Supporting Information

Synthesis of Plantazolicin Analogues Enables Dissection of Ligand Binding Interactions of a Highly Selective Methyltransferase

Abhishek Sharma, ${ }^{1}$ Patricia M. B. Saint-Vincent, ${ }^{1}$ Douglas A. Mitchell ${ }^{* 1,2,3}$${ }^{1}$ Department of Chemistry, ${ }^{2}$ Institute for Genomic Biology, ${ }^{3}$ Department of Microbiology, University ofIllinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
*To whom correspondence should be addressed. E-mail: douglasm@illinois.edu
Table of contents
I. General information S2
II. Synthesis of H-Arg-Thz-OAllyl (2) S3
III. Synthesis of Boc-Arg-Thz-OEt (5b) S5
IV. Synthesis of Boc-Oxazolidine(Me) ${ }_{3}$-Thz-OEt (6a) S8
V. Synthesis of H-Arg-Thz-Oxz(Me)-Thz-OEt (3) S10
VI. Synthesis of Boc-Oxazolidine(Me) $3_{3}-\mathrm{Oxz}(\mathrm{Me})-\mathrm{OMe}$ (7a) S12
VII. Synthesis of H-Arg-Thz-Oxz(Me)-Thz-Oxz(Me)-Oxz(Me)-OMe (4) S14
VIII. Chemical biology of PZN analogues S18
IX. References S24
X. NMR spectra S25

I. General information

Materials

All starting materials ($\mathrm{Fmoc} / \mathrm{Boc}$ amino acids) and reagents used in chemical reactions were purchased from Sigma-Aldrich, Novabiochem, Bachem, Acros Organics, or Chem-Impex. The reagents used in methyltransferase assays were purchased from New England Biolabs, Gold Biotechnology, VWR or Santa Cruz Biotechnology. Triflic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) was distilled prior to use. Reaction solvents were supplied in anhydrous condition from a solvent delivery system using packed alumina columns as described by Pangborn and coworkers. ${ }^{1}$ Reaction progress was monitored via thin-layer chromatography (TLC) using E. Merck silica gel 60 F254 TLC plates. The TLC plates were visualized under a UV lamp and/or by treatment with KMnO_{4} or ninhydrin stains. Flash column chromatography was performed using standard procedures ${ }^{2}$ or with a Teledyne-Isco CombiFlash Rf purification system using Silica gel $60 \AA$ (230-400 or 400-632 mesh size). Chromatographic solvent systems are given as volume:volume ratios. Organic solutions were concentrated via rotary evaporation under reduced pressure with a bath temperature of $20-40{ }^{\circ} \mathrm{C}$. All reactions were performed in oven-dried glassware under an atmosphere of dry nitrogen/argon unless otherwise stated. The solvent (methanol) used for LCMS (Liquid chromatography-mass spectrometric) analysis was purchased from Sigma. LC-MS analysis was performed on an Agilent 1200 series LC system that was outfitted with an Agilent G1956B single quadrupole mass analyzer. The above LC system utilized a Thermo BETASIL C ${ }_{18}$ column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$; pore size: $100 \AA$; particle size: $5 \mu \mathrm{~m}$) at a flow rate of $0.85 \mathrm{ml} / \mathrm{min}$.

Apparatus

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Inova or Varian Unity ($500 \mathrm{MHz},{ }^{1} \mathrm{H} ; 126$ $\mathrm{MHz},{ }^{13} \mathrm{C}$) spectrometers. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported in parts per million (ppm) and referenced to residual chloroform, $\mathrm{H}_{2} \mathrm{O}$, or DMSO, as applicable. The following abbreviations are used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{br} \mathrm{s}=$ broad singlet, d $=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{q}=$ quartet. All ${ }^{13} \mathrm{C}$ NMR spectra are proton decoupled. NMR spectra were processed using MestReNova software. High-resolution mass spectra (HRMS) were obtained at the University of Illinois Mass Spectrometry Laboratory using a Micromass Q-Tof. Low resolution electrospray ionization mass spectra (LR-ESI-MS) were obtained on Waters Quattro II or Agilent 6200 TOF LC/MS instruments. Lyophilization was performed on a Labconco instrument. Melting points were measured on a Thomas-Hoover melting point apparatus and are uncorrected. ITC experiments were conducted at $22^{\circ} \mathrm{C}$ on a VPITC titration microcalorimeter (Microcal, Inc., Northampton, MA).

II. Synthesis of H-Arg-Thz-OAllyl (2)

Fmoc-Cys(Trt)-OAllyl (8): Fmoc-Cys(Trt)-OH (4 g, 7 mmol) was dissolved in DMF/CH2Cl $2(1: 1,30 \mathrm{~mL})$, and $\mathrm{HCTU}(3 \mathrm{~g}, 7 \mathrm{mmol})$ and HOBt ($970 \mathrm{mg}, 7.2 \mathrm{mmol}$) were added. After stirring the above mixture for 10 min , allyl alcohol ($0.92 \mathrm{~mL}, d=0.854 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$, $14 \mathrm{mmol})$ and DIEA (N, N-diisopropylethylamine) $2.56 \mathrm{~mL}, d=0.742$ g / mL at $25^{\circ} \mathrm{C}, 14.7 \mathrm{mmol}$) were sequentially added and the solution was stirred for an additional 14 h . The organic solvents were removed in vacuo and the resulting residue was dissolved in EtOAc $(50 \mathrm{~mL})$ and washed sequentially with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., 15 mL), aq. NaHCO_{3} (sat., 15 mL), and brine (15 mL). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude residue was subjected to flash column chromatography (silica gel; EtOAc/hexanes, 1:9 to $4: 6$) to afford $\mathbf{8}(3.4 \mathrm{~g}, 5.4 \mathrm{mmol}, 76 \%)$ as a colorless foam.
$R_{\mathrm{f}}=0.6$ (EtOAc:/hexanes, 4:6).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$, $7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.17$ $(\mathrm{m}, 1 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 1 \mathrm{H}), 5.90-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=17.1$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.30(\mathrm{~m}, 3 \mathrm{H}), 4.20(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.60(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.3,155.6,144.3,143.9 \& 143.8$ (Fmoc rotamers), ${ }^{3}$ 141.3, 131.4, 129.5, 128.1, 127.8, 127.1, 126.9, 125.20, 125.16, 120.0, 118.8, 67.2, \& 67.1 (Fmoc rotamers), ${ }^{3}$ 66.3, 53.0, 47.1, 34.1 .

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{40} \mathrm{H}_{35} \mathrm{NNaO}_{4} \mathrm{~S}$, calculated 648.2185; observed 648.2198.

