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1. Information of reference sites 

 The ACHD Lawrenceville and the CMU campus site are two collocation sites where 

reference instruments can provide accurate NO2 concentrations. RAMP monitors were brought 

back to these two locations periodically for evaluating the data quality of NO2 sensors. The 

minimum, mean, and maximum NO2 concentrations in 2019 at the ACHD Lawrenceville are 0, 

11.8, and 100.9 ppb, respectively. The minimum, mean, and maximum NO2 concentrations in the 

2017 collocation campaign at the CMU campus site from May to November were 0, 6.2, and 

32.2ppb, respectively. 

 

Figure S1. Locations and annual NO2 concentrations of two reference monitoring sites – ACHD 
Lawrenceville and CMU campus site. 
  



2. Limit of blank as a function of sensor age 

The limit of blank (LOB) of the Alphasense NO2 sensors was calculated to evaluate sensor 

applicability for atmospheric sampling. LOBs were calculated based on Eq. (S1).1 LOB represents 

the sensor response to near-zero concentration samples and can be further used to calculate the 

limit of detection (LOD) and limit of quantification (LOQ).1-2  

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖,𝑡𝑡 + 1.645�𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖,𝑡𝑡�  (S1) 

Since ambient NO2 rarely reaches 0 ppb, we revised the definition of “blank samples” as 

reference NO2 concentrations between 0-2 ppb. Such an expanded range 

increased data available for LOB calculations. LOBs were calculated for each individual sensor i, 

at collocation period t, based on blank samples with a 15-minute sampling interval. The 

concentration average of blank samples (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖,𝑡𝑡 ) and the standard deviation of blank 

samples (𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖,𝑡𝑡) were calculated based on NO2 concentrations (ppb) derived from sensor raw 

signals (mV).  

Two methods were used to convert sensor raw signals to NO2 concentrations, the linear 

regression model and the baseline random forest (RF) model. For the linear regression model, only 

the original calibration model (based on the first collocation if it happened within 200 days of 

unpacking, with R2 > 0.8) was used to calculate NO2 concentrations from the rest of the collocation 

data. We also want to show the improvement in sensor performance if we regularly collocate 

sensors and calibrate them with advanced algorithms. Therefore, for the RF model, an individual 

calibration model was trained for each collocation dataset to calculate NO2 concentrations from 

sensor raw signals, similar to individual calibration models reported in Malings et al. 2019.3 LOBs 

calculated from RF models represent sensors that were regularly collocated over their deployment 



lifetime and calibrated with advanced algorithms. If a sensor does not have the qualified original 

calibration model, original calibration models of sensors from the same batch are averaged and 

applied to the collocation data, which is similar to the generalized calibration models reported in 

Malings et al. 2019. LOBs calculated from linear regressions represent that sensors were only 

collocated once or not collocated, and their results were calibrated with a simple algorithm. 

 Fig. S2 shows the LOB of each collocation dataset inverted from both the linear regression 

and the baseline RF model, shown as solid dots and hollow dots, respectively. Dots are colored 

based on batch numbers. The two dotted lines are the 1st and 3rd quartile of hourly NO2 

concentrations at ACHD Lawrenceville. The dashed line is the annual average NO2 concentration 

at ACHD Lawrenceville. 

  As expected, LOBs inverted from the linear regression model increase over deployment 

time. This is indicative of the worsening data quality due to sensor aging described above. After 

approximately 200 to 400 days, the LOBs from the linear regression exceed the 3rd quartile of 

NO2 concentrations at ACHD Lawrenceville. High LOBs show that these sensors cannot guarantee 

reliable data quality in the atmospheric sampling after long-term field deployment if they are not 

frequently collocated and calibrated. Thus, frequent collocation and calibration are essential to 

ensure reliable data quality in long-term deployment. Future research should investigate strategies 

to calibrate sensors with regional air quality data or satellite data instead of labor-intensive physical 

collocation.4  

LOBs inverted from baseline RF models are stable around the 1st quartile of hourly NO2 

concentrations at ACHD Lawrenceville. These LOBs are much lower than those inverted from 

linear regressions and remain low even after very long deployments (>400 days). As previously 



shown by Zimmerman et al. (2018), the random forest model for NO2 can be influenced by NO2, 

CO, T, and RH, (these results were for relatively newer sensors);5 in a city, the major NO2 source 

(vehicular traffic) also co-emits CO. Thus, even though the sensors nominally perform well, the 

output of the RF model is not indicative of the actual sensor performance. The RF model can 

provide reasonable results even if the raw signals from these sensors have almost no correlation 

with ambient NO2 concentrations. 

 

Figure S2. Solid dots and hollow dots are the limit of blanks (LOBs) calculated from linear 
regressions and baseline RF models. The dotted lines are the 1st and 3rd quartile of ACHD NO2 
concentrations, and the dashed line is the mean of their annual average. Sensor aging gradually 
increases the detection threshold, and regular collocation and advanced algorithms can ease the 
aging issue. 
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