Supporting Information

Carbamoylation of Azomethine Imines via Visible-Light Photoredox Catalysis

Bianca T. Matsuo, Pedro H. R. Oliveira, José Tiago M. Correia, and Márcio W. Paixão *

Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, São Carlos, São Paulo, Brazil

* To whom correspondence should be addressed. E-mail: mwpaixao@ufscar.br

General considerations				
Photoreactions				
Experimental Set-up				
Starting Material Preparation				
Azomethine Imine Synthesis (3' – 16')				
<i>N</i> -Methyl-Nitrone synthesis (17' – 19')				
Carbamoyl-1,4-Dihydropyridines Synthesis (20' – 52')				
Optimization studies9				
General Procedure for Carbamoylation of Azomethine Imines (GP1)9				
General Procedure for Carbamoylation of Nitrones (GP2)10				
General Procedure for the Pyrazolidinone Reductive Cleavage (GP3)11				
Compound Characterization				
Starting Materials				
Scope for the Carbamoylation of Azomethine Imines (3 – 16)17				
Scope for the Carbamoylation of Nitrones (17 – 19)				
Scope for the 4-Carbamoyl-1,4-Dihydropyridines (20 - 52)				
Derivatization				
Unsuccessful Substrates				
Mechanistic Evidence				
Cyclic Voltammetry				
Trapping Experiment				
UV-Vis Spectra				
Fluorescence Quenching Experiments				
Control Reactions				
NMR Spectra				

Table of Contents

General Considerations

Unless otherwise stated, all reagents were purchased from commercial sources and used without additional purification. THF was freshly distilled under argon from the sodium anion of benzophenone. All other anhydrous solvents were purchased or obtained from in house solvent purification towers. HPLC grade solvents were used in the photocatalyzed reactions.

All air or moisture-sensitive reactions were conducted in flame dried glassware under nitrogen atmosphere.

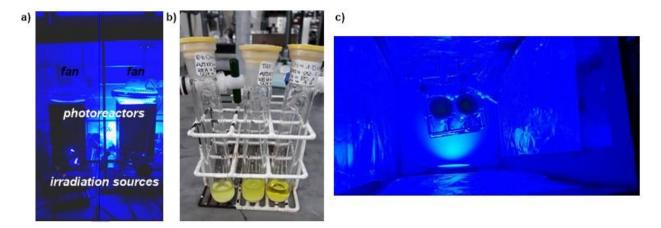
All reactions were monitored by thin layer chromatography using Merck silica gel aluminum sheets 60 F254, using hexane/acetone, hexane/EtOAc or DCM/MeOH as mobile phase and visualized by UV lamp, permanganate and vanillin stains.

Flash column chromatography was accomplished using silica gel 60 (230-400 mesh) and hexane/acetone, hexane/EtOAc or DCM/MeOH as eluent systems.

¹H and ¹³C spectra were recorded on Brucker NMR spectrometers at 298 K. ¹H (400 MHz) and ¹³C (126 MHz) NMR chemical shifts are reported relative to internal TMS (δ = 0.00 ppm; CDCl₃: 7.26 ppm for ¹H nuclei and 77.16 for ¹³C nuclei); (δ = 0.00 ppm; DMSO-*d6*: 2.50 ppm for ¹H nuclei and 40.00 for ¹³C nuclei); (δ = 0.00 ppm; CD₃OD: 3.31 ppm for ¹H nuclei and 49.0 for ¹³C nuclei). Chemical shifts are given in ppm. Coupling constant values *J* are given in Hertz. The multiplicities are described as: brs = broad signal, s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, ddd = doublet of doublet of doublets and m = multiplet.

Mass spectra data were recorded at Waters Technologies of Brazil. The samples were solubilized in acetonitrile/water 90:10 and analyzed by ASAP probe in the Xevo G2-XS QTOF spectrometer. Spectra were acquired in MS mode.

The diastereoisomeric ratios were determined by NMR analysis of crude reactions.


Photoreactions

A 34 W Kessil H150 blue LED (emission: 456 nm) was used as the visible light source. All chemicals and photocatalysts were purchased and used as received from suppliers unless otherwise noted. The photocatalyst 2,4,5,6-Tetra(carbazol-9-yl)isophthalonitrile 4CzIPN was prepared following the reported experimental procedure.¹ HPLC grade solvents were used in the photocatalyzed reactions.

¹ J. Luo and J. Zhang, ACS Catal., **2016**, *6*, 873 - 877.

Experimental Set-Up

Photoredox reactions were kept under blue LED irradiation using Schlenk tubes as reaction vessels (up to 3 Schlenk tubes per reactor). They were placed at approximately 7 cm from the irradiation source and the temperature (~30 °C) was controlled using a desk fan placed above the photoreactor.

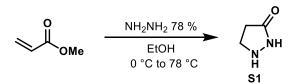
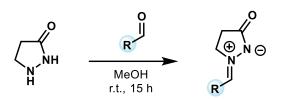


Figure S1. Experimental set-up for the photocatalyzed reactions. a) Photoreactors with the irradiation source and the external fan. b) The Schlenk tubes filled with the reaction mixture. c) Schlenk's distance from the irradiation source inside the photoreactor.

Starting Materials Preparation

Azomethine Imine Synthesis (3' – 16')

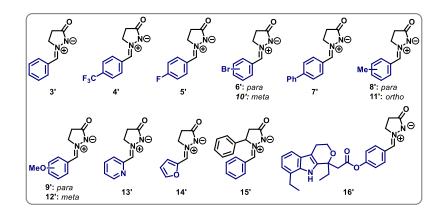
Pyrazolidin-3-one (S1):



Scheme S1. Preparation of pyrazolidin-3-one S1.

Pyrazolidin-3-one **S1** was prepared following the reported experimental procedure:² in a flame-dried round bottom flask a solution of hydrazine monohydrate 78 % (1.0 equiv) in absolute ethanol (4 M) was cooled to 0 °C using an ice bath. Methyl acrylate (1.0 equiv) was slowly added, and the solution was stirred at 0 °C for 30 min and then was heated to reflux using an oil bath and stirred until the reaction be completed judging by TLC analysis. The solution was concentrated under vacuum to yield the crude pyrazolidin-3-one as a clear or yellow oil. The pyrazolidin-3-one was used immediately in the next step without purification.

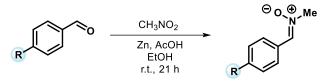
² S. E. Winterton and J. M. Ready, *Org. Lett.*, **2016**, *18*, 2608–2611.


Azomethine Imines:

Scheme S2. Preparation of azomethine imines.

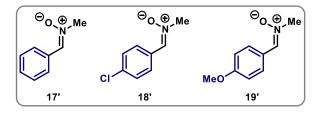
Azomethine imines were prepared following the reported experimental procedure:² The crude pyrazolidinone **S1** (1.0 equiv) obtained in the previous step and the corresponding aldehydes (1.2 equiv) were dissolved in anhydrous MeOH (1 M). The mixture was stirred at room temperature overnight and then concentrated under vacuum to remove the solvent. Et₂O was added to precipitate the product (if the precipitation does not occur, it can be promoted by the addition of few drops of hexane followed by cooling in the freezer). The resulting solid was collected by filtration, washed with Et₂O and dried to yield the final product. For substrates that do not precipitate, the reaction crudes were purified by column chromatography using DCM/ MeOH (20:1) as eluent.

The following **azomethine imines** were used as starting materials for the scope evaluation. The reported compounds were prepared and characterized according to literature²⁻⁶. The compound **16**' was prepared using the same experimental procedure² and its spectroscopic data is reported in the appropriated session in the SI.



Scheme S3. Azomethine imines used as starting material during the scope study.

Spectroscopic data of C,N-Cyclic Azomethine Imines:


3', 4', 6', 9', 13', 15'[2]; 5', 8', 12', 14' [3]; 7' [4]; 10' [5] and 11' [6].

N-Methyl-Nitrone Synthesis (17' – 19')

Scheme S4. Preparation of N-Methyl-Nitrones.

N-methyl-nitrones were prepared following the reported experimental procedure:^{7,8} To a solution of aromatic aldehyde (1.0 equiv), nitromethane (4.0 equiv) and zinc powder (6 equiv) in 95% ethanol (0.19 M) at 0 °C was added glacial acetic acid (7 equiv) dropwise over a period of 1 h. Next, the mixture was allowed to stir for 20 h at room temperature. The suspension was filtered; the filtrate concentrated under vacuum, and the crude mixture was purified by flash column chromatography using AcOEt/ MeOH (50:1) as eluent to give the corresponding nitrone.

Scheme S5. N-Methyl-nitrones used as starting material during the scope study.

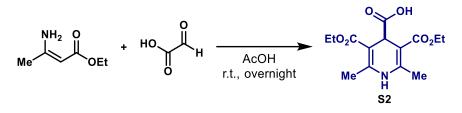
Spectroscopic data of *N*-Methyl Nitrones:

17', 18' [7] and 19'[8].

Carbamoyl-1,4-Dihydropyridines Synthesis (20' – 52')

Synthesis of 3,5-diethoxycarbonyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid (S2)

³ Q. Du, J.-M. Neudörfl and H.-G. Schmalz, Chem. Eur. J., 2018, 24, 2379-2383.


⁴ C. Li, C. -S. Wang, T.-Z. Li, G.-J. Mei and F. Shi, *Org. Lett.*, **2019**, *21*, 598–602.

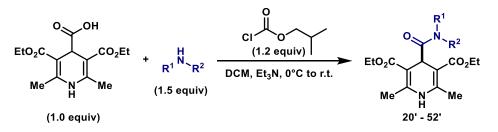
⁵ R. Shintani and G. C. Fu, *J. Am. Chem. Soc.*, **2003**, *125*, 10778–10779.

⁶ R. Shintani and T. Hayashi, J. Am. Chem. Soc., **2006**, 128, 6330–6331.

⁷ S. Pagoti, D. Dutta and J. Dash, *Adv. Synth. Catal.*, **2013**, *355*, 3532–3538.

⁸ M. M. Andrade, M. T. Barros and R. C. Pinto, *Tetrahedron*, **2008**, *64*, 10521–10530.

Scheme S6. Preparation of 1,4-dihydropyridine-4-carboxylic acid.

