Conserved structural motif identified in peptides that bind to Geminivirus replication protein Rep

J. Trinidad Ascencio-Ibáñez ${ }^{1}$ and Benjamin G. Bobay ${ }^{2,3,4, *}$
${ }^{1}$ Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh,

NC 27695, USA.

²Department of Biochemistry, Duke University, Durham, NC 27710, USA.

3 Department of Radiology, Duke University, Durham, NC 27710, USA.
${ }^{4}$ Duke University NMR Center, Duke University Medical Center, Durham, NC 27710, USA.

Supplemental Figures

Supplemental Figure 1.

TGMV QFEGKYCCQNQRFFDLVSPTRSAHFHPNIQRAKSSSDVKTYIDKD. GDTLVWGEFQVDGR CLCUBV QFEGKYKCQNQRFFDLVSPTRSAHFHPNIQGAKSSSDVKDYIDKD.GDTLEWGEFQIDGR EACMCV OFEGKFQCTNPRFFDLISPSRSTHFHPNIQGAKSSSDVKAYIEKG.GEFIDDGIFQVDAR TYLCV QFEGKYQCKNQRFFDLVSPNRSAHFHPNIQAAKSSTDVKTYVEKD. GNFIDFGVSQIDGR TOMOV QFEGKYQCTNNRFFDLVSPTRSAHFHPNIQGAKSSSDVKSYIDKD.GDTIEWGDFQIDGR BCTV QLEGKVQITNIRLFDLVSPTRSAHFHPNIQRAKSSSDVKSYVDKD. GDTIEWGEFQIDGR ACMV QFEGKITITNNRLFDCVHPSCSTRFHPNIQGAKSSSDVKSYLDKD. GDTVEWGRFQIDGR CalCuV QLSGKSNIKDARFFDITHPRRSANFHPNIQAAKDTNAVKNYITKD. GDYCESG MSV OTEKPVRITDSRFEDIEG.l....EHPNIOSAKSVNKVRDYILKEPLAVFERGTEIPRKS

Supplemental Figure 1. A sequence alignment of N-term Rep proteins used in this study. TYLCV secondary structure as characterized in 1L5I PDB and conserved motifs are shown.

Supplemental Figure 2.

Supplemental Figure 2. Peptide analysis of the $2 \mu \mathrm{~s}$ peptide MD simulation. (A), C $\alpha-\mathrm{RMSD}$ over the length of the simulation. (B), Rg (radius of gyration over the length of the simulation). (C), root mean square fluctuations (RMSF) per residue, A147 removed from the rest as there is 47 residues compared to the ~ 20 residues for each other peptide. (D), number of hydrogen bonds in total per peptide. (E), number of residues in a secondary structure confirmation per peptide (α Helix $+\beta$-Sheet $+\beta$-Bridge + Turn). The 18 peptides are divided up into 3 figures each within each panel: peptides A22 (black), A40 (red), A46 (green), A59 (blue), A64 (orange), and A84 (purple) (top); A99 (black), A116 (green), A127 (blue), A132 (orange), and A135 (purple) (middle); and A147 (black), A155 (red), A159 (green), A160 (blue), A176 (orange), and TRXGST (purple) (bottom). Raw data is shown in grey lines while colored lines are the running averages in panels A and B.

Supplemental Figure 3.

Supplemental Figure 3. Free energy landscape analysis of the $2 \boldsymbol{\mu}$ s peptide MD simulation. Peptides A22 (A), A40 (B), A46 (C), A59 (D), A64 (E), A84 (F), A99 (G), A116 (H), A127 (I), A132 (J), A135 (K), A147 (L), A155 (M), A159 (N), A160 (O), A176 (P), and TRX-GST (Q) FEL analysis. The FEL values are constructed as a function of projections of the MD trajectory onto their own $\mathrm{C} \alpha-\mathrm{RMSD}$ and $\mathrm{C} \alpha-\mathrm{Rg}$ values, respectively. The color bar represents the relative free-energy value in $\mathrm{kcal} \mathrm{mol}^{-1}$.

