show the time series with 261 

environmental and sensor induced variability and gaps included. In all plots, time periods 262 

highlighted with shaded boxes are amplified in the insets to illustrate fine-scale variability. 263 

 264 
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 265 

Figure S2: Measured nitrate concentration time series sampled at 15-minute intervals from the 266 

a) Ichetucknee River in 2010 b) Potomac River in 2015 and c) Connecticut River in 2014. 267 

Subsections i) show the whole series, and time periods highlighted with shaded boxes are 268 

amplified in subsections ii) for visualization of diel features.   269 

 270 
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 271 

Figure S3: Power spectra of the three synthetic data series; Seasonal & Diel Sine: a-c; Seasonal, 272 

Diel & Tidal Sine: d-f; Pulse-Decay g-i; Blank with just the environmental structure j-l). Power 273 

spectra are shown of the simple signal (a, d, g & j), the signals with environmental variability (b, 274 

e, h & k) and the signals with variability from environmental and detection processes (c, f, I & l). 275 

The dashed line shows 1/f2 scaling (α = 2), and blue dots show peaks with power at least 50x 1/f2 276 

scaling.  277 

 278 

 279 

 280 
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 281 

Figure S4: Power spectra of the example three measured data series Power spectra are shown for 282 

the a) Ichetucknee River, b) Connecticut River, and c) Potomac River. The dashed line shows 283 

1/f2 scaling (α = 2), and blue dots show peaks with power at least 50x 1/f2 scaling.  284 

  285 
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 286 

Figure S5: Wavelet analysis of the three synthetic data series; Seasonal & Diel Sine: a-c; 287 

Seasonal, Diel & Tidal Sine: d-f; Pulse-Decay g-i; Blank with just the environmental structure j-288 

l). Wavelet heatmaps are shown of the simple signal (a, d, g & j), the signals with environmental 289 

variability (b, e, h & k) and the signals with variability from environmental and detection 290 

processes (c, f, I & l). The color maps on all panels correspond to the quantiles of energy within 291 

each measured timeseries. Thus, colors within panels are comparable, but colors are not 292 

comparable across panels.  293 

  294 
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 295 

Figure S6: Wavelet heatmaps of the example three measured data series. Wavelets are shown 296 

for the a) Ichetucknee River, b) Connecticut River, and c) Potomac River. The color maps on all 297 

panels correspond to the quantiles of energy within each measured timeseries. Thus, colors 298 

within panels are comparable, but colors are not comparable across panels.  299 

 300 

 301 
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 302 

Figure S7: Areal daily N-uptake estimated from concentration deficit in the diel IMF (y-axis; 303 

UNO3, NO3) plotted against areal daily N-uptake estimated from GPP (x-axis; UNO3, GPP) with 304 

accompanying error in a) the Ichetucknee River, b) the Connecticut River, c) the Potomac River, 305 

and d) the Potomac River minus 3 outliers that correlated with storm events. Error bars represent 306 

the 95% confidence interval (± 2 standard error). Error for UNO3, GPP stems from uncertainty 307 

around estimates of GPP, autotrophic respiration quotients, and C:N stoichiometry of 308 

photoautotrophs. Error for UNO3, NO3 derives from uncertainty around the size of the chemical 309 

signature footprint. The black dotted line shows the 1:1 line. Grey triangles in a) denote 310 

estimates from days that had flow reversals and are therefore less reliable than days shown in 311 

black circles. They are maintained because of their prevalence in the time series.  In all panels, 312 
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only days on which signal was extracted from the timeseries are shown. Though theoretically, 313 

negative uptake values are impossible, published model results of GPP are occasionally 314 

negative16, and are kept for consistency in describing uncertainty. Error bars in the Ichetucknee 315 

River do not account for error associated with GPP, as it was computed arithmetically and not 316 