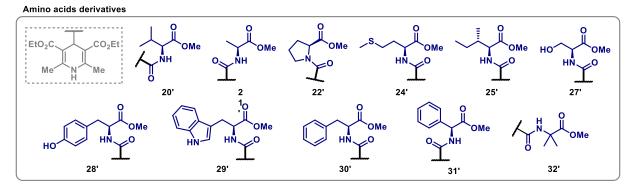

The 1,4-dihydropyridine-4-carboxylic acid was prepared following the reported experimental procedure:⁹ A solution of glyoxylic acid 50 % wt in H₂O (1 equiv) was slowly added to a solution of ethyl-3-aminocrotonate (2.0 equiv) in glacial acetic acid (2.7 M) at 0 °C. A yellow precipitate is formed (**Figure S2**), and the resulting mixture was left stirring overnight at room temperature. The solid was filtered, washed with acetic acid and water, and dried under reduced pressure to give the 1,4-

dihydropyridine-4-carboxylic acid as a white solid (image on the left) (yield = 35 %)

Figure S2. General aspect of the reaction mixture after the glyoxylic acid addition.

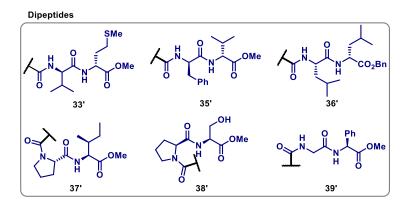
4-Carbamoyl-1,4-Dihydropyridines 20' - 52'

Scheme S7. Preparation of 4-carbamoyl-1,4-dihydropyridines 20' – 52'.

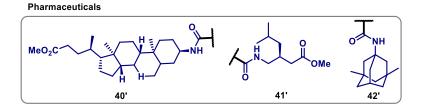

⁹ G. Ya. Dubur and Ya. R. Uldrikis, *Chem. Heterocycl. Compd.*, **1972**, *5*, 762–763.

The 1,4-DHPs were prepared following the reported experimental procedure:¹⁰ In a 50 mL round bottom flask under N₂ atmosphere, 1,4-dihydropyridine-4-carboxylic acid **S2** (1.5 mmol) was suspended in DCM (0.2 M), followed by addition of Et₃N (1.1 equiv or 2.2 equiv when using the amine hydrochloride salt). Then isobutyl chloroformate (1.2 equiv) was added dropwise at 0 °C. The resulting mixture was left to stir at 0 °C for 10 min and additional 20 min at room temperature. Next, the amine (1.5 equiv) was added, and the reaction was stirred at room temperature until completion, judging by TLC analysis. The solution was diluted with DCM, washed with saturated NaHCO₃ and water. The combined organic layers were dried with Na₂SO₄, concentrated, and precipitated with hexane and filtered or purified by flash chromatography (*n*-hexane/acetone 7:3) to afford the corresponding 4-carbamoyl-1,4-dihydropyridine.

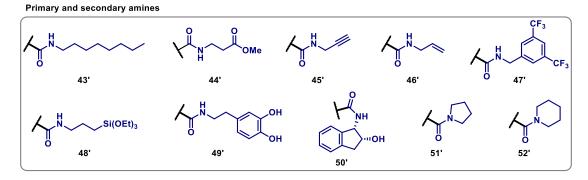
The following **4-carbamoyl-1,4-dihydropyridines** were used as starting materials for the scope evaluation. The reported compounds were prepared and characterized according to literature.¹⁰ The new compounds were prepared using the same experimental procedure and their spectroscopic data are reported in the appropriated session in the SI (compounds 22', 25', 31', 32', 33', 35', 36', 37', 38', 39', 40', 41', 43', 44', 45', 47', 48', 49' and 50').


Spectroscopic data of 4-carbamoyl-1,4-dihydropyridines:

20', 21', 24', 27', 28', 29', 30', 42', 46', 51', 52' [10]



Scheme S8. 4-carbamoyl-1,4-dihydropyridines derived from amino acids.


¹⁰ N. Alandini, L. Buzzetti, G. Favi, T. Schulte, L. Candish, K. D. Collins and P. Melchiorre, *Angew. Chem. Int. Ed.*, **2020**, *59*, 5248-5253.

Scheme S9. 4-carbamoyl-1,4-dihydropyridines derived from dipeptides.

Scheme S10. 4-carbamoyl-1,4-dihydropyridines derived from pharmaceutical compounds.

Scheme S11. 4-carbamoyl-1,4-dihydropyridines derived from primary and secondary amines.

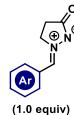

Optimization Studies

Table 1. Evaluation of reaction parameters ^a

(1.0 equiv)	+ EtO ₂ C Me	NH CO ₂ Et N Me 5 equiv) ACZIPN (1 mol %) MeCN (0.05 M), r.t., 19 ■ 036W Blue LEL 036W Blue LEL	
	entry	deviation from standard condition	ns 3 (%) ^b
	1	none	70
	2	THF instead of MeCN	68
	3	EtOAc instead of MeCN	43
	4	DCM instead of MeCN	54
	5	[]=0.1 M	63
	6	K ₂ CO ₃ (2 equiv)	64
	7	2.5 mol% of 4-CzIPN	54
	8	5 mol% of 4-CzIPN	15
	9	reverse stoichiometry	52
	10	PhCO ₂ H (10 mol %)	65
	11	KH₂PO₄ (10 mol %)	40
	12	CSA (10 mol %)	61

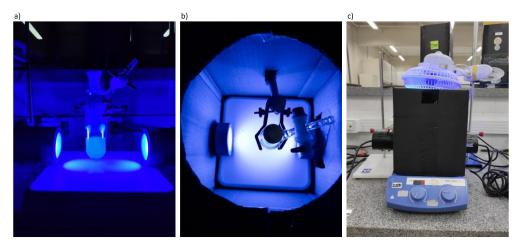
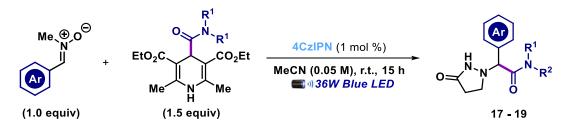
^a Reaction conditions: **1a** (0.15 mmol), **2a** (1.5 equiv, 0.225 mmol), **4-CzIPN** (1 mol %) in MeCN (3.0 mL). ^b Isolated yields after column chromatography.

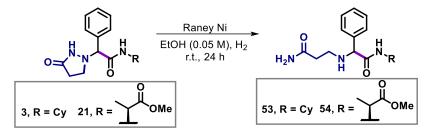
General Procedure for Carbamoylation of Azomethine Imines (GP1)

A dried Schlenk tube of borosilicate glass equipped with a stir bar was charged with the azomethine imine (0.15 mmol, 1.0 equiv), the 4-carbamoyl-1,4-dihydropyridine (1.5 equiv) and the photocatalyst 4CzIPN (1 mol %). Acetonitrile (3 mL) was added and the Schlenk tube was sealed with PTFE/silicon septum and connected to a vacuum line. The solution was degassed 3 times *via* a freeze-pump-thaw procedure and stirred under irradiation by a 34 W Kessil H150 blue LED (emission: 456 nm) with the temperature controlled by a fan (~ 30 °C). Upon completion, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography using DCM/ MeOH (20:1) as solvent mixture to afford the title compound.

Gram-Scale Reaction

A dried Schlenk tube of borosilicate glass equipped with a stir bar was charged with the azomethine imine (1.0 mmol, 1.0 equiv), the carbamoyl-1,4-dihydropyridine (1.5 equiv) and the photocatalyst 4CzIPN (1 mol %). Acetonitrile (20 mL) was added and the Schlenk tube was sealed with PTFE/silicon septum and connected to a vacuum line. The solution was degassed 3 times *via* a freeze-pump-thaw procedure and stirred under irradiation by 2 x 34 W Kessil H150 blue LED (emission: 456 nm) with the temperature controlled by a fan (~ 30 °C). Upon completion, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography using DCM/ MeOH (20:1) as solvent mixture to afford the title compound.

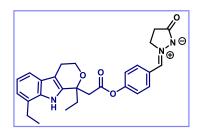




Figure S3. Experimental set-up for the gram-scale experiment. a) Reaction vessel irradiated by two external 34 W Kessil H150 blue LED lamps. b) Schlenk tube disposal inside the photoreactor. c) Photoreactor equipped with two irradiation sources and the external fan.

General Procedure for Carbamoylation of Nitrones (GP2)

A dried Schlenk tube of borosilicate glass equipped with a stir bar was charged with the nitrone (0.15 mmol, 1.0 equiv), the 4-carbamoyl-1,4-dihydropyridine (1.5 equiv) and the photocatalyst 4CzIPN (1 mol %). Acetonitrile (3 mL) was added and the Schlenk tube was sealed with PTFE/silicon septum and connected to a vacuum line. The solution was degassed 3 times *via* a freeze-pump-thaw procedure and stirred under irradiation by a 34 W Kessil H150 blue LED (emission: 456 nm) with the temperature controlled by a fan (\sim 30 °C). Upon completion, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography using DCM/ MeOH (20:1) as solvent mixture to afford the title compound.

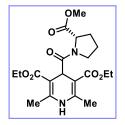
General Procedure for the Pyrazolidinone Reductive Cleavage (GP3)



700 mg of Raney®-Nickel 2800 (slurry in H₂O) was added to a small vial and the catalyst was washed 3 times with EtOH. Then, a solution of **3** or **21** (0.2 mmol) in EtOH (4 mL) was added to the vial containing the activated catalyst, which was sealed with a septum. The reaction mixture was placed under H₂ atmosphere using balloons containing H₂ and kept under vigorous agitation for 24 h at room temperature. The reaction crude was filtered through celite, concentrated under reduced pressure, and purified by column chromatography (DCM/ MeOH 9:1) to furnish the corresponding primary amides **53** or **54**.

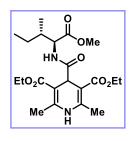
Compound Characterization

Starting Materials


2-(4-(2-(1,8-diethyl-1,3,4,9-tetrahydropyrano[3,4-*b*]indol-1-yl)acetoxy)benzylidene)-5-oxopyrazolidin-2-ium-1-ide (16')

The compound **16'** was obtained as a yellow solid (39.5 mg, 43 %) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (2.0 mmol scale). The crude material was purified by flash column chromatography (DCM/ MeOH 20:1). ¹H NMR (DMSO-d₆, **400 MHz)**: δ 10.64 (s, 1H), 8.32 – 8.28 (m, 2H), 7.64 (s, 1H), 7.26 (d, *J* = 7.3 Hz, 1H), 7.12 (d, *J* = 8.7 Hz, 2H), 6.95 – 6.89 (m, 2H), 4.54 (t, *J* = 8.0 Hz, 2H), 4.05 – 3.99 (m, 2H), 3.32 (d, *J* = 13.4 Hz, 1H), 3.09 (d, *J* = 13.3 Hz, 1H),

2.85 (q, J = 7.4 Hz, 2H), 2.74 – 2.66 (m, 2H), 2.58 – 2.53 (m, 2H), 2.16 (dt, J = 14.6, 7.2 Hz, 1H), 2.11 – 2.04 (m, 1H), 1.25 (t, J = 7.5 Hz, 3H), 0.72 (t, J = 7.2 Hz, 3H). ¹³C NMR (DMSO-d₆, 101 MHz): δ 184.4, 168.1, 151.9, 135.6, 134.6, 132.3, 131.0, 127.6, 126.6, 126.0, 122.1, 119.8, 118.8, 115.5, 107.5, 79.2, 75.7, 60.2, 57.3, 42.8, 30.9, 29.2, 23.8, 21.9, 14.5, 7.9. HRMS (ESI): m/z calc. for C₂₇H₂₉N₃O₄ [M+H]⁺ 460.2231, found 460.2228.


