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Introduction

In this document, we briefly describe the algorithms used for medial set construction which

are implemented in the accompanying software package and used for medial analysis of sub-

domain geometry that resulted in main text Figs.7, 9 and 20. For any domain in Euclidean

space E3 enclosed by domain boundary S, the medial set MS is defined as collection of

points m±(p) that are equidistant to two or more points pi on the boundary S .1,2 Following

Amenta et al.1 and Schröder et al.2 both the algorithms we describe here are based on

Voronoi tesellations on point cloud obtained from generating a discrete mesh of domain

boundary S.

In the context of medial analysis for sub-domain thickness of self-assembled block copoly-

mer morphologies, the domain boundary S here represents the inter-material dividing sur-

face(s) (IMDS) between unlike blocks. A standard way of characterizing these morphologies

is by their respective composition fields φα where α = A/B for linear AB diblock copoly-

mers. We define the IMDS for any morphology as the level set of composition fields for fixed

value i.e φ(r)A/B = 0.5. In section II, we describe in detail the workflow presented in Fig.1
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to obtain required data structures that are provided as an input to algorithms to construct

medial set MS. Pseudo-codes for these algorithms are presented in section III.

Figure S1: Flow-chart describing the steps involved in creating prerequisite data structures
for algorithms I and II to compute medial set

Prerequisites

Domain boundary (IMDS)

The composition fields for individual blocks of BCPs are represented in real space and/or

fourier space depending on the tools used to obtain them i.e theoretical models (SCFT) or
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coarse-grained simulations or volume reconstruction from experimental data. Explicit level

surfaces are also commonly used as an approximation to IMDS in triply periodic network

morphologies3

Nodal Approximations(class A)

For analysis presented in Fig. 7 of Section II in main paper, we have used nodal approxima-

tion of G surface given by
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(S1)

where D is the length of the unit cell. We chose a level surface for f(x, y, z) = ±1.07 as

a bounding surfaces that are similar in topology as tubular sub-domains of double gyroid

networks and occupies 30% volume of the total unit cell.

Density data from SCFT(class A and B)

For medial surfaces of block copolymer Frank-Kasper sphere crystals presented in Fig 9,

we have used output from Polymer Self-Consistent Field (PSCF).5 Within PSCF, scalar

density φα(r) and chemical potential ωα(r) fields are represented using a symmetry adapted

basis functions as it helps with faster computation of self-consistent iterative computations

using the psedo-spectral method for solving modified diffusion type equation.5 We can build

density function φα(r) as

φα(r) =
Nstar∑
i=1

φi,αfi(r) (S2)

where Nstar is the number of basis functions needed to approximate the field and φi,α is the

co-efficient for each basis function fi(r). Alternatively, PSCF can also convert and output

these composition fields φα(r) in real space as a scalar value for each of the voxels within

the unit cells.
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Density data from experiments(class B)

For the composition fields used for medial surfaces within sub-domains of PS-PDMS double

gyroid presented in Fig. 20 of Section III of main text, we processed raw greyscale SVSEM

images of PS-PDMS sample using 3D FFT to apply Bragg-filtering and then used inverse

FFT to get grey scale images. A 3D volume reconstruction was then done by stacking 2D

Bragg-filtered SEM images. We later used the SEM intensity of each voxel in real space

(high intensity regions for PDMS and low intensity regions for PS) along with constraints on

volume fraction of PS vs. PDMS in the sample to compute the IMDS separating PS-PDMS

domains. We refer the reader to ref6 for detailed description of our procedure and also to

ref7 to access source data repository for software used to do this.