statistically. 317 

 318 

  319 
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././FigS7a.pdf 409 

././FigS7b.pdf 410 

././FigS7c.pdf 411 

././FigS7d.pdf 412 

./IMFs_Connecticut/ 413 

././Connecticut_compiled.RData 414 

./IMFs_Ichetucknee/ 415 

././Ichetucknee_compiled.RData 416 

./IMFs_Lorentzian/ 417 

././ts.blank.c_compiled.RData 418 

././ts.blank_compiled.RData 419 

././ts1.b_compiled.RData 420 

././ts1.c_compiled.RData 421 

././ts1_compiled.RData 422 

././ts2.b_compiled.RData 423 

././ts2.c_compiled.RData 424 

././ts2_compiled.RData 425 

././ts3.b_compiled.RData 426 

././ts3.c_compiled.RData 427 

././ts3_compiled.RData 428 

./IMFs_Potomac/ 429 

././Potomac_compiled.RData 430 

./VideoFrames/ 431 

././EEMDConn_p1.png … EEMDConn_p17.png 432 

././EEMDIch_p1.png … EEMDIch_p16.png 433 

././EEMDPot_p1.png … EEMDPot_p16.png 434 

 435 
 436 

Description 437 

This compilation should run on most systems provided the folder structure and file organization 438 

is left intact. 439 

 440 

All code was developed using R 4.0.2.  The following packages must be installed to run the 441 

code:  442 
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streamMetabolizer_0.11.4 443 

StreamPULSE_0.0.0.9043 444 

Cairo_1.5-12.2 445 

shiny_1.5.0 446 

padr_0.5.2 447 

dataRetrieval_2.7.6 448 

xts_0.12.1 449 

dygraphs_1.1.1.6 450 

pracma_2.2.9 451 

gridExtra_2.3 452 

lubridate_1.7.9 453 

hht_2.1.3 454 

zoo_1.8-8 455 

doParallel_1.0.15 456 

iterators_1.0.12 457 

forcats_0.5.0 458 

stringr_1.4.0 459 

dplyr_1.0.2 460 

purr_0.3.4 461 

readr_1.3.1 462 

tidyr_1.1.2 463 

tibble_3.0.3 464 

ggplot2_3.3.2 465 

tidyverse_1.3.0 466 

foreach_1.5.0 467 

WaveletComp_1.1 468 

 469 

README.txt – This file includes a brief description of the purpose of the zip folder 470 

DataS1.zip. 471 

 472 

AnalyzeConnecticutIMFs.Rmd – This file accesses files Conn_USGSdata.RData 473 

and Connecticut_compiled.RData. This file analyzes the compiled EEMD results of 474 

the decomposition of the measured timeseries from the Connecticut River. This R Markdown file 475 

can be knitted or run chunk by chunk. Code provided first views all of the IMFs, examines their 476 

periods, isolates the Diel IMF using functions sourced from the HelperFunctions.R file, 477 

and calculates statistics on the extent, magnitude and seasonality of diel signal.  478 

 479 

AnalyzeIchetuckneeIMFs.Rmd – This file accesses files Ich_data.RData and 480 

Ichetucknee_compiled.RData.  This file analyzes the compiled EEMD results of the 481 

decomposition of the measured timeseries from the Ichetucknee River. This R Markdown file 482 

can be knitted or run chunk by chunk. Code provided first views all of the IMFs, examines their 483 

periods, isolates the Diel IMF using functions sourced from the HelperFunctions.R file, 484 

and calculates statistics on the extent, magnitude and seasonality of diel signal. 485 
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 486 

AnalyzeLorentzianIMFs.Rmd – This file accesses files 487 

SyntheticSeries.RData, ts.blank.c_compiled.RData, 488 

ts.blank_compiled.RData, ts1.b_compiled.RData, 489 

ts1.c_compiled.RData, ts1_compiled.RData, ts2.b_compiled.RData, 490 

ts2.c_compiled.RData, ts2_compiled.RData, ts3.b_compiled.RData, 491 

ts3.c_compiled.RData and ts3_compiled.RData. This file analyzes the compiled 492 

EEMD results of the decomposition of the Lorentzian timeseries. This R Markdown file can be 493 

knitted or run chunk by chunk for one timeseries at a time. Code provided first views displays all 494 

of names of the Lorentzian timeseries, and requires user input to choose which series to view for 495 

the remainder of the file. Once a timeseries is selected, the code displays all IMFs, examines 496 

their periods, isolates the Diel IMF using functions sourced from the HelperFunctions.R 497 

file, and calculates statistics on the extent, magnitude, and percent signal recovery. 498 
 499 

AnalyzePotomacIMFs.Rmd – This file accesses files Pot_USGSdata.RData and 500 

Potomac_compiled.RData. This file analyzes the compiled EEMD results of the 501 

decomposition of the measured timeseries from the Potomac River. This R Markdown file can be 502 

knitted or run chunk by chunk. Code provided first views all of the IMFs, examines their periods, 503 

isolates the Diel IMF using functions sourced from the HelperFunctions.R file, and 504 

calculates statistics on the extent, magnitude and seasonality of diel signal. 505 