(*S*)-diethyl-4-(2-(methoxycarbonyl)pyrrolidine-1-carbonyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (22')

The compound **22'** was obtained as a yellow solid (312.2 mg, 51 %) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹H NMR (CDCl₃, 400 MHz): δ 8.58 (s, 1H), 4.85 (s, 1H), 4.40 (dd, *J* = 8.6, 4.8 Hz, 1H), 4.26 – 4.20 (m, 1H), 4.17 – 4.12 (m, 4H), 3.58 (s, 3H), 2.23 (dt, *J* = 13.0, 7.3 Hz, 2H), 2.16 (s, 3H), 2.10 (s, 3H), 2.06 – 2.01 (m, 1H),), 1.96 – 1.89 (m, 2H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.26 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 101 MHz): δ

174.5, 172.9, 167.9, 167.6, 148.5, 147.8, 98.5, 97.8, 59.9, 59.5, 51.9, 47.5, 39.5, 29.4, 25.4, 19.4, 18.8, 14.7. **HRMS (ESI):** m/z calc. for $C_{20}H_{28}N_2O_7$ [M+H]⁺ 409.1969, found 409.1968.


Diethyl-4-(((2*S*,3*S*)-1-methoxy-3-methyl-1-oxopentan-2-yl)carbamoyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (25')

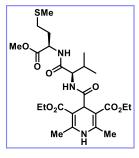
The compound **25'** was obtained as a yellow solid (381.8 mg, 60%) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹H NMR (CDCl₃, 400 MHz): δ 7.63 (brs, 1H), 7.12 (d, *J* = 9.0 Hz, zH), 4.66 (s, 1H), 4.25 – 4.11 (m, 4H), 3.68 (s, 3H), 2.21 (s, 3H), 2.16 (s, 3H), 1.90 – 1.83 (m, 1H), 1.47 – 1.37 (m, 1H), 1.29 (td, *J* = 7.0, 3.1 Hz, 6H), 1.25 – 1.10 (m, 1H), 0.92 – 0.87 (m, 6H).¹³C NMR (CDCl₃, 101 MHz): δ 174.5, 172.3, 167.8, 147.6, 97.8, 60.4, 60.2, 56.7, 52.01, 41.6, 37.9, 25.1, 19.1, 19.1, 15.6, 14.5, 14.4, 11.7. HRMS

(ESI): m/z calc. for $C_{21}H_{33}N_2O_7$ [M+H]⁺ 425.2282, found 425.2298.


Diethyl-(*S*)-4-((2-methoxy-2-oxo-1-phenylethyl)carbamoyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (31')

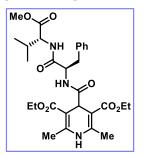
The compound **31'** was obtained as a white solid (313.1 mg, 47 %) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹**H NMR (CDCl₃, 400 MHz)**: δ 7.70 (d, *J* = 7.5 Hz, 1H), 7.32 – 7.30 (m, 5H), 5.46 (d, *J* = 7.4 Hz, 1H), 4.68 (s, 1H), 4.25 – 4.20 (m, 2H), 4.15 – 4.10 (m, 2H), 3.68 (s, 3H), 2.19 (s, 3H), 1.83 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR (CDCl₃, 101 MHz)**: δ 174.0, 171.1, 167.9, 167.7, 147.9, 147.6, 137.0, 129.0, 128.9, 128.4, 127.3, 127.2, 97.8, 97.3, 60.4, 60.2, 56.7, 52.8, 41.6,

19.1, 18.6, 14.5, 14.4. **HRMS (ESI):** m/z calc. for C₂₃H₂₈N₂O₇ [M+H]⁺ 445.1969, found 445.1995.


Diethyl 4-((1-methoxy-2-methyl-1-oxopropan-2-yl)carbamoyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (32')

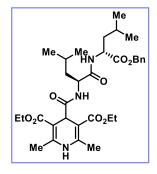
found 397.1956.

The compound **32'** was obtained as a white solid (445.7 mg, 75 %) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹H NMR (CDCl₃, 400 MHz): δ 7.63 (brs, 1H), 6.97 (brs, 1H), 4.53 (s, 1H), 4.18 (q, *J* = 6.8 Hz, 4H), 3.64 (s, 3H), 2.19 (s, 6H), 1.49 (s, 6H), 1.29 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 101 MHz): δ 175.0, 173.8, 167.8, 147.4, 98.0, 60.2, 56.2, 52.5, 42.3, 25.1, 19.1, 14.6. HRMS (ESI): m/z calc. for C₁₉H₂₉N₂O₇ [M+H]⁺ 397.1969,


Diethyl-4-(((*R*)-1-(((*R*)-1-methoxy-4-(methylthio)-1-oxobutan-2-yl)amino)-3-methyl-1-oxobutan-2-yl)carbamoyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (33')

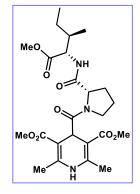
The compound **33'** was obtained as a yellow solid (405.9 mg, 50 %) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹H NMR (CDCl₃, 400 MHz): δ 8.18 (brs, 1H), 7.10 (d, *J* = 7.9 Hz, 1H), 6.94 (d, *J* = 8.9 Hz, 1H), 4.58 (q, *J* = 6.5, 6.0 Hz, 1H), 4.52 (s, 1H), 4.30 – 4.27 (m, 1H), 4.23 – 4.06 (m, 4H), 3.66 (s, 3H), 2.35 (ddd, *J* = 17.1, 8.3, 4.8 Hz, 2H), 2.12 (s, 3H), 2.10 (s, 3H), 2.04 (s, 3H), 2.02 – 1.97 (m, 1H), 1.24 (t, *J* = 7.1 Hz, 6H), 0.88 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (CDCl₃, 101 MHz): δ 175.2, 172.2, 171.4, 168.8, 167.9, 147.5, 98.2, 97.9, 60.6, 60.4, 58.5, 52.4, 51.6, 42.8, 31.4, 30.1, 29.8,

19.4, 19.2, 19.1, 17.1, 15.5, 14.6, 14.5. **HRMS (ESI)**: m/z calc. for C₂₅H₄₀N₃O₈S⁺ [M+H]⁺ 542.2531, found 542.2567.

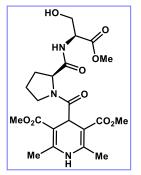

Diethyl-4-(((*R*)-1-(((*R*)-1-methoxy-3-methyl-1-oxobutan-2-yl)amino)-1-oxo-3-phenylpropan-2-yl)carbamoyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (35')

The compound **35'** was obtained as a yellow solid (367.8 mg, 44 %) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹**H NMR (CDCl**₃, **400 MHz)**: δ 7.74 (s, 1H), 7.30 – 7.21 (m, 5H), 7.08 (d, *J* = 8.2 Hz, 1H), 6.73 (d, *J* = 8.5 Hz, 1H), 4.67 (q, *J* = 7.7 Hz, 1H), 4.54 (s, 1H), 4.44 (dd, *J* = 8.4, 5.5 Hz, 1H), 4.11 (dddd, *J* = 24.7, 13.7, 11.1, 7.0 Hz, 4H), 3.69 (s, 3H), 3.18 (dd, *J* = 14.3, 5.6 Hz, 1H), 3.08 (dd, *J* = 14.3, 7.6 Hz, 1H), 2.18 (s, 3H), 2.10 (s, 3H), 2.14 – 2.06 (m, 1H), 1.24 (t, *J* = 7.1 Hz, 6H), 0.87 – 0.84 (m, 6H).

¹³C NMR (CDCl₃, **101** MHz): δ 175.0, 171.9, 171.0, 168.2, 167.7, 147.5, 136.9, 129.3, 128.6, 126.9, 97.9, 97.7, 60.3, 60.2, 57.5, 54.6, 52.0, 42.1, 37.6, 31.2, 19.1, 19.0, 18.9, 18.1, 14.5, 14.4. HRMS (ESI): m/z calc. for $C_{29}H_{40}N_3O_8^+$ [M+H]⁺ 558.2810, found 558.2823.

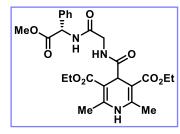

Diethyl-4-(((*S*)-1-(((*R*)-1-(benzyloxy)-4-methyl-1-oxopentan-2-yl)amino)-4-methyl-1-oxopentan-2-yl)carbamoyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (36')

The compound **36'** was obtained as a yellow solid (570.4 mg, 62 %) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹H NMR (CDCl₃, 400 MHz): δ 8.34 (s, 1H), 7.35 – 7.29 (m, 5H), 7.03 (d, *J* = 8.5 Hz, 1H), 6.69 (d, *J* = 7.9 Hz, 1H), 5.14 (q, *J* = 12.3 Hz, 2H), 4.65 (td, *J* = 8.8, 5.2 Hz, 1H), 4.50 (s, 1H), 4.38 (ddd, *J* = 11.4, 7.9, 3.8 Hz, 1H), 4.26 – 4.05 (m, 4H), 2.14 (s, 3H), 2.08 (s, 3H), 1.80 (ddd, *J* = 13.9, 9.9, 3.8 Hz, 1H), 1.66 – 1.58 (m, 2H), 1.57 – 1.48 (m, 3H), 1.25 (dtd, *J* = 14.2, 7.2, 1.7 Hz, 6H), 0.93 – 0.81 (m, 12H). ¹³C NMR (CDCl₃, 101 MHz): δ 175.6, 172.7,


172.2, 168.5, 167.9, 147.7, 147.1, 135.7, 128.6, 128.4, 128.2, 98.5, 97.4, 66.9, 60.3, 52.2, 50.7, 43.3, 40.9, 40.4, 24.6, 23.4, 22.9, 21.8, 20.9, 18.9, 14.6, 14.5. **HRMS (ESI):** m/z calc. for $C_{33}H_{48}N_3O_8^+$ [M+H]⁺ 614.3436, found 614.3447.