Fmoc-Arg(Pbf)-Cys(Trt)-OAllyl (10): To a stirred solution of Fmoc-Cys(Trt)-OAllyl ($8,3 \mathrm{~g}, 5 \mathrm{mmol}$) in $\mathrm{MeCN}(5 \mathrm{~mL})$, diethylamine ($5 \mathrm{~mL}, d=0.707 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 50 \mathrm{mmol}$) was added. After stirring for 1 h to ensure complete removal of the Fmoc group, the reaction mixture was concentrated in vacuo and further dried by azeotropic distillation with $\mathrm{MeCN}(2 \times 10 \mathrm{~mL})$. The resulting residue was suspended in DMF/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($1: 1,30 \mathrm{~mL}$), and $\mathrm{Fmoc}-\mathrm{Arg}(\mathrm{Pbf})-\mathrm{OH}(9,3.7 \mathrm{~g}, 5.7$ $\mathrm{mmol})$, $\mathrm{HCTU}(2.8 \mathrm{~g}, 6.8 \mathrm{mmol})$, $\mathrm{HOBt}(923 \mathrm{mg}, 6.83 \mathrm{mmol})$, and DIEA ($1.2 \mathrm{~mL}, d=0.742$ g / mL at $25^{\circ} \mathrm{C}, 6.9 \mathrm{mmol}$) were sequentially added. The above mixture was stirred for 14 h ; thereafter, organic solvents were removed in vacuo. The resulting residue was dissolved in EtOAc $(50 \mathrm{~mL})$ and washed with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., 20 mL), aq. NaHCO_{3} (sat., 15 mL), and brine (15 mL). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to a crude residue, which was subjected to flash column chromatography (silica gel; $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0: 100$ to $0.5: 9.5$) to afford $\mathbf{1 0}$ (3.4 g, 3.3 $\mathrm{mmol}, 70 \%$) as a colorless foam.
$R_{\mathrm{f}}=0.3\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5: 9.5\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}$, $10 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 10 \mathrm{H}), 6.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.17(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.85-5.75(\mathrm{~m}, 2 \mathrm{H}), 5.30-5.14(\mathrm{~m}$, $2 \mathrm{H}), 4.52-4.47(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.24(\mathrm{~m}, 4 \mathrm{H}), 4.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.94$ (s, $1 \mathrm{H}), 2.91-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 1.68-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 170.4,158.9,156.3,144.3,141.4,138.6,132.5,131.4,129.6$, $128.2,128.1,128.0,127.8,127.4,127.2,127.0,125.3,124.8,120.1,118.9,117.6,109.9,86.5$, $67.2,66.5,52.0,47.2,43.3,33.1,28.7,24.7,19.5,18.1,12.6$.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{59} \mathrm{H}_{64} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S}_{2}$, calculated 1034.4196; observed 1034.4207.

Fmoc-Arg(Pbf)-Thz-OAllyl (5a): To a stirred suspension of $\mathrm{PPh}_{3} \mathrm{O}(265 \mathrm{mg}, 0.952 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Tf}_{2} \mathrm{O}(245 \mu \mathrm{~L}, d=1.68 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 1.46 \mathrm{mmol}$); the mixture was allowed to stir for $20 \mathrm{~min} .{ }^{4}$ Next, a solution of $\mathbf{1 0}(1 \mathrm{~g}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.5 \mathrm{~mL})$ was slowly added, and stirring was maintained for 3 h at $0^{\circ} \mathrm{C}$. The reaction was quenched by addition of aq. NaHCO_{3} (sat., 5 mL) at $0^{\circ} \mathrm{C}$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give the crude thiazoline. The above residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and $\mathrm{MnO}_{2}(1.26 \mathrm{~g}, 14.5 \mathrm{mmol})$ was added. After stirring for 24 h , the reaction mixture was filtered through a pad of Celite, concentrated, and subjected to flash column chromatography (silica gel; $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0: 100$ to $0.5: 9.5$) to afford $\mathbf{5 a}(185 \mathrm{mg}, 0.240 \mathrm{mmol}$, 25%) as a yellow foam.
$R_{\mathrm{f}}=0.4\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5: 9.5\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.39-6.37(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.02-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.96$ (m, $1 \mathrm{H}), 4.79(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J=10.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=10.7,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.10$ $(\mathrm{m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 174.5,161.2,158.8,156.5,156.3,146.2,143.8,141.3,138.4$, 133.1, 132.4, 131.7, 127.8, 127.2, 125.3, 124.7, 120.0, 119.3, 117.6, 86.4, 67.2, 66.3, 53.5, 47.2, 43.3, 40.9, 31.9, 28.72, 28.65, 25.4, 19.5, 18.1, 12.6, 12.5.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}_{2}$, calculated 772.2839; observed 772.2841.

H-Arg-Thz-OAllyl (2): Compound 5a (50 mg, 0.065 mmol) was dissolved in MeCN (1 ml), and diethylamine $(1 \mathrm{~mL})$ was added. After stirring for 30 min to ensure complete removal of Fmoc group (monitored by TLC and ESI-MS), the reaction mixture was diluted with MeCN (4 mL), concentrated in vacuo, and further dried by azeotropic distillation with $\mathrm{MeCN}(2 \times 5 \mathrm{~mL})$. The resulting residue was washed with pentane $(2 \times 3 \mathrm{~mL})$ before being stirred in a mixture of TFA/TIPS/ $\mathrm{H}_{2} \mathrm{O}(94: 3: 3,2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . Upon completion of the deprotection of Pbf group (monitored by TLC and ESI-MS), the reaction mixture was diluted with toluene (10 mL) and concentrated. The obtained residue was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{ml})$, dissolved in water (1 mL), and lyophilized to afford $\mathbf{5 a}$ as a colorless foam ($18 \mathrm{mg}, 60.5 \mathrm{mmol}, 93 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 6.09-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.31$ (m, 1H), $4.91-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.88-4.85(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.12(\mathrm{~m}, 2 \mathrm{H})$, $1.74-1.50(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 166.1,162.3,156.9,146.1,131.6,131.2,119.2,66.9,51.7,40.3$, 30.5, 24.0.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$, calculated 298.1338; observed 298.1341.

III. Synthesis of Boc-Arg-Thz-OEt (5b)

Scheme S1

Boc-Arg(Pbf)-CONH 2 (19): To a stirred solution of $\mathrm{Boc}-\mathrm{Arg}(\mathrm{Pbf})-$ $\mathrm{COOH}(18,4.4 \mathrm{~g}, 8.4 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL}$, $d=0.726 \mathrm{~g} / \mathrm{mL}$ at $\left.25^{\circ} \mathrm{C}, 9.3 \mathrm{mmol}\right)$ and ethyl chloroformate $(0.9 \mathrm{~mL}$, $d=1.135 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 9.4 \mathrm{mmol}$) were sequentially added, and the reaction mixture was stirred for 1.5 h . Then, aq. $\mathrm{NH}_{3}(35 \% \mathrm{w} / \mathrm{w}, 35$ mL) was added. The solution allowed to warm to rt and stirring was maintained for 22 h . The volatile organics were removed in vacuo and the resulting aqueous suspension was extracted with EtOAc ($3 \times$ 30 mL). The combined organic layers were washed with water (20 $\mathrm{mL})$ and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give 19 as a colorless foam ($4.2 \mathrm{~g}, 8.0 \mathrm{mmol}, 95 \%$).
$R_{\mathrm{f}}=0.3(\mathrm{EtOAc} /$ hexanes, $8: 2)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.34-6.23(\mathrm{~m}, 4 \mathrm{H}), 5.78-5.76(\mathrm{~m}, 1 \mathrm{H}), 4.24-$ $4.18(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.80(\mathrm{~m}$, 2 H), $1.63-1.61$ (m, 2H), 1.46 ($\mathrm{s}, 6 \mathrm{H}$), 1.40 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}{ }^{1} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 159.0,156.7,156.2,138.5,132.8,132.4,124.9,117.8,86.6,80.2$, 53.7, 43.4, 30.4, 29.9, 28.8, 28.5, 25.6, 19.5, 18.1, 12.6.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}$, calculated 526.22699; observed 526.2683.

$\operatorname{Boc}-\mathbf{A r g}(\mathbf{P b f})-\mathbf{C S N H}_{\mathbf{2}} \mathbf{(2 0) :}$ To a solution of $\mathrm{Boc}-\mathrm{Arg}(\mathrm{Pbf})-\mathrm{CONH}_{2}$ $(19,4.2 \mathrm{~g}, 8.0 \mathrm{mmol})$ in pyridine $(80 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}, \mathrm{POCl}_{3}(2 \mathrm{~mL}, d=$ $1.645 \mathrm{~g} / \mathrm{mL}$ at $\left.25{ }^{\circ} \mathrm{C}, 20 \mathrm{mmol}\right)^{5 \mathrm{~b}, 6}$ was added, and the reaction mixture was stirred at the same temperature for 3 h . Then, the mixture was poured over ice, diluted with water (30 mL), and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed sequentially with ice-cooled $2 \mathrm{~N} \mathrm{KHSO}_{4}(20 \mathrm{~mL})$, water (20 mL), and brine (20 mL) before being concentrated. The obtained residue was dissolved in $\mathrm{MeOH}(70 \mathrm{~mL}$), aq. ammonium sulfide (40 $\mathrm{wt} \%, 2.8 \mathrm{~mL}, 16 \mathrm{mmol}$) was added, and the mixture was stirred for 24 h at rt . The reaction mixture was concentrated and partitioned between EtOAc (25 mL) and water (25 mL). The aqueous layer was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ before the combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by flash column chromatography (silica gel; EtOAc/hexanes, 2:8 to 8:2) to afford 20 (1.1 g, 2.0 $\mathrm{mmol}, 25 \%$) as a yellow foam.
$R_{\mathrm{f}}=0.5(\mathrm{EtOAc} /$ hexanes, $8: 2)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.26(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 5.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.31(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 1 \mathrm{H})$, $1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 159.2,156.6,155.9,138.6,132.5,125.0,117.9,86.7,80.3,43.4$, 40.8, 34.2, 29.9, 28.8, 28.6, 25.8, 19.5, 18.1, 12.6.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}$, calculated 542.2471; observed 542.2460.