 506 

CreateSyntheticSeries.Rmd – This file creates the Lorentzian timeseries following 507 

the mathematical description in the Supplemental Information. A base timeseries of either 508 

sinusoidal or exponential decay shape is successively contaminated with brown noise (i.e. a 509 

random walk) of a certain magnitude representing environmental variability, and then with white 510 

noise and gaps representing measurement error or observational variability. The power spectra 511 

for each timeseries is available for viewing. “Blank” timeseries of just background variability are 512 

also produced that do not have any structure as their base. Produces output 513 

SyntheticSeries.RData. 514 

 515 

Download+Save_MetabolismEstimates.Rmd – This file accesses the metabolism 516 

estimates for the Potomac and Connecticut rivers that were available in the literature16, and 517 

accessible through the StreamPulse data portal (data.streampulse.org). As the metabolism of the 518 

Connecticut River was also estimated locally, several graphical comparisons of the two 519 

estimations are provided in this file. Produces output CT_nwis-01193050_metab.RData 520 

and MD_nwis-01646500_metab.RData. 521 

 522 

EEMDComputation.Rmd – This file accesses files Conn_USGSdata.RData, 523 

Pot_USGSdata.RData, Ich_data.RData and SyntheticSeries.RData. It 524 

uses the hht package to compute 200 trial decompositions of each timeseries, then compiles them 525 

and resifts them according to the method described by the authors of the package26. Outputs of 526 

this code file include Connecticut_compiled.RData , 527 
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Ichetucknee_compiled.RData, Potomac_compiled.RData, 528 

ts.blank.c_compiled.RData, ts.blank_compiled.RData, 529 

ts1.b_compiled.RData, ts1.c_compiled.RData, ts1_compiled.RData, 530 

ts2.b_compiled.RData, ts2.c_compiled.RData, ts2_compiled.RData, 531 

ts3.b_compiled.RData, ts3.c_compiled.RData, and 532 

ts3_compiled.RData. Running the code also creates the folders 533 

Connecticut_eemd/, Ichetucknee_eemd/, Potomac_eemd/, 534 

ts.blank.c_eemd/, ts.blank_eemd/, ts1.b_eemd/, ts1.c_eemd/, 535 

ts1_eemd/, ts2.b_eemd/, ts2.c_eemd/, ts2_eemd/, ts3.b_eemd/, 536 

ts3.c_eemd/, and ts3_eemd/, and 200 trials in each folder. For space reasons, these 537 

trial files are not included in the zipped folder. Please contact the authors if they are needed. 538 

 539 

FFTAnalysis.R contains code to perform Fourier analysis of the measured and synthetic 540 

timeseries and produce the power spectra plots in Fig S3 and Fig S4.  541 

 542 

HelperFunctions.R contains 5 functions that are called in many of the other code files. 543 

They are loaded when this script is sourced by the other RMarkdown files. The first function is 544 

auto.installer() which combines installation and loading libraries. Alternatively, experienced R 545 

users can install packages manually. The second is my_PlotIMFs(), which is a very slight 546 

modification of PlotIMFs() from the hht package to allow for more descriptive plot titles. 547 

Investigate.IMF() creates an interactive graph of all of the selected IMFs overlain on each other. 548 

This is a helpful function for inspecting regions of a timeseries more closely. 549 

format_EEMD_result() and filter_imfs() are meant to be used in concert, where the input of 550 

filter_imfs() is the output of format_EEMD_result(). filter_imfs() will isolate the signal of a 551 

given period and phase from all of the IMFs. Phase is only supported for 24 hour periodicity at 552 

this point. 553 

 554 

MakeFigS1.Rmd contains code to create Fig S1 of the Lorentzian data series. This file loads 555 

SyntheticSeries.RData and writes FigS1.pdf and FigS1insets.pdf. The 556 

presented Fig S1 was created using these pdf files in Adobe Illustrator. 557 

 558 

MakeFigS2.Rmd contains code to create Fig S2 of the Measured data series. This file loads 559 

Ich_data.RData, Conn_USGSdata.RData, and Pot_USGSdata.RData and 560 

writes FigS2.pdf. The presented Fig S2 was created using this pdf file in Adobe Illustrator. 561 