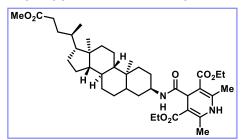
Diethyl-4-((*S*)-2-(((2*S*,3*R*)-1-methoxy-3-methyl-1-oxopentan-2-yl)carbamoyl)pyrrolidine-1-carbonyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (37')

The compound **37'** was obtained as a yellow solid (148.5 mg, 19%) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹H NMR (CDCl₃, 400 MHz): δ 8.44 (s, 1H), 6.83 (d, *J* = 8.5 Hz, 1H), 4.69 (s, 1H), 4.56 (d, *J* = 7.6 Hz, 1H), 4.50 (dd, *J* = 8.6, 4.8 Hz, 1H), 4.27 – 4.20 (m, 2H), 4.15 (q, *J* = 7.1 Hz, 4H), 3.68 (s, 3H), 2.14 (s, 1H), 2.13 (s, 3H), 2.07 (s, 3H), 2.03 – 1.94 (m, 3H), 1.25 (td, *J* = 7.1, 3.3 Hz, 7H), 0.89 (dd, *J* = 7.1, 3.3 Hz, 2H), 0.81 (t, *J* = 8.0 Hz, 6H). ¹³C NMR (CDCl₃, 101 MHz): δ 175.5, 172.1, 172.0, 168.4, 167.7, 147.9, 147.4, 98.6, 61.0, 60.1, 59.9, 56.5, 51.8, 47.4, 40.0, 37.4, 29.6, 24.9, 24.3, 19.3, 15.2, 14.5, 14.3, 11.4. HRMS (ESI): m/z calc. for C₂₆H₃₉N₃O₈ [M+H]⁺ 522.2810, found 522.2811.


Dimethyl 4-((*S*)-2-(((*S*)-3-hydroxy-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1-carbonyl)-2,6dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (38')

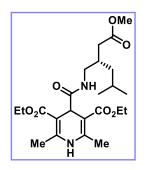
The compound **38'** was obtained as a yellow oil (147.2 mg, 21%) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹**H NMR (CDCl₃, 400 MHz)**: δ 7.57 (s, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 4.65 (s, 1H), 4.66 – 4.62 (m, 1H), 4.43 (dd, *J* = 8.1, 4.1 Hz, 1H), 4.28 (td, *J* = 11.7, 5.8 Hz, 1H), 4.23 – 4.10 (m, 4H), 3.85 (dd, *J* = 11.6, 2.9 Hz, 1H), 3.73 (s, 3H), 3.67 (dd, *J* = 11.6, 4.1 Hz, 1H), 2.26 – 2.19 (m, 1H), 2.17 (s, 3H), 2.11 (s, 3H), 2.14 – 2.07 (m, 1H), 1.97 (dd, *J* = 13.1, 7.4 Hz, 1H), 1.31 – 1.24 (m, 6H). ¹³C NMR (CDCl₃, 126 MHz): δ 174.0, 171.1, 167.9, 167.7, 147.9, 147.6, 137.0, 129.0, 128.9, 128.5, 127.3, 127.2, 97.8, 97.3, 60.4, 60.2, 56.8, 52.8, 41.6, 19.0, 18.6, 14.5, 14.43. HRMS (ESI) m/z calc. for C₂₃H₃₄N₃O₉ [M+H]⁺

496.2290, found 496.2295.


Diethyl (*S*)-4-((2-((2-methoxy-2-oxo-1-phenylethyl)amino)-2-oxoethyl)carbamoyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (39')

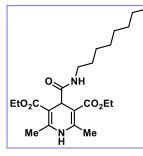
The compound **39'** was obtained as a yellow oil (293.2 mg, 39%) following the general procedure for the synthesis of 4-carbamoyl-1,4dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹**H NMR (CDCl**₃, **400 MHz)**: δ 7.42 – 7.30 (m, 5H), 7.10 (t, *J* = 5.7 Hz, 1H), 5.59 (d, *J* = 7.5 Hz, 1H), 4.54 (s, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 4.09 – 3.99 (m, 2H), 3.97 (d, *J* = 5.9 Hz, 2H), 3.70 (s, 3H), 2.19 (d, *J* = 3.4 Hz, 6H), 1.27 – 1.22 (m, 6H). ¹³**C NMR (CDCl**₃, **126 MHz)**: δ 175.5, 171.1, 168.9, 168.2, 168.0, 147.5, 147.2,

136.3, 129.0, 128.6, 127.5, 98.3, 98.0, 60.5, 60.4, 56.3, 52.8, 43.5, 42.6, 19.4, 19.3, 14.5. HRMS (ESI): m/z calc. for $C_{25}H_{32}N_3O_8^+$ [M+H]⁺ 502.2184, found 502.2214.

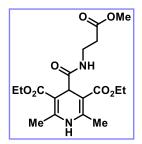

Diethyl-4-(((3*R*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-17-((*R*)-5-methoxy-5-oxopentan-2-yl)-10,13 dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)carbamoyl)-2,6-dimethyl-1,4dihydropyridine-3,5-dicarboxylate (40')

The compound **40'** was obtained as a white solid (651.7 mg, 65%) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹H NMR (CDCl₃, 400 MHz): δ 8.14 (s, 1H), 7.17 (d, *J* = 7.6 Hz, 1H), 4.60 (s, 1H), 4.24 - 4.12 (m, 4H), 4.06 - 4.04 (m, 1H), 3.65 (s, 3H), 2.34 (ddd, *J* = 15.3, 10.1, 5.1 Hz, 1H), 2.24 - 2.20 (m, 1H), 2.19 (s, 3H), 2.18 (s, 3H), 1.98 - 1.93 (m, 2H),

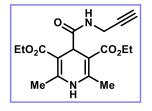
1.88 – 1.76 (m, 3H), 1.55 (t, J = 11.4 Hz, 3H), 1.49 – 1.29 (m, 9H), 1.28 – 1.24 (m, 8H), 1.17 – 1.03 (m, 6H), 0.90 (d, J = 6.4 Hz, 3H), 0.64 (s, 3H). ¹³**C NMR (CDCI₃, 126 MHz):** δ 174.9, 173.9, 168.35, 168.3, 147.5, 98.0, 76.8, 60.2, 60.2, 56.6, 56.1, 51.6, 45.4, 42.9, 41.8, 40.3, 39.9, 37.8, 35.8, 35.5, 35.2, 31.2, 31.1, 30.9, 28.3, 26.9, 26.3, 25.1, 24.3, 24.1, 21.1, 19.1, 19.1, 18.4, 14.6, 14.6, 12.2. **HRMS (ESI):** m/z calc. for C₃₉H₆₁N₂O₇⁺ [M+H]⁺ 669.4473, found 669.4481.


Diethyl (*S*)-4-((2-(2-methoxy-2-oxoethyl)-4-methylpentyl)carbamoyl)-2,6-dimethyl-1,4dihydropyridine-3,5-dicarboxylate (41')

The compound **41'** was obtained as a white solid (447.7 mg, 66%) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹**H NMR (CDCl₃, 400 MHz)**: δ 7.70 (s, 1H), 6.78 (t, *J* = 6.1 Hz, 1H), 4.56 (s, 1H), 4.18 (dt, *J* = 7.0, 5.5 Hz, 4H), 3.66 (s, 3H), 3.28 – 3.22 (m, 2H, 3.15 – 3.09 (m, 1H), 2.21 (s, 6H), 2.07 (dd, *J* = 12.7, 6.5 Hz, 1H), 1.64 – 1.56 (m, 1H), 1.45 (t, *J* = 7.1 Hz, 1H), 1.28 (td, *J* = 7.1, 0.9 Hz, 6H), 1.19 – 1.05 (m, 2H), 0.86 (dd, *J* = 9.6, 6.6 Hz, 6H). ¹³**C NMR (CDCl₃, 126 MHz)**: δ 174.9, 173.4, 168.1, 147.4, 98.2, 60.3, 51.6, 42.6, 41.8, 41.4, 37.1, 33.5, 25.3, 22.8, 19.3, 14.5. δ . **HRMS (ESI)**: m/z

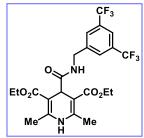

calc. for $C_{23}H_{37}N_2O_7^+$ [M+H]⁺ 453.2595, found 453.2593.

Diethyl 2,6-dimethyl-4-(octylcarbamoyl)-1,4-dihydropyridine-3,5-dicarboxylate (43')


The product **43'** was obtained as a yellow solid (355.2 mg, 58%) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹H NMR (CDCl₃, **400 MHz**): δ 8.34 (s, 1H), 6.72 (t, *J* = 5.6 Hz, 1H), 4.55 (s, 1H), 4.17 (q, *J* = 7.1 Hz, 4H), 3.17 (q, *J* = 6.7 Hz, 2H), 2.18 (s, 6H), 1.46 – 1.43 (m, 2H), 1.29 – 1.25 (m, 16H), 0.87 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (CDCl₃, **101 MHz**): δ 174.9, 168.2, 147.7, 97.8, 60.1, 41.8, 39.6, 31.9, 29.7, 29.4, 29.4, 26.9, 22.8, 18.9, 14.5, 14.2. HRMS (ESI): m/z calc. for C₂₂H₃₆N₂O₅ [M+H]⁺ 409.2697, found 409.2695.

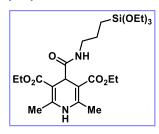
Diethyl 4-((3-methoxy-3-oxopropyl)carbamoyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (44')

The product **44'** was obtained as a yellow solid (412.7 mg, 72%) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹**H NMR (CDCl₃, 400 MHz)**: δ 7.99 (s, 1H), 7.01 (t, *J* = 6.0 Hz, 1H), 4.53 (s, 1H), 4.17 (q, *J* = 7.1 Hz, 4H), 3.68 (s, 3H), 3.47 (q, *J* = 6.3 Hz, 2H), 2.48 (t, *J* = 6.3 Hz, 2H), 2.19 (s, 6H), 1.27 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (CDCl₃, 101 MHz): δ 175.0, 172.5, 167.9, 147.6, 97.9, 60.2, 51.8, 41.8, 35.1, 34.2, 19.0, 14.5. HRMS (ESI): m/z calc. for C₁₈H₂₇N₂O₇ [M+Na]⁺ 405.1632, found 405.1632.