Supplemental Figure 4.

Supplemental Figure 4. Peptide secondary structure analysis during the $\mathbf{2} \boldsymbol{\mu s} \mathbf{M D}$ simulation. Peptides A22 (A), A40 (B), A46 (C), A59 (D), A64 (E), A84 (F), A99 (G), A116 (H), A127 (I), A132 (J), A135 (K), A147 (L), A155 (M), A159 (N), A160 (O), A176 (P), and TRX-GST (Q) secondary structure analysis. Color output from DSSP: coil (white), β-sheet (red), β-bridge (black), bend (green), turn (yellow), α-helix (blue), 5 -helix (purple), and 3^{10}-helix (grey).

Supplemental Figure 5.

Supplemental Figure 5. N-term Rep model analysis of the 500 ns protein MD simulation. (A) $\mathrm{C} \alpha-\mathrm{RMSD}$, (B) the radius of gyration (Rg), and (C) the C α-RMSF per residue values over the length of the simulation. The lines are panels A-C are colored according to: AMCV (black), BCTV (red), CalCuV (green), CLCBuV (blue), EACMV (yellow), MSV (magenta), TGMV (purple), TYLCV (cyan), and ToMoV (orange). Raw data is shown in grey lines while colored lines are the running averages.

Supplemental Figure 6.

Supplemental Figure 6. Solvent accessibility surface area average and standard deviation as calculated through GROMACS over the length of the $2 \mu \mathrm{~s}$ MD simulation per residue in \mathbf{N} term Rep models. From top to bottom: AMCV (black), BCTV (red), CLCBuV (green), CalCuV (blue), EACMV (yellow), MSV (magenta), TGMV (purple), TYLCV (cyan), and ToMoV (orange). Standard deviation is shown in light grey. Areas of notable difference of CalCuV and TGMV in comparison with the rest of the N -term Rep models are highlighted in grey.

Supplemental Figure 7.

Supplemental Figure 7. 3D bubble chart protein and peptide Z-score interaction pairs. Each bubble represents an interaction between A22 (top) or A64 (bottom) with the protein of interest. The larger the bubble the bigger the Z-score and significance of the interaction. Sequences were aligned according to the alignment in Supplemental Figure S1. Legends for each chart are provided for clarity.