 562 

MakeFig1.Rmd contains code to create Fig 1. This file loads Conn_USGSdata.RData 563 

and Connecticut_compiled.RData and writes Fig1a.pdf, Fig1b.pdf, 564 

Fig1c.pdf and Fig1d.pdf. The presented Fig 1 was created using these pdf files in 565 

Adobe Illustrator. 566 

 567 

MakeFig2.Rmd contains code to create Fig 2. This file loads Ich_data.RData, 568 

Ichetuknee_compiled.RData, Conn_USGSdata.RData, 569 
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Connecticut_compiled.RData, Pot_USGSdata and 570 

Potomac_compiled.RData and writes Fig2.pdf.  571 

 572 

MakeVideo1.Rmd contains code to create the frames for Video S1. This file loads 573 

Ich_data.RData, and Ichetucknee_compiled.RData and writes 574 

EEMDIch_p[1:16].png. The video was created using these images through Windows Video 575 

Editor.  576 

 577 

MakeVideo2.Rmd contains code to create the frames for Video S2. This file loads 578 

Pot_USGSdata.RData, and Potomac_compiled.RData and writes 579 

EEMDPot_p[1:16].png. The video was created using these images through Windows Video 580 

Editor. 581 
 582 

MakeVideo3.Rmd contains code to create the frames for Video S3. This file loads 583 

Conn_USGSdata.RData, and Connecticut_compiled.RData and writes 584 

EEMDConn_p[1:17].png. The video was created using these images through Windows 585 

Video Editor. 586 

 587 

ModelConnecticutMetabolism.R contains code to model metabolism using the 588 

streamMetabolizer package. Settings match those used in published literature16 except for the 589 

decisions on which days to include in the model. This code produces the file 590 

CT_Modelled_metab.RData. As the model output file is large, the output is not included in 591 

this zipped folder. Please contact authors if the file is needed. 592 

 593 

Nuptake_Connecticut.Rmd contains code to calculate the N-uptake  for the Connecticut 594 

River predicted from the diel nitrate variability according to methods developed in the 595 

literature15. Independent estimates of N-uptake are also produced from GPP estimates. This file 596 

also calculates the theoretical concentration footprints based on literature methods24. All 597 

estimates are compared with each other, and error surrounding these estimates are provided. This 598 

file loads Conn_USGSdata.RData, Connecticut_compiled.RData, 599 

CT_modelled_metabolism.RData and Conn_ratingcurve.RData, and writes 600 

Fig3b.pdf and FigS7b.pdf. As CT_modelled_metabolism.RData is large, it is 601 

not included in this zipped folder. Please contact authors if the file is needed. 602 

 603 

Nuptake_Ichetucknee.Rmd contains code to calculate the N-uptake for the Ichetucknee 604 

River predicted from the diel nitrate variability according to methods developed in the 605 

literature15. Independent estimates of N-uptake are also produced from GPP estimates. All 606 

estimates are compared with each other. This file loads Ich_data.RData, 607 

Ichetucknee_compiled.RData and Ichetucknee_metabolism.csv, and 608 

writes Fig3a.pdf and FigS7b.pdf.  609 

 610 
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Nuptake_Potomac.Rmd contains code to calculate the N-uptake  for the Potomac River 611 

predicted from the diel nitrate variability according to methods developed in the literature15. 612 

Independent estimates of N-uptake are also produced from GPP estimates. This file also 613 

calculates the theoretical concentration footprints based on literature methods24. All estimates are 614 

compared with each other, and error surrounding these estimates are provided. This file loads 615 
Pot_USGSdata.RData, Potomac_compiled.RData, MD_nwis-616 

01646500_metab.RData and Pot_ratingcurve.RData, and writes 617 

Fig3c.pdf, Fig3d.pdf, FigS7b.pdf and FigS7c.pdf.  618 

 619 

ProcessIchetuckneeData.Rmd contains code that formats the Ichetucknee nitrate data 620 

to be consistent with data retrieved from the USGS NWIS site. The code loads 621 

Ichetucknee_2010_parsed_jbh.csv and writes Ich_data.RData. 622 

 623 

USGSDataDownload.Rmd contains code to access relevant data from the USGS NWIS site 624 

using the dataRetrieval R package. Continuous nitrate and discharge data are downloaded from 625 

the Connecticut River (gage 01193050) and the Potomac River (gage 016456500). The data are 626 

lightly processed to ensure a consistent sampling frequency, no duplicate measurements, and 627 

units of m3s for discharge. Rating curves for both sites are also downloaded and saved. This 628 

script exports files Conn_USGSdata.RData, Pot_USGSdata.RData, 629 

Conn_ratingcurve.RData and Pot_ratingcurve.RData. 630 

 631 

WaveletAnalysis.R contains code to compute and print the continuous wavelet analyses 632 

of the measured and synthetic timeseries. The code saves the wavelet analyses in ./Output, and 633 

due to their size, these output files are not included in the initial DataS1 zip file. The code also 634 

creates .tif files to create Fig S5 and Fig S6. Fig S5 and S6 were compiled in Inkscape. 635 