Diethyl 2,6-dimethyl-4-(prop-2-yn-1-ylcarbamoyl)-1,4-dihydropyridine-3,5-dicarboxylate (45')

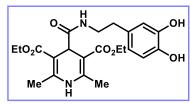
The product **45'** was obtained as a yellow solid (350.8 mg, 70%) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹H NMR (CDCl₃, 400 MHz): δ 7.64 (brs, 1H), 6.98 (t, *J* = 5.1 Hz, 1H), 4.58 (s, 1H), 4.19 (q, *J* = 6.9 Hz, 5H), 3.98 (dd, *J* = 4.9, 2.0 Hz, 2H), 2.21 (s, 6H), 2.16 (s, 1H), 1.29 (t, *J* = 6.8 Hz, 6H).¹³C NMR (CDCl₃, 101 MHz): δ 174.5, 167.9, 147.5, 97.6, 79.7, 71.2, 60.2, 41.5, 29.2, 19.1, 14.4. HRMS (ESI): m/z calc.

for $C_{17}H_{22}N_2O_5$ [M+H]⁺ 335.1601, found 335.1606.


Diethyl-4-((3,5-bis(trifluoromethyl)benzyl)carbamoyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (47')

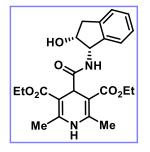
The product **47'** was obtained as a yellow solid (650 mg, 83%) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹H NMR (CDCl₃, 400 MHz): δ 7.67 (s, 1H), 7.57 (s, 2H), 7.33 (t, *J* = 6.3 Hz, 1H), 7.19 (s, 1H), 4.56 (s, 1H), 4.46 (d, *J* = 6.2 Hz, 2H), 4.11 (q, *J* = 7.1 Hz, 4H), 2.07 (s, 6H), 1.19 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (CDCl₃, 101 MHz): δ 175.1, 168.2, 147.4, 142.0, 131.8 (q, *J* = 33.4 Hz), 127.1, 123.4 (q, *J* = 272.8 Hz), 121.2 – 121.1 (m), 98.0, 60.5, 42.5, 42.0, 19.2, 14.4. HRMS (ESI): m/z calc. for

 $C_{23}H_{24}F_6N_2O_5$ [M+Na]⁺ 545.1482, found 545.1494.


Diethyl-2,6-dimethyl-4-((3-(triethoxysilyl)propyl)carbamoyl)-1,4-dihydropyridine-3,5-dicarboxylate (48')

The product **48'** was obtained as a yellow solid (502.7 mg, 67%) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹H NMR (CDCl₃, 400 MHz): δ 7.95 (s, 1H), 6.72 (t, *J* = 5.9 Hz, 1H), 4.54 (s, 1H), 4.17 (q, *J* = 7.1 Hz, 4H), 3.80 (q, *J* = 7.0 Hz, 6H), 3.18 (q, *J* = 6.7 Hz, 2H), 2.19 (s, 6H), 1.60 – 1.53 (m, 2H), 1.27 (t, *J* = 7.4 Hz, 6H), 1.23 – 1.19 (m, 9H), 0.61 – 0.57 (m, 2H). ¹³C NMR (CDCl₃, 101 MHz): δ 174.7, 168.1, 147.5, 98.1, 60.2, 58.5, 42.2, 41.8, 23.3, 19.1, 18.4, 14.6, 7.8. HRMS (ESI): m/z

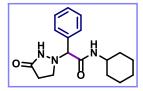
calc. for C₂₃H₄₁N₂O₈Si [M+H]⁺ 501.2627, found 501.2631.


Diethyl 4-((3,4-dihydroxyphenethyl)carbamoyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (49')

The compound **49'** was obtained as a white solid (181.5 mg, 28%) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹H NMR (Metanol-*d*4, 400 MHz): δ 6.69 (d, *J* = 7.9 Hz, 1H), 6.62 (d, *J* = 1.2 Hz, 1H), 6.49 (dd, *J* = 8.0, 2.1 Hz, 1H), 4.50 (s, 1H), 4.14 (q, *J* = 7.1 Hz, 4H), 3.38 –

3.33 (m, 2H), 2.62 (t, J = 7.0 Hz, 2H), 2.30 (s, 6H), 1.26 (t, J = 7.1 Hz, 6H). ¹³C NMR (Metanol-d4, 126 MHz): δ 176.4, 169.4, 149.3, 146.3, 144.8, 131.8, 120.9, 116.7, 116.3, 98.8, 61.2, 42.5, 41.8, 35.7, 18.9, 14.7. HRMS (ESI): m/z calc. for C₂₂H₂₈N₂O₇ [M+H]⁺ 433.1969, found 433.1988.

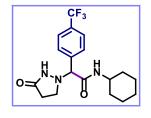
Diethyl 4-(((15,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)carbamoyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (50')



The product **50'** was obtained as a yellow solid (327.6 mg, 51%) following the general procedure for the synthesis of 4-carbamoyl-1,4-dihydropyridines (1.5 mmol scale). The crude material was purified by flash column chromatography (*n*-hexane/acetone 7:3). ¹**H NMR (CDCl₃, 400 MHz)**: δ 8.00 (s, 1H), 7.33 – 7.19 (m, 4H), 6.96 (d, *J* = 8.4 Hz, 1H), 5.33 (dd, *J* = 8.4, 4.8 Hz, 1H), 4.64 – 4.61 (m, 2H), 4.28 – 4.12 (m, 4H), 3.14 (dd, *J* = 16.5, 5.1 Hz, 1H), 3.00 (brs, 1H), 2.28 (s, 3H), 2.24 (s, 3H), 1.26 (q, *J* = 7.0 Hz, 6H). ¹³**C NMR (CDCl₃, 101 MHz)**: δ 175.6, 168.5, 167.7, 147.5, 140.5, 128.3, 127.1, 125.5, 124.2, 98.6, 98.2, 73.4, 60.6, 60.3, 58.4, 43.1, 39.6, 19.3, 19.2, 14.6, 14.5. **HRMS (ESI)**: m/z calc. for C₂₃H₂₉N₂O₆ [M+H]⁺

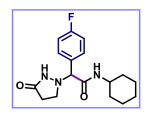
429.2020, found 429.2016.

Scope for the carbamoylation of azomethine imines


N-cyclohexyl-2-(3-oxopyrazolidin-1-yl)acetamide (3)

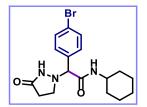
The product **3** was obtained as a colorless oil (31.6 mg, 70%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.39-7.34 (m, 5H), 6.20 (brs, 1H), 4.23 (s, 1H), 3.72 (qt, *J* = 8.5, 4.0 Hz, 1H), 3.24 (dt, *J* = 10.7, 7.5 Hz, 2H), 2.38 (t, *J* = 7.4 Hz, 2H), 1.82 (td, *J* = 12.4, 4.1 Hz, 2H), 1.68-1.55 (m, 3H),

1.37 – 1.26 (m, 2H), 1.10 (pd, J = 11.8, 3.4 Hz, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 174.4, 168.6, 135.1, 129.2, 129.2, 128.5, 76.1, 50.1, 48.4, 32.9, 32.8, 29.6, 25.5, 24.8. HRMS (ESI): m/z calc. for C₁₇H₂₄N₃O₂ [M+H]⁺ 302.1863, found 302.1861.


N-cyclohexyl-2-(3-oxopyrazolidin-1-yl)-2-(4-(trifluoromethyl)phenyl)acetamide (4)

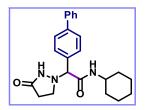
The product **4** was obtained as a colorless oil (40.4 mg, 73%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 2H), 6.30 (brs, 1H), 4.35 (s, 1H), 3.76 – 3.68 (m, 1H), 3.31 (q, *J* = 8.9 Hz, 2H), 2.44 (dq, *J* = 16.8, 9.0 Hz, 2H), 1.84 (t, *J* = 16.6 Hz, 2H), 1.69 – 1.57 (m, 3H), 1.38 – 1.27 (m, 2H), 1.19 – 1.07 (m, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 174.7, 167.7, 139.1, 131.6 (q, *J* = 32.2 Hz), 128.9, 126.2 (q, *J* = 3.9 Hz), 123.9(q, *J* = 271.9)

Hz), 75.7, 50.7, 48.5, 32.9, 32.9, 29.5, 25.5, 24.8. HRMS (ESI): m/z calc. for $C_{18}H_{23}F_3N_3O_2$ [M+H]⁺ 370.1737, found 370.1733.


N-cyclohexyl-2-(4-fluorophenyl)-2-(3-oxopyrazolidin-1-yl)acetamide (5)

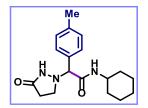
The product **5** was obtained as a colorless oil (36.8 mg, 77%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.42 (dd, *J* = 8.4, 5.3 Hz, 2H), 7.08 (t, *J* = 8.3 Hz, 2H), 6.27 (brs, 1H), 4.38 (s, 1H), 3.75 (dtt, *J* = 11.1, 8.0, 3.8 Hz, 1H), 3.34 (q, *J* = 8.2 Hz, 2H), 2.51 – 2.37 (m, 2H), 1.84 (dd, *J* = 12.2, 4.1 Hz, 2H), 1.69 – 1.65 (m, 2H), 1.60 (dt, *J* = 12.2, 3.8 Hz, 1H), 1.34 (qt, *J* = 12.3, 3.7 Hz, 2H), 1.13 (dddd, *J* = 15.7, 11.8, 7.9, 3.8 Hz, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 174.7,

168.5, 163.1 (d, J = 248.7 Hz), 131.1, 130.3 (d, J = 8.3 Hz), 116.2 (d, J = 21.7 Hz), 75.3, 50.6, 48.3, 32.9, 29.6, 25.5, 24.8. **HRMS (ESI):** m/z calc. for C₁₇H₂₃FN₃O₂ [M+H]⁺ 320.1769, found 320.1765.


2-(4-bromophenyl)-N-cyclohexyl-2-(3-oxopyrazolidin-1-yl)acetamide (6)

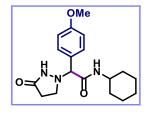
The product **6** was obtained as a colorless oil (31.3 mg, 55%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.44 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 6.16 (brs, 1H), 4.16 (s, 1H), 3.65 (dtt, *J* = 10.9, 8.8, 3.9 Hz, 1H), 3.21 (q, *J* = 9.0, 8.5 Hz, 2H), 2.40 – 2.30 (m, 2H), 1.81 – 1.73 (m, 2H), 1.63 – 1.58 (m, 2H), 1.56 – 1.51 (m, 1H), 1.33 – 1.19 (m, 2H), 1.13 – 0.99 (m, 3H). ¹³C NMR (CDCl₃,

126 MHz): δ 174.6, 168.1, 134.2, 132.4, 130.1, 123.4, 75.4, 50.6, 48.4, 32.9, 29.5, 25.5, 24.8. **HRMS (ESI)**: m/z calc. for C₁₇H₂₃BrN₃O₂ [M+H]⁺ 380.0968, found 380.0975.


