Supporting Information

Room-Temperature Ferromagnetism in $\mathrm{Mg}_{1-x} \mathrm{Mn}_{2+x} A s_{2}$ with Layered Structure

Xiao-Cun Liu, ${ }^{* \dagger}$ Min Zhu ${ }^{\star, \delta}$, Sheng-Qing Xia ${ }^{* *}$
${ }^{\dagger}$ School of Civil Engineering, Shandong Jiaotong University, Jinan, Shandong 250023, People's Republic of China
* State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China
§ School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, People's Republic of China

Corresponding Authors:
*E-mail: liuxiaocunde@163.com
*E-mail: shqxia@sdu.edu.cn

Contents

Table S1. Refined atomic coordinates and isotropic displacement parameters for $\mathrm{Mg}_{1-\mathrm{x}} \mathrm{Mn}_{2+\mathrm{x}} \mathrm{As}_{2}(\mathrm{x}=$ $0.17,0.49,0.69)$.

Figure S1. (a) Powder X-ray diffraction of titled compounds $\mathrm{Mg}_{1-\mathrm{x}} \mathrm{Mn}_{2+\mathrm{x}} \mathrm{As}_{2}(\mathrm{x}=0.17,0.48,0.69)$. The theoretical calculated patterns of $\mathrm{Mg}_{0.83(3)} \mathrm{Mn}_{2.17} \mathrm{As}_{2}$ are provided for comparison as well. The small peak marked with * at about 44.4° for $\mathrm{Mg}_{0.52(2)} \mathrm{Mn}_{2.48} \mathrm{As}_{2}$ indicates possible As impurity. (b) Calculated lattice parameters from the PXRD results vs. x.

Figure S2. EDS analysis on the composition of single crystals for $\mathrm{Mg}_{0.83(2)} \mathrm{Mn}_{2.17} \mathrm{As}_{2}$.
Figure S3. EDS analysis on the composition of single crystals for $\mathrm{Mg}_{0.52(2)} \mathrm{Mn}_{2.48} \mathrm{As}_{2}$.
Figure S4. EDS analysis on the composition of single crystals for $\mathrm{Mg}_{0.31(3)} \mathrm{Mn}_{2.69} \mathrm{As}_{2}$.
Figure S5. Schematic diagram of the spin configuration for $M H$ curve at 5 K .

Table S 1 . Refined atomic coordinates and isotropic displacement parameters for $\mathrm{Mg}_{1-\mathrm{x}} \mathrm{Mn}_{2+\mathrm{x}} \mathrm{As}_{2}$ $(x=0.17,0.49,0.69)$.

Atoms	Wyckoff	Occupancy	x	y	z	$U_{\text {eq }}{ }^{\text {a }}\left(\AA^{2}\right)$
$\mathrm{Mg}_{0.83(2)} \mathrm{Mn}_{2.17} \mathrm{As}_{2}$						
Mg 1	$1 a$	0.83(2)	0	0	0	0.0199(16)
Mn1	$1 a$	0.17(2)	0	0	0	0.0199(16)
Mn2	$2 d$	1	$1 / 3$	2/3	0.6304(2)	$0.0143(5)$
As1	$2 d$	1	1/3	2/3	0.23653(14)	0.0130(4)
$\mathrm{Mg}_{0.52(2)} \mathrm{Mn}_{2.48} \mathrm{As}_{2}$						
Mg 1	$1 a$	0.52(2)	0	0	0	0.0222(13)
Mn1	$1 a$	0.48(2)	0	0	0	0.0222(13)
Mn2	$2 d$	1	$1 / 3$	2/3	0.6317(2)	$0.0148(5)$
As1	$2 d$	1	1/3	2/3	0.23523(15)	0.0130(4)
$\mathrm{Mg}_{0.31(3)} \mathrm{Mn}_{2.69} \mathrm{As}_{2}$						
Mg 1	$1 a$	0.31(3)	0	0	0	0.0285(17)
Mn1	$1 a$	0.69(3)	0	0	0	0.0285(17)
Mn2	$2 d$	1	1/3	2/3	0.6324(4)	0.0203(8)
As1	$2 d$	1	1/3	2/3	0.2340(3)	0.0195(7)

${ }^{a} \quad U_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Figure S1. (a) Powder X-ray diffraction of titled compounds $\mathrm{Mg}_{1-\mathrm{x}} \mathrm{Mn}_{2+\mathrm{x}} \mathrm{As}_{2}(\mathrm{x}=0.17,0.48,0.69)$. The theoretical calculated patterns of $\mathrm{Mg}_{0.83(3)} \mathrm{Mn}_{2.17} \mathrm{As}_{2}$ are provided for comparison as well. The small peak marked with * at about 44.4° for $\mathrm{Mg}_{0.52(2)} \mathrm{Mn}_{2.48} \mathrm{As}_{2}$ indicates possible As impurity. (b) Calculated lattice parameters from the PXRD results vs. x. The calculated lattice parameters are slightly different with SXRD results, which may be caused by the test error.

Figure S2. EDS analysis on the composition of single crystals for $\mathrm{Mg}_{0.83(2)} \mathrm{Mn}_{2.17} \mathrm{As}_{2}$.
Sample 1

Element	Weight\%	Atomic\%
Mg L	9.15	21.01
Mn L	41.55	42.23
As L	49.31	36.76

Sample 2

Element	Weight\%	Atomic\%
Mg L	9.28	21.24
Mn L	41.92	42.49
As L	48.80	36.27

Sample 3

Element	Weight\%	Atomic\%
Mg L	9.04	20.92
Mn L	39.56	40.50
As L	51.40	38.59

The content of Mn calculated from EDS: 41.7\%
The content of Mn calculated from SXRD: 43.4\%

Figure S3. EDX analysis on the composition of single crystals for $\mathrm{Mg}_{0.52(2)} \mathrm{Mn}_{2.48} \mathrm{As}_{2}$.
Sample 1

Element	Weight\%	Atomic\%
Mg L	7.53	17.65
Mn L	43.40	45.02
As L	49.07	37.33

Sample 2

Element	Weight\%	Atomic\%
Mg L	7.82	18.36
Mn L	41.06	42.68
As L	51.13	38.97

Sample 3

Element	Weight\%	Atomic\%
Mg L	6.16	14.80
Mn L	42.55	45.22
As L	51.29	39.97

The content of Mn calculated from EDS: 44.3\%
The content of Mn calculated from SXRD: 49.6\%

Figure S4. EDX analysis on the composition of single crystals for $\mathrm{Mg}_{0.31(3)} \mathrm{Mn}_{2.69} \mathrm{As}_{2}$.
Sample 1

Element	Weight\%	Atomic\%
Mg L	5.83	13.96
Mn L	45.65	48.35
As L	48.52	37.69

Sample 2

Element	Weight\%	Atomic\%
Mg L	5.11	12.32
Mn L	47.19	50.35
As L	47.70	37.32

Sample 3

Element	Weight\%	Atomic\%
Mg L	5.82	13.91
Mn L	46.32	48.98
As L	47.86	37.11

The content of Mn calculated from EDS: 49.2\%
The content of Mn calculated from SXRD: 53.8\%

Figure S5. Schematic diagram of the spin configuration for $M H$ curve at 5 K .