 636 

Ichetucknee_2010_parsed_jbh.csv contains direct observations of NO3
- and other 637 

water quality parameters as well as derived estimates of metabolism from O2 and nitrogen 638 

uptake from diel NO3
- variability.  NO3

- data were collected from Satlantic SUNA V1 sensors 639 

and other water quality parameters collected by YSI sonde.  Sensors were deployed ~5km 640 

downstream of the Ichetucknee Headspring at US Highway 27 near USGS gage 02322700, and 641 

cleaned weekly concurrent with data download.  Diel N uptake was estimated based on diel NO3
-642 

deviation from two different baselines: the prior nighttime maxima and the mean of the prior and 643 

subsequent nighttime maxima15.   644 

 645 

Ichetucknee_metabolism.csv contains estimates of metabolism (Gross Primary 646 

Production and Ecosystem Respiration) derived from diel variation in O 2 concentrations and 647 

other physical and chemical parameters.  Because the Ichetucknee’s flow is derived from 5 648 

distinct large springs, assumptions of longitudinal O2 equilibrium required by single-station 649 

methods were not applicable.  Instead, metabolism was calculated using a 2-station approach 650 

with the upstream boundary O2 concentration estimated from the flow-weighted contributions of 651 

the hydrologically- and chemically-stable springs. Gas exchange was estimated from discharge 652 
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based on prior studies of the relationship between dome-gas exchange and flow velocity and 653 

applied to the river surface area upstream of the sensors.   654 
 655 

Conn_ratingcurve.RData is data accessed from the USGS describing their site visits to 656 

gage 01193050. The file is written by USGSDataDownload.Rmd. 657 

 658 

Conn_USGSdata.RData is continuous monitoring data from USGS NWIS for site 659 

01193050. The file is written by USGSDataDownload.Rmd.  660 

 661 

CT_nwis-01193050_metab.RData contains metabolism estimates for site 01193050 662 

accessed through StreamPulse. The file is written by 663 
Download+Save_MetabolismEstimates.Rmd. 664 

 665 

Ich_data.RData contains the reformatted data from 666 

Ichetucknee_2010_parsed_jbh.csv. The file is written by 667 

ProcessIchetuckneeData.Rmd.  668 

 669 

MD_nwis-01646500_metab.RData contains metabolism estimates for site 016456500 670 

accessed through StreamPulse. The file is written by 671 

Download+Save_MetabolismEstimates.Rmd. 672 

 673 

Pot_ratingcurve.RData is data accessed from the USGS describing their site visits to 674 

gage 016456500. The file is written by USGSDataDownload.Rmd. 675 

 676 

Pot_USGSdata.RData is continuous monitoring data from USGS NWIS for site 016456500. 677 

The file is written by USGSDataDownload.Rmd.  678 

 679 

SyntheticSeries.RData contains the Lorentzian timeseries created by 680 

CreateSyntheticSeries.Rmd.  681 

 682 

FigS1.pdf is written by MakeFigS1.Rmd and contains segments of Figure S1. Figure S1 683 

was created in Adobe Illustrator.  684 

 685 

FigS1insets.pdf is written by MakeFigS1.Rmd and contains segments of Figure S1. 686 