2-([1,1'-biphenyl]-4-yl)-N-cyclohexyl-2-(3-oxopyrazolidin-1-yl)acetamide (7)

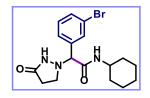
The product **7** was obtained as a colorless oil (30.5 mg, 54%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.54 – 7.49 (m, 4H), 7.40 – 7.36 (m, 4H), 7.32 – 7.28 (m, 1H), 6.10 (brs, 1H), 4.19 (s, 1H), 3.74 – 3.63 (m, 1H), 3.25 – 3.19 (m, 2H), 2.37 (t, *J* = 8.9 Hz, 2H), 1.82 – 1.76 (m, 2H), 1.60 (dt, *J* = 13.5, 3.8 Hz, 2H), 1.55 – 1.50 (m, 1H), 1.33 – 1.21 (m, 2H), 1.12 – 1.02 (m, 3H). ¹³C NMR

 $\begin{array}{l} \textbf{(CDCl_3, 126 MHz): } \delta 174.4, 168.7, 142.2, 140.2, 134.1, 129.0, 128.9, 128.0, 127.8, 127.2, 75.9, 50.7, 48.3, \\ \textbf{33.0, 32.9, 29.6, 25.5, 24.8. HRMS (ESI): } m/z \ calc. \ for \ C_{23}H_{28}N_3O_2 \ [M+H]^+ \ \textbf{378.2176, found } \textbf{378.2170.} \end{array}$


N-cyclohexyl-2-(3-oxopyrazolidin-1-yl)-2-(p-tolyl)acetamide (8)

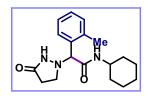
The product **8** was obtained as a colorless oil (25.1 mg, 53%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.19 (d, J = 7.8 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 6.01 (brs, 1H), 4.11 (s, 1H), 3.71 – 3.62 (m, 1H), 3.17 (dt, J = 10.8, 7.4 Hz, 2H), 2.33 (t, J = 8.2 Hz, 2H), 2.28 (s, 3H), 1.75 (t, J = 12.0 Hz, 2H), 1.59 (dt, J = 14.5, 4.6 Hz, 2H), 1.52 (dt, J = 7.7, 4.0 Hz, 1H), 1.32 – 1.18 (m, 2H), 1.11 – 0.98

(m, 3H). ¹³**C NMR (CDCl₃, 126 MHz):** δ 174.3, 168.9, 139.2, 132.0, 130.0, 128.4, 75.8, 50.6, 48.2, 33.0, 32.9, 29.7, 25.5, 24.8, 21.3. **HRMS (ESI):** m/z calc. for C₁₈H₂₆N₃O₂ [M+H]⁺ 316.2020, found 316.2015.


N-cyclohexyl-2-(4-methoxyphenyl)-2-(3-oxopyrazolidin-1-yl)acetamide (9)

The product **9** was obtained as a colorless oil (29.8 mg, 60%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.29 (d, *J* = 8.3 Hz, 2H), 6.89 (d, *J* = 8.3 Hz, 2H), 6.14 (brs, 1H), 4.15 (s, 1H), 3.81 (s, 3H), 3.78 – 3.70 (m, 1H), 3.22 (dt, *J* = 10.9, 7.4 Hz, 2H), 2.38 (t, *J* = 8.2 Hz, 1H), 1.87 – 1.81 (m, 2H), 1.69 – 1.57 (m, 3H), 1.38 – 1.24 (m, 2H), 1.18 – 1.06 (m, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 174.5, 169.1, 160.2, 129.8, 127.1, 114.6, 75.4, 55.4, 50.5, 48.2, 32.9, 29.7, 25.5,

24.8. HRMS (ESI): m/z calc. for $C_{18}H_{26}N_3O_3$ [M+H]⁺ 332.1969, found 332.1973.


2-(3-bromophenyl)-N-cyclohexyl-2-(3-oxopyrazolidin-1-yl)acetamide (10)

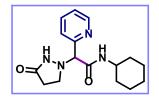
The product **10** was obtained as a colorless oil (29.6 mg, 52%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.51 (s, 1H), 7.44 (d, *J* = 7.9 Hz, 1H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.21 – 7.17 (m, 1H), 6.25 (brs, 1H), 4.22 (s, 1H), 3.67 (q, *J* = 11.5, 10.6 Hz, 1H), 3.26 (dd, *J* = 17.6, 8.6 Hz, 2H), 2.47 – 2.35 (m, 2H), 1.78 (t, *J* = 10.2 Hz, 2H), 1.61 (dt, *J* = 13.2, 3.9 Hz, 2H), 1.56 – 1.51

(m, 1H), 1.32 – 1.22 (m, 2H), 1.08 (tt, J = 12.9, 6.1 Hz, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 174.5, 167.8, 137.1, 132.5, 131.5, 130.8, 127.2, 123.3, 75.3, 50.6, 48.4, 32.9, 32.9, 29.5, 25.5, 24.8. HRMS (ESI): m/z calc. for C₁₇H₂₃BrN₃O₂ [M+H]⁺ 380.0968, found 380.0961.

N-cyclohexyl-2-(3-oxopyrazolidin-1-yl)-2-(o-tolyl)acetamide (11)

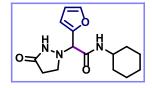
The product **11** was obtained as a colorless oil (26.0 mg, 55%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.33 (d, *J* = 7.3 Hz, 1H), 7.21 – 7.10 (m, 3H), 5.98 (brs, 1H), 4.53 (s, 1H), 3.69 – 3.62 (m, 1H), 3.22 – 3.13 (m, 1H), 2.42 – 2.29 (m, 2H), 2.41 (s, 3H), 1.81 – 1.69 (m, 2H), 1.55 (t, *J* = 18.6 Hz, 3H), 1.29 – 1.18 (m, 2H), 1.10 – 0.95 (m, 3H). ¹³C NMR (CDCl₃, 126 MHz):

δ 174.0, 168.8, 138.0, 137.9, 131.7, 131.0, 129.1, 126.9, 77.5, 50.7, 48.3, 32.9, 32.8, 29.8, 25.5, 24.8, 20.3. **HRMS (ESI):** m/z calc. for C₁₈H₂₆N₃O₂ [M+H]⁺ 316.2020, found 316.2016.


N-cyclohexyl-2-(3-methoxyphenyl)-2-(3-oxopyrazolidin-1-yl)acetamide (12)

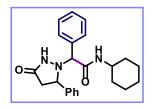
The product **12** was obtained as a colorless oil (24.8 mg, 50%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.21 (t, *J* = 7.9 Hz, 1H), 6.89 (d, *J* = 7.7 Hz, 1H), 6.86 (s, 1H), 6.82 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.08 (brs, 1H), 4.11 (s, 1H), 3.74 (s, 3H), 3.71 – 3.62 (m, 1H), 3.18 (dt, *J* = 10.6, 7.9 Hz, 1H), 2.36 (t, *J* = 8.1 Hz, 2H), 1.96 (brs, 1H), 1.77 (td, *J* = 11.5, 10.8, 3.2 Hz, 2H),

 $1.62 - 1.57 \text{ (m, 2H)}, 1.55 - 1.50 \text{ (m, 1H)}, 1.32 - 1.16 \text{ (m, 2H)}, 1.11 - 0.99 \text{ (m, 3H)}. {}^{13}\text{C NMR} \text{ (CDCl}_3, 126 \text{ MHz}\text{)}: \\ \delta 174.4, 168.6, 160.1, 136.7, 130.3, 120.6, 114.8, 113.8, 76.1, 55.4, 50.6, 48.2, 32.9, 32.9, 29.6, 25.5, 24.8. HRMS (ESI): m/z calc. for C_{18}H_{26}N_3O_3 \text{ [M+H]}^+ 332.1969, found 332.1982.$


N-cyclohexyl-2-(3-oxopyrazolidin-1-yl)-2-(pyridin-2-yl)acetamide (13)

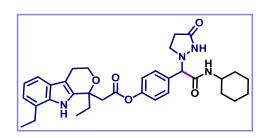
The product **13** was obtained as a colorless oil (21.3 mg, 47%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.56 (d, *J* = 4.5 Hz, 1H), 7.73 (tt, *J* = 7.7, 1.5 Hz, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.31 – 7.27 (m, 1H), 6.69 (d, *J* = 8.4 Hz, 1H), 4.50 (s, 1H), 3.68 (tq, *J* = 10.9, 3.9 Hz, 1H), 3.45 (brs, 1H), 3.41 – 3.34 (m, 1H), 2.49 (tt, *J* = 13.5, 6.8 Hz, 2H), 1.77 (dd, *J* = 22.6, 12.8

Hz, 2H), 1.64 (dt, J = 12.4, 3.8 Hz, 2H), 1.58 – 1.54 (m, 1H), 1.30 (dddd, J = 21.5, 12.6, 9.1, 4.5 Hz, 2H), 1.11 (tdd, J = 15.3, 11.8, 7.3 Hz, 3H). ¹³**C NMR (CDCl₃, 126 MHz)**: δ 174.5, 167.4, 155.2, 149.6, 137.6, 123.9, 123.8, 77.3, 50.7, 48.4, 32.8, 32.7, 29.6, 25.5, 24.8. **HRMS (ESI)**: m/z calc. for C₁₆H₂₃N₄O₂ [M+H]⁺ 303.1816, found 303.1809.


N-cyclohexyl-2-(furan-2-yl)-2-(3-oxopyrazolidin-1-yl)acetamide (14)

The product **14** was obtained as a colorless oil (22.7 mg, 52%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.44 (s, 1H), 6.45 (d, *J* = 3.5 Hz, 1H), 6.42 (brs, 1H), 6.39 (dt, *J* = 3.1, 1.3 Hz, 1H), 4.47 (s, 1H), 3.78 (dtt, *J* = 10.6, 7.1, 4.0 Hz, 1H), 3.46 (brs, 1H), 3.34 (dt, *J* = 11.5, 7.5 Hz, 1H),

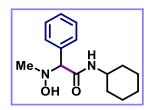
2.25 (td, J = 8.4, 2.3 Hz, 2H), 1.88 (dt, J = 12.3, 4.1 Hz, 2H), 1.69 (dt, J = 13.2, 3.9 Hz, 2H), 1.60 (dt, J = 12.7, 4.0 Hz, 1H), 1.35 (td, J = 14.6, 14.2, 7.6 Hz, 2H), 1.21 – 1.10 (m, 3H). ¹³C NMR (CDCI₃, 126 MHz): δ 174.9, 166.3, 147.6, 143.7, 111.9, 111.3, 68.6, 50.4, 48.5, 32.9, 29.4, 25.5, 24.8. HRMS (ESI): m/z calc. for C₁₅H₂₂N₃O₃ [M+H]⁺ 292.1656, found 292.1652.