Boc-Arg(Pbf)-Thz-OEt (5b): $\operatorname{Boc}-\mathrm{Arg}(\mathrm{Pbf})-\mathrm{CSNH}_{2}$ $(\mathbf{2 0}, 1.1 \mathrm{~g}, 2.0 \mathrm{mmol})$ was dissolved in DME (20 mL). The solution was cooled to $-20^{\circ} \mathrm{C}$ before $\mathrm{KHCO}_{3}(2 \mathrm{~g}$, 20 mmol) and ethyl bromopyruvate ($1 \mathrm{~mL}, d=1.554$ g / mL at $25^{\circ} \mathrm{C}, 8.0 \mathrm{mmol}$) were sequentially added. The above mixture was allowed to warm to rt and stirred for 22 h . The reaction mixture was then concentrated, suspended in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$, washed with water (5 mL) and brine (15 mL), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The material was concentrated and the resulting residue was dissolved in DME (20 ml). The above solution was cooled to $-20^{\circ} \mathrm{C}$ before 2,6-lutidine (2.2 $\mathrm{mL}, d=0.92 \mathrm{~g} / \mathrm{mL}$ at $\left.25^{\circ} \mathrm{C}, 19 \mathrm{mmol}\right)$ and trifluoroacetic anhydride $(1.2 \mathrm{~mL}, d=1.511 \mathrm{~g} / \mathrm{mL}$ at $20^{\circ} \mathrm{C}, 8.6 \mathrm{mmol}$) were slowly and sequentially added. The resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 10 min and then at $0^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was quenched by the addition of aq. NaHCO_{3} (sat., 10 mL), diluted with water (10 mL), and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., 15 mL) and brine (15 ml), concentrated, and subjected to flash column chromatography (silica gel; $\mathrm{MeOH} / \mathrm{CHCl}_{3}, 0: 100$ to 1:9) to afford $\mathbf{5 b}$ ($700 \mathrm{mg}, 1.10 \mathrm{mmol}, 55 \%$) as a pale yellow solid.
$\mathrm{mp}=155-157^{\circ} \mathrm{C}$
$R_{\mathrm{f}}=0.5\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}, 1: 9\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 6.55-6.35(\mathrm{~m}, 3 \mathrm{H}), 5.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-$ $4.92(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}$, $3 \mathrm{H}), 2.12-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.40(\mathrm{~m}$, $15 \mathrm{H}), 1.36(\mathrm{dt}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 161.7,158.8,156.6,155.6,146.6,138.5,133.3,132.4,128.1$, $124.7,117.6,86.5,80.6,61.9,52.8,43.4,41.0,28.8,28.5,28.4,25.5,25.3,19.5,18.2,14.5,12.7$.

HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}_{2}$, calculated 638.2682; observed 638.2676.

IV. Synthesis of Boc-Oxazolidine(Me)3-Thz-OEt (6a)

Scheme S2

Boc-Oxazolidine(Me)3-COOH (22): To a stirred solution of Boc-Thr-OH (21, $8.2 \mathrm{~g}, 37 \mathrm{mmol}$) in THF (170 mL), 2,2-dimethoxypropane ($46 \mathrm{~mL}, d=$ $0.847 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 370 \mathrm{mmol}$) and pyridinium p-toluenesulfonate (PPTS, $2.8 \mathrm{~g}, 11 \mathrm{mmol}$) were added. ${ }^{5}$ The solution was heated at reflux for 18 h , cooled to rt, and concentrated. The residue was partitioned between water $(180 \mathrm{~mL})$ and $\operatorname{EtOAc}(180 \mathrm{~mL})$, and the aqueous layer was further extracted with EtOAc $(2 \times 150 \mathrm{~mL})$. The combined organic layers were washed with water $(30 \mathrm{~mL})$ and brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give $22(9.5 \mathrm{~g}, 37 \mathrm{mmol}, 98 \%)$ as a colorless solid whose spectral data matched those reported previously. ${ }^{5}$
$\mathrm{mp}=93-95^{\circ} \mathrm{C}$
$R_{\mathrm{f}}=0.3(\mathrm{EtOAc} /$ hexanes, $8: 2)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.30-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.92(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 0.58 \mathrm{H}), 1.65(\mathrm{~s}, 1.7 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 4.2 \mathrm{H}), 1.48(\mathrm{br} \mathrm{s}, 3.2 \mathrm{H}), 1.44-1.41(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.9,175.3,152.5,151.0,95.4,94.9,81.5,80.9,77.4,77.1,76.9$, 74.0, 73.6, 66.1, 66.0, 28.5, 28.4, 27.9, 26.6, 25.0, 24.1, 19.1.

Boc-Oxazolidine(Me) 3_{3} - $^{-O N H_{2}}$ (23): To a stirred solution of Bocoxazolidine $(\mathrm{Me})_{3}-\mathrm{COOH}(\mathbf{2 2}, 5.8 \mathrm{~g} 23 \mathrm{mmol})$ in THF $(85 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$ ($3.5 \mathrm{~mL}, d=0.726 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 25 \mathrm{mmol}$) and ethyl chloroformate (2.4 $\mathrm{mL}, 1.135 \mathrm{~g} / \mathrm{mL}$ at $25{ }^{\circ} \mathrm{C}, 25 \mathrm{mmol}$) were sequentially added, and the reaction mixture was stirred for $1.5 \mathrm{~h} .{ }^{5}$ Then, aqueous NH_{3} ($35 \mathrm{wt} \%, 4 \mathrm{~mL}$, $d=0.88 \mathrm{~g} / \mathrm{mL}, 35 \mathrm{mmol}$) was added and the solution was allowed to warm to rt with stirring for 22 h . The volatile organics were removed in vacuo and resulting aqueous suspension was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed
with water $(40 \mathrm{~mL})$ and brine $(40 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give $23(4.6 \mathrm{~g}, 18$ $\mathrm{mmol}, 78 \%$) as a colorless solid whose spectral data matched those reported previously. ${ }^{5}$
$m p=146-148^{\circ} \mathrm{C}$
$R_{\mathrm{f}}=0.4(\mathrm{EtOAc} /$ hexanes, $8: 2)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.88-5.93(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.88-3.60(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.53$ $(\mathrm{m}, 6 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.9,94.9,81.1,74.3,67.4,28.4,25.3,18.9$.