Figure S1 was created in Adobe Illustrator. 687 

 688 

FigS2.pdf is written by MakeFigS2.Rmd and contains segments of Figure S2. Figure S2 689 

was created in Adobe Illustrator. 690 

 691 

Fig1a.pdf is written by MakeFig1.Rmd and contains segments of Figure 1. Figure 1 was 692 

created in Adobe Illustrator. 693 
 694 
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Fig1b.pdf is written by MakeFig1.Rmd and contains segments of Figure 1. Figure 1 was 695 

created in Adobe Illustrator. 696 

 697 

Fig1c.pdf is written by MakeFig1.Rmd and contains segments of Figure 1. Figure 1 was 698 

created in Adobe Illustrator. 699 

 700 

Fig1d.pdf is written by MakeFig1.Rmd and contains segments of Figure 1. Figure 1 was 701 

created in Adobe Illustrator. 702 

 703 

Fig2.pdf is written by MakeFig2.Rmd and is the same as published Figure 2. 704 

 705 

Fig3a.pdf is written by Nuptake_Ichetucknee.Rmd and shows the correlation 706 

between N-uptake estimates from GPP and from isolated diel oscillations of nitrate. Fig 3 in the 707 

manuscript was created in Adobe Illustrator and Inkscape.  708 

 709 

Fig3b.pdf is written by Nuptake_Connecticut.Rmd and shows the correlation 710 

between N-uptake estimates from GPP and from isolated diel oscillations of nitrate. Fig 3 in the 711 

manuscript was created in Adobe Illustrator and Inkscape.  712 

 713 

Fig3c.pdf is written by Nuptake_Potomac.Rmd and shows the correlation between N-714 

uptake estimates from GPP and from isolated diel oscillations of nitrate. Fig 3 in the manuscript 715 

was created in Adobe Illustrator and Inkscape. 716 

 717 

Fig3d.pdf is written by Nuptake_Potomac.Rmd and shows the correlation between N-718 

uptake estimates from GPP and from isolated diel oscillations of nitrate. Fig 3 in the manuscript 719 

was created in Adobe Illustrator and Inkscape. 720 

 721 

FigS3.pdf is written by FFTAnalysis.R Fig S3 in the manuscript was created in 722 

Inkscape. 723 

 724 

FigS4.pdf is written by FFTAnalysis.R Fig S4 in the manuscript was created in 725 

Inkscape. 726 

 727 

FigS5a.tif is written by WaveletAnalysis.R Fig S5 in the manuscript was created in 728 

Inkscape. 729 

 730 

FigS5b.tif is written by WaveletAnalysis.R Fig S5 in the manuscript was created in 731 

Inkscape. 732 

 733 

FigS5c.tif is written by WaveletAnalysis.R Fig S5 in the manuscript was created in 734 

Inkscape. 735 

 736 
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FigS5d.tif is written by WaveletAnalysis.R Fig S5 in the manuscript was created in 737 

Inkscape. 738 

 739 

FigS5e.tif is written by WaveletAnalysis.R Fig S5 in the manuscript was created in 740 

Inkscape. 741 

 742 

FigS5f.tif is written by WaveletAnalysis.R Fig S5 in the manuscript was created in 743 

Inkscape. 744 

 745 

FigS5g.tif is written by WaveletAnalysis.R Fig S5 in the manuscript was created in 746 

Inkscape. 747 

 748 

FigS5h.tif is written by WaveletAnalysis.R Fig S5 in the manuscript was created in 749 

Inkscape. 750 

 751 

FigS5i.tif is written by WaveletAnalysis.R Fig S5 in the manuscript was created in 752 

Inkscape. 753 

 754 

FigS5k.tif is written by WaveletAnalysis.R Fig S5 in the manuscript was created in 755 

Inkscape. 756 

 757 

FigS5l.tif is written by WaveletAnalysis.R Fig S5 in the manuscript was created in 758 

Inkscape. 759 
 760 

FigS6a.tif is written by WaveletAnalysis.R Fig S6 in the manuscript was created in 761 

Inkscape. 762 

 763 

FigS6b.tif is written by WaveletAnalysis.R Fig S6 in the manuscript was created in 764 

Inkscape. 765 

 766 

FigS6c.tif is written by WaveletAnalysis.R Fig S6 in the manuscript was created in 767 

Inkscape. 768 

 769 

FigS7a.pdf is written by Nuptake_Ichetucknee.Rmd and shows the correlation 770 

between N-uptake estimates from GPP and from isolated diel oscillations of nitrate with error 771 

bars for both methods. Fig S7 in the manuscript was created in Inkscape. 772 

 773 

FigS7b.pdf is written by Nuptake_Connecticut.Rmd and shows the correlation 774 

between N-uptake estimates from GPP and from isolated diel oscillations of nitrate with error 775 

bars for both methods. Fig S7 in the manuscript was created in Inkscape. 776 

 777 
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FigS7c.pdf is written by Nuptake_Potomac.Rmd and shows the correlation between N-778 

uptake estimates from GPP and from isolated diel oscillations of nitrate with error bars for both 779 

methods. Fig S7 in the manuscript was created in Inkscape. 780 
 781 

FigS7d.pdf is written by Nuptake_Potomac.Rmd and shows the correlation between N-782 

uptake estimates from GPP and from isolated diel oscillations of nitrate with error bars for both 783 

methods. Fig S7 in the manuscript was created in Inkscape. 784 

 785 

Connecticut_compiled.RData contains the compiled EEMD results from all 200 trials 786 

for the Connecticut River. The results contain timeseries for each IMF. The file was produced by 787 
EEMDComputation.Rmd.  788 