(2S)-N-cyclohexyl-2-(3-oxo-5-phenylpyrazolidin-1-yl)-2-phenylacetamide (15)

The product **15** was obtained as a colorless oil (33.0 mg, 58 %) following the general procedure **GP1**. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). Reported spectra of one diastereoisomer. ¹**H NMR (CDCI₃, 400 MHz)**: δ 7.34 – 7.32 (m, 2H), 7.25 – 7.17 (m, 6H), 7.13 – 7.11 (m, 2H), 5.94 (s, 1H), 4.50 (s, 1H), 4.38 (d, *J* = 6.5 Hz, 1H), 3.70 – 3.63 (m, 1H), 2.87 (dd, *J* = 16.5, 8.1 Hz, 1H), 2.30 (d, *J* = 16.8 Hz, 1H), 1.72 (dd, *J* = 12.4,

9.5 Hz, 2H), 1.52 (t, J = 16.2 Hz, 2H), 1.28 – 1.18 (m, 3H), 1.07 – 0.92 (m, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 173.5, 168.3, 129.5, 129.2, 128.8, 128.0, 126.7, 76.2, 63.2, 48.5, 36.8, 32.9, 32.8, 25.5, 24.8. HRMS (ESI) m/z calc. for C₂₃H₂₈N₃O₂ [M+H]⁺ 378.2176 found 378.2182.

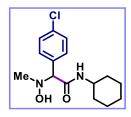
4-(2-(cyclohexylamino)-2-oxo-1-(3-oxopyrazolidin-1-yl)ethyl)phenyl 2-(1,8-diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indol-1-yl)acetate (16)



The product **16** was obtained as a white solid (73.8 mg, 84%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.72 (s, 1H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 7.9 Hz, 1H), 7.09 – 7.00 (m, 4H), 6.14 (brs, 1H), 4.22 (s, 1H), 4.09 (dt, *J* = 10.1, 4.8 Hz, 1H), 4.01 (ddd, *J* = 11.5, 7.5, 4.4 Hz, 1H), 3.78 – 370 (m, 1H), 3.29 – 3.23 (m, 2H), 3.17 (d, *J* = 16.3 Hz, 1H), 2.90 – 2.45 (m, 5H), 2.53 – 2.36 (m, 2H),

2.14 (ddt, J = 34.1, 14.5, 7.3 Hz, 2H), 1.94 – 1.59 (m, 10H), 1.31 (td, J = 7.5, 3.2 Hz, 3H), 0.90 (t, J = 7.3 Hz, 3H). ¹³**C NMR (CDCl₃, 126 MHz):** δ 174.4, 171.1, 168.3, 150.9, 135.4, 134.7, 133.2, 129.6, 126.7, 126.3, 122.4, 120.7, 119.9, 116.1, 109.0, 75.6, 74.9, 60.9, 50.8, 48.3, 43.4, 33.0, 32.9, 31.0, 29.5, 25.5, 24.8, 24.2, 22.5, 13.9, 7.8. **HRMS (ESI):** m/z calc. for C₃₄H₄₃N₄O₅ [M+H]⁺ 587.3228, found 587.3235.

Scope for the carbamoylation of nitrones


N-cyclohexyl-2-(hydroxy(methyl)amino)-2-phenylacetamide (17)

The product **17** was obtained as a yellow oil (19.5 mg, 50%) following the general procedure GP2. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.39 – 7.32 (m, 5H), 6.30 (d, *J* = 8.1 Hz, 1H), 4.08 (s, 1H), 3.81-7.72 (m, 1H), 2.53 (s, 3H), 1.86 (d, *J* = 11.1 Hz, 2H), 1.62 (m, 3H), 1.38-1.28 (m, 2H), 1.17 – 1.10 (m, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 170.0, 160.4, 136.0, 128.9, 128.7, 78.9, 48.1, 45.7, 33.0,

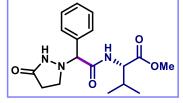
25.6, 24.9. HRMS (ESI): m/z calc. for $C_{15}H_{23}N_2O_2$ [M+H]⁺ 263.1754, found 263.1763.

2-(4-chlorophenyl)-N-cyclohexyl-2-(hydroxy(methyl)amino)acetamide (18)

The product **18** was obtained as a colorless oil (21.8 mg, 49%) following the general procedure **GP2**. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 6.63 (d, *J* = 6.9 Hz, 1H), 4.44 (s, 1H), 3.79 – 3.69 (m, 1H), 2.65 (s, 3H), 1.90 – 1.82 (m, 2H), 1.68 (ddd, *J* = 16.2, 7.9, 3.9 Hz, 2H), 1.62 – 1.57 (m, 1H), 1.32 (td, *J* = 13.2, 1.7 Hz, 2H), 1.25 (s, 1H), 1.22 – 1.08 (m, 3H). ¹³C NMR (CDCl₃, 126

MHz): δ 169.5, 134.6, 134.4, 130.1, 129.8, 129.1, 128.2, 78.1, 48.2, 45.8, 33.0, 33.0, 25.6, 24.9. **HRMS (ESI)** m/z calc. for C₁₅H₂₂ClN₂O₂ [M+H]⁺ 297.1364, found 297.1378.

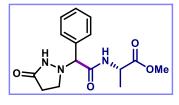
N-cyclohexyl-2-(hydroxy(methyl)amino)-2-(4-methoxyphenyl)acetamide (19)



The product **19** was obtained as a white solid (22 mg, 50 %) following the general procedure GP2. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.29 (d, *J* = 7.9 Hz, 2H), 6.87 (d, *J* = 8.0 Hz, 2H), 6.13 (d, *J* = 7.7 Hz, 1H), 4.01 (s, 1H), 3.80 (s, 3H), 3.78 – 3.74 (m, 1H), 2.51 (s, 3H), 1.87 (d, *J* = 11.6 Hz, 2H), 1.68 – 1.58 (m, 3H), 1.39 – 1.29 (m, 2H), 1.13 (ddd, *J* = 14.7, 11.6, 2.5 Hz, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 170.3, 159.9, 129.9, 114.3, 78.1, 55.4, 48.1, 45.5, 33.1, 25.6, 24.9. HRMS (ESI): m/z calc. for C₁₆H₂₅N₂O₃

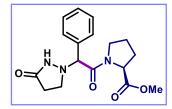
[M+H]⁺ 293.1860, found 293.1866.

Scope for the 4-carbamoyl-1,4-dihydropyridines


Methyl-(2-(3-oxopyrazolidin-1-yl)-2-phenylacetyl)-L-valinate (20)

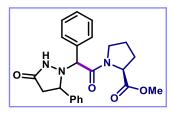
The product **20** was obtained as a yellow oil (30.5 mg, 61%, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.47 – 7.45 (m, 2H), 7.42 – 7.35 (m, 3H), 7.03 (d, *J* = 9.6 Hz, 1H), 4.55 (dd, *J* = 9.6, 4.3 Hz, 1H), 4.41 (brs, 1H), 3.77 (s, 3H), 7.48 – 7.40 (m, 1H), 3.22 (brs, 1H), 2.64 – 2.53 (m, 1H), 2.44 (dd, *J* = 25.2, 14.8 Hz, 1H),

2.26 (tt, J = 14.0, 6.9 Hz, 1H), 0.90 (d, J = 6.9 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 101 MHz): δ 174.8, 174.5, 173.0, 169.9, 135.1, 129.3, 129.3, 129.2, 129.1, 128.8, 128.0, 75.6, 56.8, 56.6, 52.9, 52.6, 50.3, 31.3, 30.6, 29.8, 29.6, 19.3, 19.1, 17.7, 17.6. HRMS (ESI): m/z calc. for C₁₇H₂₄N₃O₄ [M+H]⁺ 334.1761, found 334.1752.


Methyl-(2-(3-oxopyrazolidin-1-yl)-2-phenylacetyl)-L-alaninate (21)

The product **21** was obtained as a yellow oil (13.7 mg, 30%, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.45 – 7.37 (m, 10H), 7.12 (d, *J* = 7.8 Hz, 1H), 6.91 (d, *J* = 7.7 Hz, 1H), 4.65 – 4.54 (m, 2H), 4.30 (s, 1H), 4.27 (s, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 3.54 – 3.52 (m, 1H), 3.47 (t, *J* = 6.6 Hz, 1H), 3.39 – 3.25 (m, 2H), 2.60 – 2.50 (m, 1H),

2.44 – 2.38 (m, 2H), 2.36 – 2.29 (m, 1H), 1.41 (d, J = 7.4 Hz, 3H), 1.38 (d, J = 7.1 Hz, 3H).¹³C NMR (CDCl₃, 101 MHz): δ 174.7, 174.5, 174.4, 173.7, 169.9, 169.4, 129.3, 129.2, 128.9, 128.1, 77.4, 75.8, 53.1, 52.8, 48.0, 47.7, 29.8, 29.8, 18.22, 17.7. HRMS (ESI): m/z calc. for C₁₅H₂₀N₃O₄ [M+H]⁺ 306.1448, found 306.1458.


Methyl-2-(3-oxopyrazolidin-1-yl)-2-phenylacetyl)-L-prolinate (22)

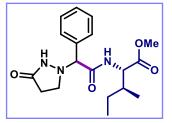
The product **22** was obtained as a white solid (36.4 mg, 73%, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.87 (brs, 1H), 7.68 (brs, 1H), 7.42 – 7.37 (m, 10H), 4.51 (dd, *J* = 8.2, 4.1 Hz, 1H), 4.45 (s, 1H), 4.44 – 4.41 (m, 1H), 4.23 – 4.11 (m, 1H), 3.75 (s, 3H), 3.71 (dd, *J* = 7.2, 4.3 Hz, 1H), 3.67 (s, 3H), 3.46 – 3.41 (m, 1H), 3.25 – 3.18 (m, 2H), 3.16 – 3.11

(m, 1H), 3.05 - 2.99 (m, 1H), 2.36 - 2.25 (m, 2H), 2.17 - 2.09 (m, 3H), 2.07 - 1.99 (m, 2H), 1.96 - 1.88 (m, 2H), 1.86 - 1.77 (m, 4H). ¹³**C NMR (CDCl₃, 126 MHz):** δ 187.9, 174.7, 174.5, 172.5, 172.1, 169.2, 168.8, 168.7, 130.1, 129.7, 129.4, 129.2, 129.0, 106.7, 73.5, 73.5, 59.5, 59.4, 52.6, 52.3, 49.8, 49.4, 46.9, 46.7, 30.2, 30.0, 28.7, 28.6, 25.1, 24.8. **HRMS (ESI):** m/z calc. for C₁₇H₂₂N₃O₄ [M+H]⁺ 332.1605, found 332.1601.