Boc-Oxazolidine(Me) $\mathbf{3}_{3}$ CSNH $_{2}$ (24): To a solution of Bocoxazolidine $(\mathrm{Me})_{3}-\mathrm{CONH}_{2}(23,2.6 \mathrm{~g}, 10 \mathrm{mmol})$ in pyridine $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, $\mathrm{POCl}_{3}\left(2.4 \mathrm{ml}, d=1.645 \mathrm{~g} / \mathrm{mL}\right.$ at $\left.25{ }^{\circ} \mathrm{C}, 26 \mathrm{mmol}\right)$ was added, and the reaction mixture was stirred at this temperature for $3 \mathrm{~h} .{ }^{5 \mathrm{~b}, 6}$ Then, the mixture was poured over ice, diluted with water $(120 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed sequentially with ice-cooled 2 N aq. $\mathrm{KHSO}_{4}(30 \mathrm{~mL})$, water $(2 \times 50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$ before being concentrated. The obtained residue was dissolved in MeOH (25 mL), aq. ammonium sulfide (20 $\mathrm{wt} \%, 6 \mathrm{~mL}, 20 \mathrm{mmol}$) was added, and the mixture was stirred for 24 h at rt . The organic volatiles were removed in vacuo and the residue was partitioned between EtOAc (100 mL) and water (50 $\mathrm{mL})$. The aqueous layer was extracted with EtOAc $(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give $24(2 \mathrm{~g}, 7 \mathrm{mmol}, 70 \%)$ as a colorless solid whose spectral data matched those reported previously. ${ }^{5}$
$\mathrm{mp}=104-106^{\circ} \mathrm{C}$
$R_{\mathrm{f}}=0.6($ EtOAc:hexanes, $8: 2)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 1.56-1.47$ (m, 6H), $1.39-1.26(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.2,171.1,152.0,94.6,81.2,76.6,73.5,28.2,25.7$, 18.7.

Boc-Oxazolidine(Me) $\mathbf{3}^{-T h z-C O O E t ~(6 a): ~ B o c-O x a z o l i d i n e(M e) ~} 3^{-}{ }^{-}$ $\mathrm{CSNH}_{2}(\mathbf{2 4}, 2 \mathrm{~g}, 7 \mathrm{mmol})$ was dissolved in DME (40 mL). NaHCO_{3} ($5 \mathrm{~g}, 60 \mathrm{mmol}$) and ethyl bromopyruvate ($2.8 \mathrm{~mL}, d=1.554 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 22.3 \mathrm{mmol}$) were sequentially added. The above mixture was stirred at rt for 22 h . The reaction mixture was then concentrated and the obtained residue was suspended in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layer was concentrated, and the resulting residue was dissolved in DME (20 mL). The above solution was cooled to $0{ }^{\circ} \mathrm{C}$ before pyridine ($5.3 \mathrm{~mL}, d=0.978 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 66 \mathrm{mmol}$) and
trifluoroacetic anhydride (TFAA, $4.2 \mathrm{~mL}, d=1.511 \mathrm{~g} / \mathrm{mL}$ at $20^{\circ} \mathrm{C}, 30 \mathrm{mmol}$) were slowly and sequentially added. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Next, $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL}, d=0.726$ g / mL at $25^{\circ} \mathrm{C}, 14 \mathrm{mmol}$) was added, and the reaction mixture allowed to warm to rt before being concentrated. The residue was dissolved in $\mathrm{CHCl}_{3}\left(10 \mathrm{~mL}\right.$), washed with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., 20 mL), aq. NaHCO_{3} (sat., 20 mL), and brine (15 mL), concentrated, and subjected to flash column chromatography (silica gel; EtOAc:hexanes, $1: 9$ to $1: 1$) to afford $\mathbf{6 a}(1.6 \mathrm{~g}, 4.3 \mathrm{mmol}, 60 \%)$ as a colorless solid whose spectral data matched those reported previously. ${ }^{5}$
$\mathrm{mp}=102-105^{\circ} \mathrm{C}$.
$R_{\mathrm{f}}=0.4(\mathrm{EtOAc} /$ hexanes, $4: 6)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 4.86-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23-$ $4.17(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 6 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 173.1,160.8,151.0,146.5,127.1,94.9,80.3,65.7,61.1,27.8$, 26.3, 25.6, 17.6, 14.1.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$, calculated 371.1641; observed 371.1635.

V. Synthesis of H-Arg-Thz-Oxz(Me)-Thz-OEt (3)

Boc-Arg(Pbf)-Thr-Thz-OEt (11): To a stirred solution of $\mathbf{6 a}(150 \mathrm{mg}, 0.405$ mmol) in 1,4-dioxane (2 mL), $\mathrm{HCl}(2$ $\mathrm{mL}, 4 \mathrm{M}$ in 1,4 -dioxane, 8 mmol) was added at $0{ }^{\circ} \mathrm{C}$, and the solution was allowed to warm to rt. After stirring for 4 h , the above mixture was diluted with toluene (10 mL) and concentrated. The residual HCl was removed by coevaporation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ to give the crude thiazole hydrochloride salt ($\mathbf{6 b}$), which was used as such in the next step without further purification.

Compound $\mathbf{5 b}(210 \mathrm{mg}, 0.329 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH} / \mathrm{THF}(2 \mathrm{~mL})$, the solution was cooled to $0^{\circ} \mathrm{C}$, and aq. $\mathrm{LiOH}(0.5 \mathrm{~N}, 1 \mathrm{~mL}, 0.5 \mathrm{mmol})$ was added. The above mixture was allowed to warm to rt and stirred for 8 h . Then, the reaction mixture was concentrated, and the obtained residue was diluted with water (3 mL) and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$. The aqueous layer was cooled to $0{ }^{\circ} \mathrm{C}$ and acidified with $1 \mathrm{~N} \mathrm{KHSO}_{4}$ to $\mathrm{pH}=3$. The resulting suspension was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to afford the crude acid $\mathbf{5 c}(200 \mathrm{mg})$, which was used without further purification. Compound $\mathbf{5 c}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, and $\mathrm{HCTU}(200 \mathrm{mg}, 0.483 \mathrm{mmol})$ and $\mathrm{HOBt}(66$ $\mathrm{mg}, 0.49 \mathrm{mmol}$) were sequentially added. After stirring the above mixture for 10 min , a solution of $\mathbf{6 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and DIEA ($0.17 \mathrm{~mL}, d=0.742 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 0.98 \mathrm{mmol}$) were sequentially added. The reaction mixture was stirred for 14 h before being quenched by the addition of aq. NaHCO_{3} (sat., 10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined
organic layers were washed with aq. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{sat} ., 8 \mathrm{~mL})$ and brine $(8 \mathrm{~mL})$. The organic layer was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by flash column chromatography (silica gel; $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0: 100$ to $\left.0.5: 9.5\right)$ to afford $11(190 \mathrm{mg}, 0.231 \mathrm{mmol}, 70 \%)$ as a pale yellow foam. $R_{\mathrm{f}}=0.4\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 6.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=8.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.64-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.56(\mathrm{~m}$, $2 \mathrm{H}), 1.43-1.39(\mathrm{~m}, 15 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 177.6,171.2,161.6,161.4,158.8,156.4,155.7,148.9,146.6$, $138.4,133.0,132.3,128.1,124.7,124.3,117.6,86.5,80.4,68.7,61.7,56.2,52.7,43.3,40.7,35.7$, 32.2, 28.7, 28.5, 25.7, 19.9, 19.4, 18.1, 14.4, 12.6.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{~N}_{7} \mathrm{O}_{9} \mathrm{~S}_{3}$, calculated 822.2989; observed 822.2980.