Supplemental Tables

Supplemental Table 1. Active residues during molecular docking	
Protein/Peptide	Active residues
ACMV	$\begin{aligned} & 1,2,3,5,15,17,19,21,25,28,29,31,33,35,44,45,46,47,48,49,60,61,62,66,67,69,74,76,77,78,79,80,81,83,85,87, \\ & 90,91,93,94,96,97,100,102,103,104,107,108,109,110,112,113,114,115,116 \end{aligned}$
BCTV	$\begin{aligned} & 1,3,5,15,17,21,25,29,31,33,35,44,45,47,48,49,60,62,64,66,67,69,76,77,78,79,81,83,85,86,88,90,91,93,96,97, \\ & 100,101,102,103,104,107,109,110,113,114,116 \end{aligned}$
CalCuV	$\begin{aligned} & 5,6,8,9,13,21,23,25,27,31,35,39,40,42,44,52,54,55,56,57,67,68,69,71,73,76,79,80,83,84,86,87,90,92,94,97 \text {, } \\ & 98,99,100,103,104,107,109,112,115,116 \end{aligned}$
CLCuBV	$\begin{aligned} & 5,6,8,9,13,21,23,25,27,31,35,39,40,42,44,52,54,55,56,57,67,68,69,71,73,76,79,80,83,84,86,87,90,92,94,97 \text {, } \\ & 98,99,100,103,104,107,109,112,115,116 \end{aligned}$
EACMV	$\begin{aligned} & 1,3,5,15,17,21,25,28,29,31,33,35,45,47,48,49,60,62,64,66,67,69,76,77,80,81,83,85,87,90,91,93,94,96,100 \\ & 101,102,103,107,109,110,113,115,116 \end{aligned}$
MSV	$\begin{aligned} & 1,2,3,4,14,16,18,21,28,30,31,32,34,43,44,45,46,47,48,49,59,60,61,63,65,68,73,74,76,78,80,83,84,85,86,87,90 \\ & 93,95,96,97,104,105,106,108,110 \end{aligned}$
TGMV	$7,9,11,21,23,25,27,31,34,35,37,39,41,51,52,53,54,55,56,66,68,72,73,74,75,82,83,84,85,87,89,91,93,94,96$, $97,98,99,100,103,106,108,109,110,113,115,116,118,121,122$
ToMoV	$\begin{aligned} & 1,3,4,5,14,15,17,19,21,22,25,29,31,33,35,44,45,46,47,48,49,60,62,66,67,68,69,74,76,77,78,79,80,81,83,85,87 \\ & , 90,91,93,94,96,97,100,101,102,103,107,109,110,112,114,115,116 \end{aligned}$
TYLCV	$\begin{aligned} & 2,3,5,15,17,21,25,28,29,31,33,35,44,45,47,48,49,60,62,66,67,68,69,74,76,77,78,79,81,83,85,87,90,91,93,94, \\ & 97,100,102,103,104,107,108,109,110,112,114,116, \end{aligned}$
A22	1,2,3,4,5,6,8,9,10,12,13,16,17,18,19,20
A40	1,2,3,5,7,8,9,10,11,13,14,15,16,17,19,20
A46	1,2,3,5,6,7,9,10,12,13,14,16,17,20
A59	1,2,3,4,6,8,9,11,12,13,14,15,16,17,19,20
A64	1,5,6,8,9,10,13,14,17,19
A84	1,2,3,4,5,6,7,8,9,11,12,13,15,16,17,18,19,20
A99	1,2,3,6,7,10,11,12,14,15,18,20
A116	1,2,3,4,5,6,7,9,10,12,14,15,16,17,18,19,20
A127	1,2,4,6,7,8,9,11,15,16,17,18,19,20
A132	2,3,4,6,8,9,11,12,13,14,15,16,17,18,19,20

A135	$1,4,8,9,10,11,12,15,16,17,18,19,20$
A147	$2,4,9,10,11,19,20,22,24,26,28,29,30,33,36,37,40,42,44,45,46$
A155	$1,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20$
A159	$1,2,6,8,9,10,11,12,15,16,17,19$
A160	$2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20$
A176	$1,2,5,9,10,12,14,15,16,17,18,19,20$
TRX-GST	$1,2,3,4,5,6,8,9,10,11,12,13,14,18,20$

Supplemental Table 2. Active residues during molecular docking ${ }^{\text {a }}$										
		Binds to Rep								
Aptamer	TGMV- Replication \% (aprox)	TGMV	ToMoV	CaLCuV	CLCuV	EACMV	ACMV	TYLCV	BCTV	MSV
A5	30									
A6	25									
A22 ${ }^{\text {bc }}$	13	Y	Y	Y	Y	Y	Y	Y	Y	Y
A25	20									
A27	60									
A40 ${ }^{\text {b }}$	35	Y	Y	Y	Y	Y	N	Y	Y	Y
A46 ${ }^{\text {b }}$	30	Y	Y	Y	Y	Y	Y	Y	Y	Y
A53	75									
A59 ${ }^{\text {b }}$	49	Y	Y	Y	Y	Y	Y	Y	Y	Y
A63	75									
A64 ${ }^{\text {bc }}$	23	Y	Y	Y	N	Y	Y	Y	Y	Y
A67	60									
A71	35									
A84 ${ }^{\text {b }}$	20	Y	Y	Y	Y	Y	Y	Y	Y	Y
A94	35									
A99 ${ }^{\text {b }}$	20	Y/N	Y	Y	N	N	Y	Y	N	Y
A101	52									
A116 ${ }^{\text {b }}$	15	Y	Y	Y	N	Y	Y	Y	Y	Y
A127		Y	Y	Y	Y	Y	N	Y	Y	Y
A130	75									
A131	10									
A132 ${ }^{\text {b }}$	45	Y	Y	Y	Y	Y	N	Y	Y	Y
A135 ${ }^{\text {b }}$		Y	Y	Y	Y	Y	N	Y	Y	Y
A137	59									
A140	40									
A146	45									