Discrete mesh

A discrete mesh of IMDS is obtained by using inbuilt Mathematica functions

R = ImplicitRegion[f[x,y,z] == t, {x,y,z}]

Rd = DiscretizeRegion[R,{{xmin,xmax},{ymin,ymax},{zmin,zmax}},

MaxCellMeasure -> {"Area" -> 0.001}]

f(x, y, z) can either be explicit level set function as in eq. S1 or as a Fourier representation

of density field φA/B(r) in eq. S2. While working with real space composition field data

this function is obtained using inbuilt periodic interpolation function in Mathematica. Using

this approach domain boundary (IMDS) is represented as a triangulated mesh and we can

export the list of points and connectivity of these points which forms the discrete mesh.

xmin, xmax, ... sets the minimum and maximum of the domain boundary in three dimensions

while we can change value of Area inMaxCellMeasure and refine the coarseness of discrete

mesh. Here, we define coarseness as a ratio, max(AF )/(AT ) where AT is the total area of

the domain boundary surface and AF is the area of a face on the discrete mesh.
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Point normals

For explicit level set functions f(x, y, z) in class-A type of domain boundary surfaces, we

compute normal data for each of the points by taking a gradient of f(x, y, z) at every point

pi

n = ∇f(x, y, z) (S3)

and for other types i.e class-B where we essentially create a function for f(x, y, z) based on

interpolation of scalar density values φ(r),we compute face normals to each face of triangu-

lated mesh and then for point normal we average over all the faces that contain a particular

point on the discrete mesh.

Voronoi cells

Independent of source of the boundary surface S and how it is processed to obtain a point

cloud i.e discrete mesh, a significant step in this workflow involves generating Voronoi cells

and storing geometric data of these cells. CV (pi) denotes a Voronoi cell for a point pi

where the cell has vj vertices and fk faces which connect these vertices. nfk
denotes the

components of a normal vector to each face fk that belongs to a particular cell CV (pi). We

have used Voro++4 to compute Voronoi tesellation of points cloud and face normals of each

Voronoi cell. The following commands were passed onto Voro++ to generate input files

C-E of algorithm I i.e Voronoi tesellation of points cloud, indices of vertices of forming faces

fk ∈ CV (pi) and face normals nfk
of each point pi ∈ S.

voro++ -c '%i %P' -o -p xmin xmax ymin ymax zmin zmax 'coords.txt'

voro++ -c '%i %t' -o -p xmin xmax ymin ymax zmin zmax 'coords.txt'

voro++ -c '%i %l' -o -p xmin xmax ymin ymax zmin zmax 'coords.txt'
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Algorithms for medial set construction

In Figs. S2 and S3, we illustrate two algorithms for medial set construction following

Schröder et al.2 and Chen et al.8 Our procedure to create input files are described above

and the actual Python codes along with input and output files can be accessed online

(https://doi.org/10.7275/vqe1-sm17). Depending on how point normal data is computed

we recommend users to use algorithm I or II. For class-A type, where it is possible to express

the IMDS level set as an explicit function, it is possible to compute point normals exactly

from gradient to the level set, we recommend using algorithm-I. This is advantageous for

obtaining good quality medial set from a relatively coarse discrete mesh of domain bound-

ary. Typically, coarseness (as defined in section B.2) < 10−4 works well with this approach.

For other cases (i.e class-B), it is recommended to use algorithm-II. Additionally, we found

that having a ’regular’ mesh i.e triangular faces of the discrete mesh are closer to having

uniform edge lengths, on average produces a good quality medial surface. Often, generating

a discrete mesh of a surface results in ’roughness’ or displacing points slightly away from the

intended surface. We refer the reader to Mathematica software (regularizeMesh.nb) that

can be accessed in ref7 which implements an algorithm to achieve edge length regularization

by minimizing a functional Freg = ∑
〈ij〉(Lij − L̄)2 based on edge lengths(L) of triangular

faces where L̄ is the mean edge length while ensuring that vertices of the mesh lies on the in-

tended surface. This software also contains a module which uses a gradient descent approach

to push back all deviated vertices of the mesh onto surface either based on composition field

data. Similar excercise to eliminate ’roughness’ on the discrete mesh can also be performed

for surfaces with explicit level set function.
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Figure S2: Pseudo-code for computing medial set points m±,i by finding intersection of unit
normal vector with a face belonging to CV (pi) and lies along the direction of n̂
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Figure S3: Pseudo-code for computing medial set points m±,i by finding farthest vertex
belonging to CV (pi) and lies along the direction of n̂
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