Boc- $\operatorname{Arg}(\mathrm{Pbf})-\mathrm{Oxz}(\mathrm{Me})-\mathrm{Thz}-\mathrm{OEt}$ (12):
To a stirred solution of $\mathbf{1 1}(190 \mathrm{mg}, 0.231$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $-20{ }^{\circ} \mathrm{C}$, Deoxo-fluor ($76 \mu \mathrm{~L}, d=1.2 \mathrm{~g} / \mathrm{mL}$ at 25 ${ }^{\circ} \mathrm{C}, 0.41 \mathrm{mmol}$) was slowly added. After 3 h of stirring at rt , the reaction mixture was quenched by addition of aq. NaHCO_{3} (sat., 10 ml) at $-20{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (5 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give the crude oxazoline, which was used in the next step without further purification. The above residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and the resulting solution was cooled to $-10{ }^{\circ} \mathrm{C}$. DBU ($90 \mu \mathrm{~L}, d=1.018 \mathrm{~g} / \mathrm{mL}$ at $\left.25^{\circ} \mathrm{C}, 0.60 \mathrm{mmol}\right)$ and $\mathrm{BrCCl}_{3}\left(60 \mu \mathrm{~L}, d=2.012 \mathrm{~g} / \mathrm{mL}\right.$ at $\left.25^{\circ} \mathrm{C}, 0.61 \mathrm{mmol}\right)$ were added slowly and sequentially. The reaction mixture was stirred for 10 min at this temperature before being allowed to warm to rt and stir for an additional 48 h . The reaction was then quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., 10 mL) at $0{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with aq. NaHCO_{3} (sat., 10 mL) and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and subjected to flash column chromatography (silica gel; $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0: 100$ to $0.5: 9.5$) to afford $\mathbf{1 2}$ (130 mg , $0.162 \mathrm{mmol}, 70 \%$) as a yellow foam.
$R_{\mathrm{f}}=0.4\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 5.83(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.55$ (s, 3H), $2.47(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.43$ $-1.39(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): δ 161.4, 161.2, 158.7, 156.4, 155.6, 148.5, 148.0, 142.6, 138.4, $133.1,132.3,130.7,127.0,124.6,120.5,117.5,86.5,80.4,61.6,53.3,43.3,40.8,32.5,28.7,28.4$, $25.7,19.4,18.1,14.4,12.6,12.2$.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{~S}_{3}$, calculated 802.2727; observed 802.2733.

H-Arg-Thz-Oxz(Me)-Thz-OEt (3): 12 (50 $\mathrm{mg}, 0.062 \mathrm{mmol}$) was stirred in a mixture of TFA/TIPS $/ \mathrm{H}_{2} \mathrm{O}(94: 3: 3,2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ for 3 h. Upon completion of the deprotection (monitored by TLC and ESI-MS), the reaction mixture was diluted with toluene $(10 \mathrm{~mL})$ and concentrated. The obtained residue was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$, dissolved in water (1 mL), and lyophilized to afford 3 ($26 \mathrm{mg}, 0.058 \mathrm{mmol}, 94 \%$) as a colorless solid.
$\mathrm{mp}=158-160^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=8.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.69$ $-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 166.9,162.5,161.1,156.9,155.3,149.4,146.5,141.7,129.4,128.9$, 123.7, 62.8, 51.7, 40.4, 30.7, 24.2, 13.5, 11.5.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}_{2}$, calculated 450.1382; observed 450.1377.

VI. Synthesis of Boc-Oxazolidine(Me) $\mathbf{3}^{-} \mathbf{- O x z}(\mathrm{Me})-\mathrm{OMe}$ (7a)

Boc-Oxazolidine(Me) ${ }_{3}$-Thr-OMe (25): Boc-Oxazolidine(Me) $3^{-}$$\mathrm{COOH}(22,3.7 \mathrm{~g}, 14 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and cooled to $-15{ }^{\circ} \mathrm{C}$. N-methylmorpholine (NMM, $1.9 \mathrm{~mL}, d=0.92$
g / mL at $25^{\circ} \mathrm{C}, 17 \mathrm{mmol}$) and isobutyl chloroformate ($2.3 \mathrm{~mL}, d=1.053 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 18 \mathrm{mmol}$) were sequentially added. The reaction mixture was stirred at this temperature for 20 min . Then, a solution of $\mathrm{H}-\mathrm{Thr}-\mathrm{OMe} \cdot \mathrm{HCl}(3.6 \mathrm{~g}, 21 \mathrm{mmol})$ and $\mathrm{NMM}(2.3 \mathrm{~mL}, 21 \mathrm{mmol})$ in 15 mL of anhydrous DMF was added, and the reaction mixture was allowed to warm to rt. After stirring for 2 h , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed sequentially with cold $2 \mathrm{~N} \mathrm{KHSO}_{4}(10 \mathrm{~mL})$, water (20 $\mathrm{mL})$, and brine $(20 \mathrm{~mL})$, and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The obtained residue was subjected to flash column chromatography (silica gel; EtOAc/hexanes, 1:9 to 6:4) to afford 25 $(4.2 \mathrm{~g}, 11 \mathrm{mmol}, 79 \%)$ as a pale yellow foam.
$R_{\mathrm{f}}=0.4(\mathrm{EtOAc} /$ hexanes, $4: 6)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.23(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.38(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 12 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 171.2,169.8,152.4,94.8,81.3,73.9,68.9,67.6,57.7,52.5,28.3$, 27.7, 25.1, 20.1, 18.5.

HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7}$, calculated 375.2131; observed 375.2130.

Boc-Oxazolidine(Me)3-Oxz(Me)-OMe (7a): To a stirred solution of $25(2.1 \mathrm{~g}, 5.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was slowly added Deoxo-fluor ($1.7 \mathrm{~mL}, d=1.2 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 9.2 \mathrm{mmol}$). After stirring at this temperature for 3 h , the reaction mixture was quenched by the addition of aq. NaHCO_{3} (sat., 10 mL) at $-20^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give the crude oxazoline, which was used in the next step without further purification. The above residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the resulting solution cooled to $-10^{\circ} \mathrm{C}$ before DBU ($1.7 \mathrm{~mL}, d=1.018 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 11 \mathrm{mmol}$) and $\mathrm{BrCCl}_{3}(1.1 \mathrm{~mL}$, $2.012 \mathrm{~g} / \mathrm{mL}$ at $25{ }^{\circ} \mathrm{C}, 11 \mathrm{mmol}$) were added slowly and sequentially. After stirring at this temperature for 10 min , the reaction mixture was allowed to warm to rt and stirred for an additional 16 h . The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with aq. NaHCO_{3} (sat., 10 mL) and brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by flash column chromatography (silica gel; EtOAc/hexanes, $1: 9$ to $6: 4$) to afford $7 \mathbf{7 a}(1.4 \mathrm{~g}, 4.0 \mathrm{mmol}$ 71%) as a pale yellow foam.
$R_{\mathrm{f}}=0.5(\mathrm{EtOAc} /$ hexanes, $4: 6)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (mixture of rotamers) $\delta 4.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.22 \mathrm{H}), 4.36(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 0.74 \mathrm{H}), 4.18-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 2.2 \mathrm{H}), 3.77(\mathrm{~s}, 0.8 \mathrm{H}), 2.54(\mathrm{~s}, 2.1 \mathrm{H}), 2.50(\mathrm{~s}, 0.8 \mathrm{H}), 1.57$ $(\mathrm{s}, 5 \mathrm{H}), 1.53(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (mixture of rotamers) $\delta 162.6,159.9,156.4,151.0,127.6,95.1$, 94.6, 80.9, 80.3, 74.7, 74.5, 61.7, 52.1, 30.9, 28.3, 28.2, 28.1, 27.8, 26.4, 25.4, 24.5, 17.8, 14.4, 12.0.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}$, calculated 355.1869; observed 355.1866.

VII. Synthesis of H-Arg-Thz-Oxz(Me)-Thz-Oxz(Me)-Oxz(Me)-OMe (4)

Boc-Oxazolidine(Me)3-Thz-Thr-Oxz(Me)-OMe (13):
To a stirred solution of 7 ($330 \mathrm{mg}, 0.931 \mathrm{mmol}$) in $1,4-$ dioxane $(2 \mathrm{~mL}), \mathrm{HCl}(2 \mathrm{~mL}, 4 \mathrm{M}$ in 1,4-dioxane, 8 mmol) was added at $0^{\circ} \mathrm{C}$. The solution was allowed to warm to rt and stir for 3 h before being diluted with toluene (10 mL) and concentrated. The residual HCl was removed by repeated co-evaporation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the crude oxazole hydrochloride salt (7b) as a yellow oil which was used in the next step without further purification.

