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S1. Experimental Section

Materials and synthesis

4,7-Dibromo-2,1,3-benzothiadiazole, tetrakis(triphenylphosphine)palladium(0),
4-formylphenylboronic acid, 4-aminobenzonitrile, p-benzoquionone, 1,3,5-tris(4-aminophenyl)
benzene (TAPB), N, N-diethyl-1,4-phenylenediamine (DPD) and benzylamine derivatives were
obtained from Energy Chemical Co. Ltd. and J&K Scientific Co. Ltd. p-Phthalaldehyde,
trifluoromethanesulfonic acid and p-tolunitrile were purchased from Aladdin Chemicals. Potassium
iodide (K1), 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), hydroquinone, silver nitrate (AgNO3),
tertiary butanol (~-BuOH), potassium bromide (KBr) and all the solvents were purchased from local
supplier (Baoding Huaxin Reagent and Apparatus Co. Ltd.). Chemicals involved in this work were
used as received without further purification unless note.

Synthesis of 4,4'-(Benzothiadiazole-4,7-diyl)dibenzaldehyde
4,4'-(Benzothiadiazole-4,7-diyl)dibenzaldehyde was synthesized according to the previous
literature.['! "TH NMR (400 MHz, CDCl;): 6 (ppm): 10.13 (s, 2H), 8.18 (d, J = 8.0 Hz, 4H), 8.08 (d, J
= 8.0 Hz, 4H), 7.91 (s, 2H). *C NMR (100 MHz, CDCl3): d (ppm): 191.93, 153.78, 142.99, 136.06,
133.02, 130.06, 129.98, 128.76.
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'"H NMR spectrum of 4,4'-(benzothiadiazole-4,7-diyl)dibenzaldehyde

S2


javascript:;
javascript:;

o oo N ool o 00
% e 5 SocSarn
— o N V0O e
=)} wvy g (Lo T B o I ot |
= a & Sooss
| |1 7=

| el |

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 3
(ppm)

I3C NMR spectrum of 4,4'-(benzothiadiazole-4,7-diyl)dibenzaldehyde

Synthesis of 1,3,5-tris-(4-aminophenyl)triazine (TAPT)

1,3,5-Tris-(4-aminophenyl)triazine was synthesized according to the previous literature.l”J 'TH NMR
(400 MHz, DMSO-d,): § (ppm): 8.36 (d, J = 8.0 Hz, 6H), 6.69 (d, J = 8.0 Hz, 6H), 5.92 (s, 6H). 13C
NMR (100 MHz, DMSO-dy): d (ppm):170.03, 153.47, 130.65, 123.37, 113.58.
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13C NMR spectrum of 1,3,5-tris-(4-aminophenyl)triazine

Quenching experiments
A series of scavengers such as hydroquinone, AgNO;, KI, p-benzoquinone (BQ), TEMPO and
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t-BuOH were employed as trapping agents for free radical, electron, hole, superoxide radical (¢O;"),
singlet oxygen ('0O,), hydroxyl radical (*OH), respectively. For the trapping experiments, apart from
that 10 mg of scavengers was added into the reaction mixture with the BTDA-TAPT, the procedure
was completely same with that mentioned-above.

Detection of reactive oxygen species (ROS) by ESR measurements

The active trapping experiments were conducted by adding different types of excess trapping agents
into reaction system, which was then monitored by in situ ESR measurements. DMPO, TEMP and
AgNO; were used to trap the *O,7, 'O, and electrons, respectively. In a typical measurement, 10 mg
BTDA-TAPT and 0.1 M DMPO or TEMP or AgNO; were added into a quartz tube with charged
acetonitrile (1 mL) under oxygen atmosphere. The signals of 0 min in dark and after 3 min
illumination were collected. After that, the mixture was detected again after adding benzylamine (0.1
mmol) under light illumination (300 W Xe lamp with 420nm UVCUT) for 3 min.

ATR-FT-IR measurements

The photocatalytic oxidative coupling of benzylamine with increasing reaction time was surveyed by
ex situ ATR-FTIR spectra to identify the key reaction intermediates. The typical procedure was as
follows: BTDA-TAPT (10 mg) was ultrasonically dispersed into 3 mL acetonitrile solution of 1.0
mmol amines in a quartz glass vial, which was then carefully placed into the stainless-steel
top-visible reactor and charged oxygen pressure into 0.1 Mpa. Prior to light irradiation, the mixtures
were stirred for 60 min in the dark to achieve adsorption-desorption equilibrium. Afterwards, a 300
W xenon lamp (15 A, PLS-SXE 300) with a 420 nm-cut filter was used as a light source and
illuminated from the reactor’s top to the reaction solution (the distance in about 8§ cm) under
magnetic stirring for a suitable reaction time. Subsequently, the reaction mixture was taken out every
one hour, which was recorded by dropping the mixture on the ATR accessories.