A147b	12	Y	Y	Y	Y	Y	Y	Y	Y	Y
A 153	75									
$\mathrm{~A} 155^{\mathrm{b}}$	28	Y	N	Y	Y	Y	Y	Y	Y	Y
$\mathrm{A} 159^{\mathrm{b}}$	28	Y	N	Y	Y	Y	Y	Y	Y	Y
$\mathrm{A} 160^{\mathrm{b}}$	14	Y	N	Y	Y	Y	Y	Y	Y	Y
A 168	53									
A 169	40									
A 173	30									
A 174	33									
A176	b	58	Y	N	Y	Y	Y	Y	Y	Y
A 177	53									Y

${ }^{\text {a References: }}$

Lopez-Ochoa L, Ramirez-Prado J, Hanley-Bowdoin L. Peptide aptamers that bind to a geminivirus replication protein interfere with viral replication in plant cells. J Virol. 2006 Jun;80(12):5841-53. doi: 10.1128/JVI.02698-05. PMID: 16731923; PMCID: PMC1472579.
Reyes MI, Nash TE, Dallas MM, Ascencio-Ibáñez JT, Hanley-Bowdoin L. Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol. 2013 Sep;87(17):9691-706. doi: 10.1128/JVI.01095-13. Epub 2013 Jul 3. PMID: 23824791; PMCID: PMC3754110.
${ }^{6}$ Used in this work
${ }^{c}$ Tested in transgenic plants

Supplem	ental Table	3. Z-Scor	s higher than 3	or pepti	:protein p	airs	
Peptide	Organism	Peptide	Protein	Peptide	Organism	Peptide	Protein
		3	85				
		4	68, 83, 85-87				
	ACMV	5	85		ACMV		
		6	12, 52, 85				
		11,14	87				
		2	46			4	87, 94
		3	88			5	54, 101
		4	$\begin{gathered} 44,87,88, \\ 94,101 \end{gathered}$			12	85
	BCTV	5	87		BCTV	14	88
	BCTV	6	85-88		BCTV		
		7	85				
		8	85-87				
		11, 15	85				
		17, 18	88				
		2	61, 92, 94			4	92, 94
	CalCuV	12	$\begin{gathered} 18,61,92,94 \\ 104 \end{gathered}$		CalCuV	5	$\begin{gathered} 61,92,94 \\ 104 \end{gathered}$
	C	16	18, 92, 94		Calcu	7	94
		17	94			12	18, 92, 94
		18	18, 59, 61, 94			14	92
		2	87, 91				
	CLCuBV	9	94		CLCuBV		
		12	93, 94		CLCuB		
		18	8				
		3	85, 87			5	85
		4	85-87			6,7	87
		5	87			8	87, 90
	EACMV	6	12, 54, 85, 87		EACMV	10	94
		8	52, 54				
		12	94				
		14, 15	87				
		2	51, 78, 80			4	93
		3	80			5	$\begin{gathered} 18,58,60 \\ 91,93 \end{gathered}$
	MSV	4	$\begin{gathered} 43,45,51,78 \\ 80 \end{gathered}$		MSV	7	93
		6	11,87			12	58, 91, 93
		9	45, 87			17	53
		12	43, 51, 78				