Compound $\mathbf{6 a}(320 \mathrm{mg}, 0.93 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH} / \mathrm{THF}(2 \mathrm{~mL})$. The solution cooled to $0^{\circ} \mathrm{C}$ and aq. $\mathrm{LiOH}(1.4 \mathrm{~N}, 1 \mathrm{~mL}, 1.4 \mathrm{mmol})$ was added. The above mixture was allowed to warm to rt and stir for 10 h . The reaction mixture was then concentrated and the obtained residue was diluted with water (3 mL) and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$. The aqueous layer was cooled to $0{ }^{\circ} \mathrm{C}$ and acidified with 1 N KHSO 4 to $\mathrm{pH}=3$. The resulting suspension was extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to afford the crude acid $\mathbf{6 c}(280 \mathrm{mg})$, which was used as such without further purification.
$\mathbf{6 c}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ before $\mathrm{HCTU}(500 \mathrm{mg}, 1.21 \mathrm{mmol})$ and $\mathrm{HOBt}(160$ $\mathrm{mg}, 1.18 \mathrm{mmol}$) were sequentially added. After stirring the above mixture for 10 min , a solution of 7b in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and DIEA ($0.6 \mathrm{~mL}, d=0.742 \mathrm{~g} / \mathrm{mL}$ at $25{ }^{\circ} \mathrm{C}$, 3.4 mmol) were sequentially added. The reaction mixture was stirred for 14 h , quenched by the addition of aq. NaHCO_{3} (sat., 15 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layer was washed with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., 8 mL) and brine (8 mL). The organic layer was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude residue was purified by flash column chromatography (silica gel; EtOAc/hexanes, 2:8 to 9:1) to afford $\mathbf{1 3}$ as a colorless foam ($350 \mathrm{mg}, 0.650 \mathrm{mmol}, 70 \%$).
$R_{\mathrm{f}}=0.4(\mathrm{EtOAc} /$ hexanes, $6: 4)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.68$ $-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.16-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 15 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.40$ -1.35 (m, 3H), $1.20-1.19$ (m, 4H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.7,162.5,161.2,160.7,156.7,151.2,148.6,127.3,124.1$, $95.2,80.6,67.5,65.8,52.0,38.6,28.0,26.5,25.6,19.2,17.8,12.1$.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$, calculated 539.2176; observed 539.2180.

Boc-Oxazolidine(Me ${ }_{3}$)-Thz-Oxz(Me)-Oxz(Me)-OMe (14, Scheme 3): To a stirred solution of $13(350 \mathrm{mg}$, 0.650 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$, Deoxo-fluor $\left(0.22 \mathrm{~mL}, d=1.2 \mathrm{~g} / \mathrm{mL}\right.$ at $\left.25^{\circ} \mathrm{C}, 1.2 \mathrm{mmol}\right)$ was slowly added. After stirring at the same temperature for 3 h , the reaction mixture was quenched by the addition of aq. NaHCO_{3} (sat., 5 mL) at $-20^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine (8 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give the crude oxazoline, which was used in the next step without further purification. The crude material was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to $10^{\circ} \mathrm{C}$ before $\operatorname{DBU}\left(0.5 \mathrm{~mL}, d=1.018 \mathrm{~g} / \mathrm{mL}\right.$ at $\left.25^{\circ} \mathrm{C}, 3 \mathrm{mmol}\right)$ and $\mathrm{BrCCl}_{3}(0.32 \mathrm{~mL}, d=2.012$ g / mL at $25^{\circ} \mathrm{C}, 3.2 \mathrm{mmol}$) were added slowly and sequentially. After stirring at the same temperature for 10 min , the reaction mixture was allowed to warm to rt and stir for an additional 48 h . The reaction was quenched by the addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}($ sat., 5 mL$)$ at $0{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with aq. NaHCO_{3} (sat., 5 $\mathrm{mL})$ and brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The obtained residue was subjected to flash column chromatography (silica gel; EtOAc/hexanes, 2:8 to 9:1) to afford $\mathbf{1 4}(220 \mathrm{mg}, 0.424$ $\mathrm{mmol}, 65 \%$ (including some residual EtOAc)) as a pale yellow foam.
$R_{\mathrm{f}}=0.5(\mathrm{EtOAc} /$ hexanes, $6: 4)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}$, $3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 6 \mathrm{H}), 1.40(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 162.7,156.1,153.9,150.8,142.6,128.5,125.8,120.3,95.3,92.4$, 80.9, 77.9, 66.1, 52.0, 28.2, 26.6, 25.9, 17.99, 17.98, 12.2, 12.0.

HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}$, calculated 519.1913; observed 519.1907.

Boc-Arg(Pbf)- Thz-Thr-Thz-Oxz(Me)-Oxz(Me)-OMe (15, Scheme 3): To a stirred solution of $14(70 \mathrm{mg}, 0.13$ mmol) in 1,4-dioxane (1.5 mL), $\mathrm{HCl}(1.5 \mathrm{~mL}, 4 \mathrm{M}$ in $1,4-$ dioxane, 6 mmol) was added at $0{ }^{\circ} \mathrm{C}$ and the solution was allowed to warm to rt. After stirring for 3 h , the above mixture was diluted with toluene (10 mL) and concentrated. The residual HCl was removed by repeated co-evaporation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the crude hydrochloride salt of the tetrazole amine (14a) as a yellow oil which was used in the next step without further purification.

Compound 5b ($100 \mathrm{mg}, 0.15 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH} / \mathrm{THF}(2 \mathrm{~mL})$; the solution was cooled to $0^{\circ} \mathrm{C}$ and aq. $\mathrm{LiOH}(0.23 \mathrm{~N}, 1 \mathrm{~mL}, 0.23 \mathrm{mmol})$ was added. The above mixture was
allowed to warm to rt and stir for 10 h . The reaction mixture was then concentrated and the obtained residue was redissolved in water (3 mL) and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$. The aqueous layer was cooled to $0^{\circ} \mathrm{C}$ and acidified with $1 \mathrm{~N} \mathrm{KHSO}_{4}$ to $\mathrm{pH}=3$. The resulting suspension was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to afford the crude acid $\mathbf{5 c}(90 \mathrm{mg})$, which was used without further purification.

Compound $5 \mathbf{c}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, and $\mathrm{HCTU}(100 \mathrm{mg}, 0.241 \mathrm{mmol})$ and $\mathrm{HOBt}(33 \mathrm{mg}, 0.24 \mathrm{mmol}$) were sequentially added. After stirring the above mixture for 10 min , a solution of 14a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and DIEA ($88 \mu \mathrm{~L}, d=0.742 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 0.5 \mathrm{mmol}$) were sequentially added. The reaction mixture was stirred for 14 h before being quenched by addition of aq. $\mathrm{NaHCO}_{3}($ sat., 8 mL$)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with aq. $\mathrm{NH}_{4} \mathrm{Cl}($ sat., 10 mL$)$ and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by flash column chromatography (silica gel; $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0: 100$ to $0.5: 9.5$) to afford 15 ($96 \mathrm{mg}, 0.10 \mathrm{mmol}, 77 \%$) as a colorless foam.
$R_{\mathrm{f}}=0.4\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5: 9.5\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.43(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 6.45$ (br s, $2 \mathrm{H}), 6.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.58$ (brs, 1 H), $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.42$ $(\mathrm{s}, 3 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.44-1.36(\mathrm{~m}, 15 \mathrm{H}), 1.31(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 172.1,162.7,161.6,158.7,156.5,156.2,156.0,155.6,153.9$, $150.9,149.0,142.2,138.3,133.1,132.3,128.4,125.5,124.6,124.2,121.3,117.5,86.4,80.4$, $68.9,56.1,55.3,52.5,52.1,43.3,32.0,28.7,28.4,25.8,20.0,19.4,18.1,12.6,12.3,12.0$.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{~N}_{9} \mathrm{O}_{11} \mathrm{~S}_{3}$, calculated 970.3261; observed 970.3232.