The DPD control experiment.

In a typical test, BTDA-TAPT (10 mg) was ultrasonically dispersed into 3 mL acetonitrile solution
of 0.5 mmol amines in a quartz glass vial, and then 5 pL. N, N-diethyl-1,4-phenylenediamine (DPD)
was added into this solution. The reaction process was very similar with reaction procedure
above-mentioned. After every one hour interval, the solution was tested by a UV-vis

spectrophotometry.

S2. Sectional Results and Figures
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Figure S1. FT-IR spectra of (a) BTDA-TAPT and its monomers with its (b) partial enlarged detail.
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Figure S2. FT-IR spectra of (a) BTDA-TAPB and its monomers with its (b) partial enlarged detail.
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Figure S3. FT-IR spectra of (a) TPA-TAPT and its monomers with its (b) partial enlarged detail.
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Figure S4. 13C CP-MAS NMR of BTDA-TAPT.
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Figure S5. 3C CP-MAS NMR of BTDA-TAPB.
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Figure S6. XPS spectra of BTDA-TAPT. (a) Survey, (b) N Is, (¢) C 1s, and (d) S 2p.
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Figure S7. XPS spectra of BTDA-TAPB. (a) Survey, (b) N 1s, (¢) C 1s, and (d) S 2p.
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Figure S8. Raman spectra of (a) BTDA-TAPT and (b) BTDA-TAPB with their corresponding

monomers.
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Figure S9. TGA curves of BTDA-TAPT and BTDA-TAPB.
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Figure S10. (a) FT-IR spectrum and (b) TGA curve of BTDA-TAPT-O0.
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Figure S11. PXRD patterns of BDTA-TAPT in 550 rmp for 3 days and BDTA-TAPT-0 in 0 rmp for
5 days.
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Figure S12. PXRD patterns of BTDA-TAPT in different solvents for 2 days.
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Figure S13. PXRD patterns of BTDA-TAPB in 0 and 550 rmp for 3 days.
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Figure S14. PXRD pattern of TPA-TAPT.
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Figure S15. SEM images of BTDA-TAPT obtained with stirring rate at (a) 0, (b)100, (¢) 300, (d)
550, (e) 700 rmp. The scale bar 100 nm.
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Figure S18. HRTEM images of (a) BTDA-TAPT, (b) BTDA-TAPT-0, and (c) BTDA-TAPB.
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Figure S19. N, adsorption-desorption analyses of (a) BTDA-TAPT, (b) BTDA-TAPT-0,

BTDA-TAPB and (d) TPA-TAPT.
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Figure S20. Mott-Schottky plots of (a) BTDA-TAPT, (b) BTDA-TAPT-0, (c) BTDA-TAPB and (d)

TPA-TAPT.
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Figure S21. PL spectra of BTDA-TAPT, BTDA-TAPT-0, BTDA-TAPB (excitation wavelength at
450 nm) and TPA-TAPT (excitation wavelength at 223 nm).
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Figure S22. PL lifetime of TPA-TAPT with excitation wavelength at 223 nm.
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Figure S23. The influence of photocatalyst concentration for this reaction. Reaction conditions:
benzylamine (0.1 mmol), BTDA-TAPT photocatalyst, acetonitrile (3 mL), O, (1 atm), 300 W Xe
lamp (A =420-780 nm), room temperature, 3.0 h.
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Figure S24. Stability of BTDA-TAPT photocatalyst for the oxidative coupling of benzylamine under

visible light irradiation.
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Figure S25. FT-IR spectra of fresh and reused BTDA-TAPT.
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Figure S26. (a, b) SEM images of used BTDA-TAPT after five cycles.
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Figure S27. '"H NMR spectrum of the reaction mixture of the photocatalytic benzylamine oxidation

with BTDA-TAPT after 3 h. The typical peaks at 10.06 ppm was ascribed to hydrogen atom of the
aldehyde group belonged to generated benzaldehyde from benzylamine.
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