 789 

Ichetucknee_compiled.RData contains the compiled EEMD results from all 200 trials 790 

for the Ichetucknee River. The results contain timeseries for each IMF. The file was produced by 791 

EEMDComputation.Rmd.  792 

 793 

ts.blank.c_compiled.RData contains the compiled EEMD results from all 200 trials 794 

for the blank Lorentzian timeseries with observational variation. The results contain timeseries 795 

for each IMF. The file was produced by EEMDComputation.Rmd.  796 

 797 

ts.blank_compiled.RData contains the compiled EEMD results from all 200 trials for 798 

the blank Lorentzian timeseries with environmental variation. The results contain timeseries for 799 

each IMF. The file was produced by EEMDComputation.Rmd.  800 

 801 

ts1.b_compiled.RData contains the compiled EEMD results from all 200 trials for the 802 

S&D Lorentzian timeseries with environmental variation. The results contain timeseries for each 803 

IMF. The file was produced by EEMDComputation.Rmd.  804 

 805 

ts1.c_compiled.RData contains the compiled EEMD results from all 200 trials for the 806 

S&D Lorentzian timeseries with observational variation. The results contain timeseries for each 807 

IMF. The file was produced by EEMDComputation.Rmd. 808 

 809 

ts1_compiled.RData contains the compiled EEMD results from all 200 trials for the S&D 810 

Lorentzian timeseries. The results contain timeseries for each IMF. The file was produced by 811 

EEMDComputation.Rmd. 812 

 813 

ts2.b_compiled.RData contains the compiled EEMD results from all 200 trials for the 814 

S,D&T Lorentzian timeseries with environmental variation. The results contain timeseries for 815 

each IMF. The file was produced by EEMDComputation.Rmd. 816 

 817 
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ts2.c_compiled.RData contains the compiled EEMD results from all 200 trials for the 818 

S,D&T Lorentzian timeseries with observational variation. The results contain timeseries for 819 

each IMF. The file was produced by EEMDComputation.Rmd. 820 

 821 

ts2_compiled.RData contains the compiled EEMD results from all 200 trials for the 822 

S,D&T Lorentzian timeseries. The results contain timeseries for each IMF. The file was 823 

produced by EEMDComputation.Rmd. 824 

 825 

ts3.b_compiled.RData contains the compiled EEMD results from all 200 trials for the 826 

Pulse-Decay Lorentzian timeseries with environmental variation. The results contain timeseries 827 

for each IMF. The file was produced by EEMDComputation.Rmd. 828 

 829 

ts3.c_compiled.RData contains the compiled EEMD results from all 200 trials for the 830 

Pulse-Decay Lorentzian timeseries with observational variation. The results contain timeseries 831 

for each IMF. The file was produced by EEMDComputation.Rmd. 832 

 833 

ts3_compiled.RData contains the compiled EEMD results from all 200 trials for the Pulse-834 

Decay Lorentzian timeseries. The results contain timeseries for each IMF. The file was produced 835 

by EEMDComputation.Rmd. 836 

 837 

Potomac_compiled.RData contains the compiled EEMD results from all 200 trials for the 838 

Potomac River. The results contain timeseries for each IMF. The file was produced by 839 

EEMDComputation.Rmd.  840 

 841 

EEMDConn_p1.png … EEMDConn_p17.png contain image frames to make Video S2. 842 

Images are written by MakeVideo2.Rmd 843 

 844 

EEMDIch_p1.png … EEMDIch_p16.png contain image frames to make Video S1. 845 

Images are written by MakeVideo1.Rmd 846 

 847 

EEMDPot_p1.png … EEMDPot_p16.png contain image frames to make Video S3. 848 

Images are written by MakeVideo3.Rmd 849 

 850 

 851 
 852 

  853 
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