Boc-Arg(Pbf)-Thz-Oxz(Me)-Thz-Oxz(Me)-Oxz(Me)-OMe (16, Scheme 3):

To a stirred solution of 15 (96 $\mathrm{mg}, 0.099 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) at $-20^{\circ} \mathrm{C}$, Deoxo-fluor (35 $\mu \mathrm{L}, d=1.2 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$, $0.19 \mathrm{mmol})$ was slowly added. After stirring at the same temperature for 3 h , the reaction mixture was quenched by the addition of aq. NaHCO_{3} (sat., 5 $\mathrm{mL})$ at $-20^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (5 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give the crude oxazoline, which was used in the next step without further purification. The crude material was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and cooled to $-10^{\circ} \mathrm{C}$ before $\mathrm{DBU}\left(80 \mu \mathrm{~L}, d=1.018 \mathrm{~g} / \mathrm{mL}\right.$ at $\left.25^{\circ} \mathrm{C}, 0.53 \mathrm{mmol}\right)$ and $\mathrm{BrCCl}_{3}(50$ $\mu \mathrm{L}, d=2.012 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}, 0.51 \mathrm{mmol}$) were added slowly and sequentially. After stirring the reaction mixture at the same temperature for 10 min , it was allowed to warm to rt and further stirred for 48 h . The reaction was quenched by the addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., 5 mL) at $0{ }^{\circ} \mathrm{C}$ and
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with aq. NaHCO_{3} (sat., 5 mL) and brine (5 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and subjected to flash column chromatography (silica gel; $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0: 100$ to $0.5: 9.5$) to afford 15 ($40 \mathrm{mg}, 0.042 \mathrm{mmol}$, 42%) as a pale yellow foam.
$R_{\mathrm{f}}=0.4\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5: 9.5\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 6.45-6.43(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 5.62(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H})$, $2.73(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.07(3 \mathrm{H}, \mathrm{s}), 1.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.71(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 1.44$ (s, 15H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.9,158.8,158.7,156.32,156.28,156.1,155.6,154.1,151.0$, $148.6,145.1,143.9,142.6,138.5,132.5,131.0,128.9,128.5,125.9,124.6,120.3,117.5,109.9$, $86.5,67.3,52.1,43.4,40.8,28.7,28.5,25.3,19.4,18.1,12.6,12.34,12.28,12.2$.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{9} \mathrm{O}_{10} \mathrm{~S}_{3}$, calculated 950.2999; observed 950.3001.

H-Arg-Thz-Oxz(Me) -Thz-

 $\mathrm{Oxz}(\mathrm{Me})-\mathrm{Oxz}(\mathrm{Me})-\mathrm{OMe}$ (4, Scheme 3): 15 ($40 \mathrm{mg}, 0.042$ mmol) was stirred in a mixture of TFA/TIPS $/ \mathrm{H}_{2} \mathrm{O}$ (94:3:3, 2 mL) at $0{ }^{\circ} \mathrm{C}$ for 3 h . Upon completion of the deprotection (monitored by TLC and ESIMS), the reaction mixture was diluted with toluene $(10 \mathrm{~mL})$ and concentrated. The obtained residue was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$, dissolved in water $(1 \mathrm{~mL})$, and lyophilized to afford 4 ($23 \mathrm{mg}, 0.039 \mathrm{mmol}, 93 \%$) as a pale yellow solid.$m p=210-212{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.47-6.86(\mathrm{br} \mathrm{s}$, $3 \mathrm{H}), 4.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.12(\mathrm{~m}, 4 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H})$, $2.03-1.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.89-1.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.65-1.50(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta 162.0,161.6,156.7,156.0,155.3,155.2,153.2,150.8,147.9$, $142.9,141.6,130.0,127.7,125.0,122.9,121.8,52.0,51.8,40.3,24.8,11.9,11.8,11.6$.

HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{9} \mathrm{O}_{5} \mathrm{~S}_{2}$, calculated 598.1655; observed 598.1676.

VIII. Chemical biology of PZN analogues

MBP-BamL overexpression and purification. Wild-type MBP-BamL was transformed into chemically competent BL21(DE3)RIPL cells as previously described. ${ }^{7}$ Transformants were selected with kanamycin ($50 \mu \mathrm{~g} / \mathrm{mL}$) and chloramphenicol ($34 \mu \mathrm{~g} / \mathrm{mL}$) on LB agar plates. 10 mL cultures were grown overnight and used to inoculate at a $1: 1000$ dilution into LB with the appropriate antibiotics. Cultures were grown at $37{ }^{\circ} \mathrm{C}$ until mid-log phase $\left(\mathrm{OD}_{600} \sim 0.5\right)$ before addition of IPTG (isopropyl- β-D-thiogalactopyranoside, 0.4 mM final concentration) to induce protein expression. After shaking for an additional 18 h at $22{ }^{\circ} \mathrm{C}$, cells were harvested by centrifugation. Cell pellets were resuspended in lysis buffer [50 mM Tris $\mathrm{pH} 7.5,500 \mathrm{mM} \mathrm{NaCl}$, 2.5% glycerol (v/v)] with the protease inhibitors phenylmethanesulfonyl fluoride, benzamidine, leupeptin, and E64. Cells were lysed by sonication ($3 \times 30 \mathrm{~s}$, continuous mode, $<20 \mathrm{~W}, 4{ }^{\circ} \mathrm{C}$), followed by centrifugation at $40,000 \times g$ for 1 h at $4{ }^{\circ} \mathrm{C}$. Amylose resin columns were preequilibrated with 5 column volumes of lysis buffer before the cleared lysates were applied. Columns were washed with 20 column volumes of lysis buffer before the protein was eluted with elution buffer [50 mM Tris $\mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ maltose, 2.5% glycerol (v/v)]. The eluates were concentrated using Amicon centrifugal filters (50 kDa molecular weight cut-off, Millipore) in storage buffer [50 mM Tris $\mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 2.5 \%$ glycerol (v/v)]. Protein purity was analyzed by Coomassie-stained SDS-PAGE, and concentration was quantified by absorbance at 280 nm and Bradford analysis (Thermo Scientific). Protein was stored at $-80^{\circ} \mathrm{C}$ until use.

Methyltransferase assays. Overnight endpoint assays (Condition A) were run with $20 \mu \mathrm{M} \mathrm{MBP}$ BamL, $10 \mu \mathrm{M}$ Pfs SAH nucleosidase, $200 \mu \mathrm{M}$ substrate, 3 mM SAM, and 50 mM Tris (pH 7.5) for 16 h at $37{ }^{\circ} \mathrm{C}$. To increase the solubility of 4 , buffer solution with a 2.5% concentration (v / v) of DMSO was used. A more stringent test of substrate acceptance used the following conditions (Condition B): $1 \mu \mathrm{M}$ MBP-BamL, $1 \mu \mathrm{M}$ Pfs SAH nucleosidase, $5 \mu \mathrm{M}$ substrate, 3 mM SAM, and 50 mM Tris (pH 7.5) for 1 h at $22{ }^{\circ} \mathrm{C}$. Protein was precipitated and samples were analyzed by positive mode ESI-MS.

LC-MS analysis of methyltransferase assays. Methyltransferase assays for compounds $\mathbf{2 , 3}$, and 4 were performed using the 1 h condition (condition B) described above. The supernatant from the protein precipitation was dried in vacuo and redissolved in $5 \% \mathrm{MeOH}$ (LC-MS grade, Sigma) before injection onto an Agilent 1200 Series HPLC outfitted with a single quadrupole mass analyzer (G1956B). LC used a Thermo BETASIL C C_{18} column and a flow rate of $0.85 \mathrm{~mL} / \mathrm{min}$. The methyltransferase assays on compound 2 were injected onto a gradient of $10-75 \% \mathrm{MeOH}$ (0.1% formic acid v / v) over 30 min . The methyltransferase assays on compound $\mathbf{3}$ were injected onto a gradient of $40-60 \% \mathrm{MeOH}(0.1 \%$ formic acid $\mathrm{v} / \mathrm{v})$ over 50 min . The methyltransferase assays on compound 4 were injected onto a gradient of $5-95 \% \mathrm{MeOH}(0.1 \%$ formic acid $\mathrm{v} / \mathrm{v})$ over 30 min .

Condition A

Figure S1. ESI-MS of methyltransferase assays. (a-c) Overnight assays (Condition A) of the monoazole 2 (a), triazole 3 (b), and pentazole 4 (c) compounds with SAM, MBP-BamL and Pfs (nucleosidase) confirmed the three compounds were substrates of MBP-BamL. (d-f) More stringent assays (Condition B) with the same compounds show decreased efficiency of processing for all compounds, as evidenced by increased relative peak intensities of the unmethylated substrates.

The dimethylated products obtained from enzymatic assays were further confirmed by ESIHRMS (Table S2):

Table S2.

Substrate	Dimethylated Formula	Calculated $[\mathrm{M}+\mathrm{H}]^{+}$	Observed $[\mathrm{M}+\mathrm{H}]^{+}$
$\mathbf{2}$	$\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$	326.1651	326.1652
$\mathbf{3}$	$\mathrm{C}_{20} \mathrm{~N}_{27} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}_{2}$	478.1695	478.1703
$\mathbf{4}$	$\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{9} \mathrm{O}_{5} \mathrm{~S}_{2}$	626.1968	626.1971

Figure S2. LC-MS analysis of 1 h methyltransferase assay with MBP-BamL and compound 2. Top panel: Total ion chromatogram ($100 \mathrm{Da}-1000 \mathrm{Da}$). Middle panel: Single ion monitoring for the substrate 2 (m / z 298.2). Bottom panel: Single ion monitoring for the product of the methyltransferase reaction, dimethylated $2(\mathrm{~m} / \mathrm{z} 326.2)$. "*" denotes buffer component.

Figure S3. LC-MS analysis of 1 h methyltransferase assay with MBP-BamL and compound 3. Top panel: Total ion chromatogram ($100 \mathrm{Da}-1000 \mathrm{Da}$). Middle panel: Single ion monitoring for the substrate 3 (m / z 450.2). Bottom panel: Single ion monitoring for the product of the methyltransferase reaction, dimethylated $\mathbf{3}$ ($\mathrm{m} / \mathrm{z} 478.2$). "*" denotes buffer component.

Figure S4. LC-MS analysis of 1 h methyltransferase assay with MBP-BamL and compound 4. Top panel: Total ion chromatogram ($100 \mathrm{Da}-1000 \mathrm{Da}$). Middle panel: Single ion monitoring for the substrate $4(m / z 598.2)$. Bottom panel: Single ion monitoring for the product of the methyltransferase reaction, dimethylated 4 ($\mathrm{m} / \mathrm{z} 626.2$). "*" denotes buffer component.

Isothermal titration calorimetry. Calorimetry experiments were conducted at $22{ }^{\circ} \mathrm{C}$ on a VPITC titration microcalorimeter. The reference cell was filled with Milli-Q filtered water. MBPBamL was diluted to $50 \mu \mathrm{M}$ in ITC buffer [50 mM HEPES $\mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 2.5 \% ~(\mathrm{v} / \mathrm{v}$) glycerol]. The sample cell (effective volume $=1.45 \mathrm{~mL}$) was filled with protein and stirred continuously at 270 rpm during the titration. The protein was titrated with 36 aliquots ($8 \mu \mathrm{~L}$) each of either $350 \mu \mathrm{M}(\mathbf{2}, \mathbf{3})$ or $700 \mu \mathrm{M}(\mathbf{1 7}$, Arg-amide) ligand in the same buffer with a 300 s equilibration between titrations. To increase the solubility of 4 , buffer solution with a 2% concentration (v / v) of DMSO was used. The heat of dilution of the ligand into buffer was subtracted from the titration data. Integration of the area under each peak in the graph of heat change over time was used to determine the heat produced per injection. The MicroCal version of Origin was used to integrate, baseline correct, and normalize raw data as described elsewhere. ${ }^{8}$

Figure S5. ITC data and fitting curves for the binding of $\mathbf{1 7}\left(\mathrm{Arg}-\mathrm{NH}_{2}\right)$ to BamL .

IX. References

(1) Pangborn, A. B.; Giardello, M. A; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520.
(2) Still, W.C.; Kahn, M.; Mitra, A.; J. Org. Chem. 1978, 43, 2923-2925.
(3) Gasser, G.; Hüsken, N.; Köster S. D.; Metzler-Nolte, N. Chem. Commun. 2008, 3675-3677.
(4) You, S. L.; Razavi, H.; Kelly, J. W. Angew. Chem. Int. Edit 2003, 42, 83-85.
(5) (a) Nicolaou, K. C.; Safina, B. S.; Zak, M.; Lee, S. H.; Nevalainen, M.; Bella, M.; Estrada, A. A.;

Funke, C.; Zecri, F. J.; Bulat, S. J. Am. Chem. Soc. 2005, 127, 11159-11175, (b) Merritt, E. A.; Bagley, M. C. Synthesis 2007, 3535-3541.
(6) Bagley, M. C.; Chapaneri, K. C.; Glover, C.; Merritt, E. A. Synlett 2004, 2615-2617.
(7) Lee, J.; Hao, Y.; Blair, P. M.; Melby, J. O.; Agarwal, V.; Burkhart, B. J.; Nair, S. K.; Mitchell, D. A. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 12954-12959.
(8) Wiseman, T.; Williston, S.; Brandts, J. F.; Lin, L. N. Anal. Biochem. 1989, 179, 131-137.
X. NMR spectra ${ }^{1} \mathrm{H}$ NMR, compound 8 (Scheme 1)

${ }^{3} \mathrm{C}$ NMR, compound 8 (Scheme 1)

${ }^{1} \mathrm{H}$ NMR, compound 10 (Scheme 1)

${ }^{13} \mathrm{C}$ NMR, compound 10 (Scheme 1)

${ }^{1}$ H NMR, compound 5a (Scheme 1)

${ }^{13} \mathrm{C}$ NMR, compound 2 (Scheme 1)

											1	70							
. 90	180	170	160	150	140	130	120	110	${ }_{100}$		80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR, compound 19 (Scheme S1)

${ }^{13}$ C NMR, compound 19 (Scheme S1)

${ }^{1}$ H NMR, compound 20 (Scheme S1)

1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1}$ H NMR, compound 5b (Schemes 2 \& S1)

${ }^{1}$ H NMR, compound 6a (Schemes 2 \& S2)

${ }^{13}$ C NMR, compound $\mathbf{6 a}$ (Schemes $2 \&$ S2)

180	170	160	150	140	130	120	110	100	$\underset{\mathrm{f} 1}{(\mathrm{ppm})}$	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR, compound 11 (Scheme 2)

${ }^{1} \mathrm{H}$ NMR, compound 12 (Scheme 2)

${ }^{13} \mathrm{C}$ NMR, compound 12 (Scheme 2)

1	1	1	1	1	1	1	1	,	T	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR, compound 3 (Scheme 2)

${ }^{13} \mathrm{C}$ NMR, compound 3 (Scheme 2)

${ }^{1}$ H NMR, compound 25 (Scheme S3)

${ }^{13}$ C NMR, compound 25 (Scheme S3)

il
かo

${ }^{1}$ H NMR, compound 7a (Schemes 3 \& S3)

${ }^{13} \mathrm{C}$ NMR, compound 13 (Scheme 3)

${ }^{1}$ H NMR, compound 14 (Scheme 3)

${ }^{13}$ C NMR, compound 14 (Scheme 3)

${ }^{1}$ H NMR, compound 15 (Scheme 3)

${ }^{13}$ C NMR, compound 15 (Scheme 3)

${ }^{1} \mathrm{H}$ NMR, compound 16 (Scheme 3)

${ }^{1} \mathrm{H}$ NMR, compound 4 (Scheme 3)

${ }^{13} \mathrm{C}$ NMR, compound 4 (Scheme 3)

1	1		1	1	1	1	1	1		1	,	1	1		1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