Methyl (2-(3-oxo-5-phenylpyrazolidin-1-yl)-2-phenylacetyl)-L-prolinate (23)

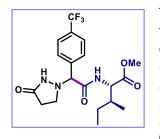
The product **23** was obtained as a colorless oil (30 mg, 50 %, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.85 (s, 1H), 7.79 (s, 1H), 7.41 (dd, *J* = 7.1, 4.2 Hz, 4H), 7.30 (d, *J* = 5.2 Hz, 3H), 7.23 (d, *J* = 4.8 Hz, 3H), 7.19 – 7.12 (m, 10H), 4.70 (s, 1H), 4.64 (s, 1H), 4.53 – 4.47 (m, 1H), 4.46 – 4.41 (m, 2H), 4.34 (dd, *J* = 8.9, 3.8 Hz, 1H), 3.76 (s, 3H), 3.63 (s, 3H), 3.53 – 3.45 (m, 2H), 3.30 (dd, *J* = 16.1, 7.0 Hz, 1H), 3.21 – 3.13 (m, 2H), 3.05 (dd, *J* =

16.9, 8.9 Hz, 1H), 2.47 – 2.43 (m, 1H), 2.39 (dd, J = 17.6, 3.5 Hz, 1H), 2.08 – 1.92 (m, 5H), 1.88 – 1.82 (m, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 173.3, 172.8, 172.5, 172.23, 168.4, 168.1, 141.4, 141.3, 133.5, 132.9, 129.8, 129.5, 129.2, 128.8, 128.4, 128.3, 127.3, 127.3, 126.6, 126.5, 73.9, 73.5, 62.6, 61.7, 59.7, 59.6, 52.6, 52.3, 47.0, 46.6, 37.6, 37.0, 28.7, 28.5, 25.1, 24.9. HRMS (ESI): m/z calc. for C₂₃H₂₆N₃O₄ [M+H]⁺ 408.1918, found 408.1916.


Methyl-(3-oxopyrazolidin-1-yl)(phenyl)methyl)-L-methioninate (24)

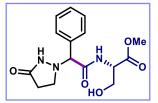
The product **24** was obtained as a yellow oil (40.5 mg, 74%, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, **400 MHz)**: δ 7.41 – 7.36 (m, 4H), 7.34 – 7.29 (m, 6H), 4.65 (dtd, *J* = 16.1, 8.4, 4.7 Hz, 2H), 4.27 (s, 1H), 4.24 (s, 1H), 3.71 (s, 3H), 3.68 (s, 3H), 3.28 (dq, *J* = 26.1, 8.8 Hz, 2H), 2.41 – 2.22 (m, 6H), 2.06 (dtd, *J* = 16.3, 13.0, 11.9, 6.7 Hz, 2H), 1.95 (s, 3H), 1.92 (s, 3H). ¹³C NMR (CDCl₃, 101 MHz):

δ 174.8, 174.5, 172.7, 169.9, 134.9, 129.3, 129.2, 128.8, 128.0, 75.8, 53.1, 52.9, 51.5, 51.2, 50.3, 31.2, 30.8, 30.3, 30.1, 29.8, 29.7, 15.6, 15.6. **HRMS (ESI):** m/z calc. for C₁₇H₂₄N₃O₄S [M+H]⁺ 366.1482, found 366.1474.


Methyl-(2-(3-oxopyrazolidin-1-yl)-2-phenylacetyl)-L-isoleucinate (25)

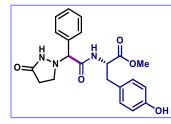
The product **25** was obtained as a colorless oil (25.5 mg, 49%, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.47 – 7.29 (m, 10H), 7.13 (d, *J* = 8.9 Hz, 1H), 7.01 (d, *J* = 9.4 Hz, 1H), 4.58 (dd, *J* = 9.4, 4.4 Hz, 2H), 4.35 (s, 1H), 4.29 (s, 1H), 3.76 (s, 3H), 3.72 (s, 3H), 3.34 (dq, *J* = 18.7, 8.6, 8.1 Hz, 2H), 2.60 – 2.30 (m, 4H), 1.99 – 1.93 (m, 1H), 1.89 – 1.80 (m, 1H), 1.40 – 1.21 (m, 4H), 0.93 – 0.87 (m, 6H), 0.85 – 0.77

(m, 6H). ¹³C NMR (CDCl₃, 126 MHz): δ 174.8, 174.6, 173.1, 172.8, 170.1, 169.7, 135.0, 129.3, 129.2, 129.1, 128.9, 128.1, 128.0, 75.7, 56.3, 52.8, 52.5, 37.8, 37.2, 29.8, 29.7, 25.1, 15.9, 15.6, 11.8, 11.6. HRMS (ESI): m/z calc. for C₁₈H₂₆N₃O₄ [M+H]⁺ 348.1918, found 348.1938.


Methyl (2-(3-oxopyrazolidin-1-yl)-2-(4-(trifluoromethyl)phenyl)acetyl)-L-isoleucinate (26)

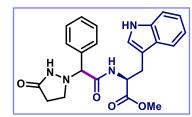
The product **26** was obtained as a colorless oil (34.9 mg, 56%, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.70 – 7.56 (m, 8H), 7.08 (d, *J* = 9.6 Hz, 1H), 4.60 – 4.55 (m, 2H), 4.54 (s, 1H), 4.38 (s, 1H), 3.76 (s, 3H), 3.75 (s, 3H), 3.41 (dtt, *J* = 11.7, 8.5, 3.5 Hz, 2H), 2.64 – 2.50 (m, 2H), 2.39 (dt, *J* = 16.4, 8.0 Hz, 2H), 2.00 – 1.90 (m, 1H), 1.79 (brs, 1H), 1.39 – 1.23 (m, 2H), 1.20 – 1.00 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H), 0.80 (d, *J* = 6.9 Hz, 6H), 0.78 – 0.72 (m, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 175.2, 174.6, 173.5, 169.2, 169.1,

139.4, 139.1, 131.23 (q, J = 29.9 Hz), 129.1, 128.4, 126.2 (d, J = 3.4 Hz), 125.9 (d, J = 3.3 Hz), 123.9 (dd, J = 272.4, 15.8 Hz), 76.5, 75.0, 56.3, 56.1, 52.9, 52.7, 50.3, 50.1, 37.9, 37.2, 29.8, 29.5, 25.1, 25.0, 15.9, 15.6, 11.7, 11.6. **HRMS (ESI):** m/z calc. for C₁₉H₂₅F₃N₃O₄ [M+H]⁺ 416.1800, found 416.1804.


Methyl-(2-(3-oxopyrazolidin-1-yl)-2-phenylacetyl)-L-serinate (27)

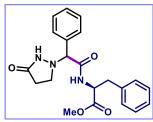
The product **27** was obtained as a colorless oil (15.8 mg, 33%, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.71 (d, *J* = 7.2 Hz, 2H), 7.47 – 7.44 (m, 2H), 7.38 – 7.34 (m, 8H), 4.63 (d, *J* = 7.5 Hz, 1H), 4.55 (dd, *J* = 6.6, 3.5 Hz, 1H), 4.39 (s, 1H), 4.33 (s, 1H), 4.03 – 3.93 (m, 4H), 3.78 (s, 6H), 3.36 (dt, *J* = 12.0, 8.3 Hz, 3H), 3.06 – 3.01 (m, 1H), 2.66 (dt, *J* = 17.4, 9.0

Hz, 1H), 2.53 (t, J = 7.1 Hz, 1H), 2.33 (ddt, J = 17.3, 13.9, 6.9 Hz, 2H). ¹³C NMR (CDCl₃, 126 MHz): δ 176.7, 171.0, 169.6, 135.2, 129.3, 129.2, 128.2, 62.8, 62.6, 55.5, 54.8, 53.2, 52.9, 50.4, 49.7, 30.0, 29.9. HRMS (ESI): m/z calc. for C₁₅H₂₀N₃O₅ [M+H]⁺ 322.1397, found 322.1410.


Methyl ((3-oxopyrazolidin-1-yl)(phenyl)methyl)-L-tyrosinate (28)

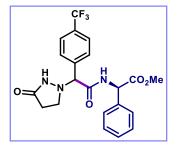
The product **28** was obtained as a colorless oil (29.5 mg, 49%, 1:1 dr) following the general procedure GP1. Reported spectra of the major diastereoisomer. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (Methanol-d4, 400 MHz): δ 7.90 (s, 1H), 7.41 – 7.32 (m, 5H), 6.76 (d, *J* = 8.1 Hz, 2H), 6.54 (d, *J* = 8.3 Hz, 2H), 4.63 (dd, *J* = 8.5, 5.2 Hz, 1H), 4.42 (s, 1H), 3.69 (s, 3H), 3.22 – 3.19 (m, 2H), 3.01 (dd, *J* = 13.9, 5.1 Hz, 1H), 2.86 (dd, *J* = 14.0, 8.7 Hz, 1H), 2.41 – 2.34

(m, 2H). ¹³C NMR (Methanol-d4, 126 MHz): δ 177.4, 173.3, 172.0, 157.3, 136.5, 131.3, 131.1, 130.1, 129.9, 129.8, 128.3, 116.2, 75.8, 55.0, 52.7, 37.1, 30.3. HRMS (ESI): m/z calc. for C₂₁H₂₃N₃O₅ [M]⁺ 397.1638, found 398.1656.


Methyl-(3-oxopyrazolidin-1-yl)(phenyl)methyl)-L-tryptophanate (29)

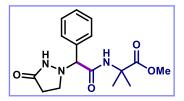
The product **29** was obtained as a yellow oil (42.2 mg, 67%,1:1 dr) following the general procedure GP1. Reported spectra of the major diastereoisomer. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.43 (brs, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.39 – 7.29 (m, 6H), 7.25 – 7.13 (m, 3H), 6.91 (brs, 1H), 4.95 – 4.90 (m, 1H), 4.36 (s, 1H), 3.75 (s, 3H), 3.30 (d, *J* = 5.6 Hz, 2H), 2.43 – 2.32 (m, 2H), 2.30 – 2.17 (m, 2H). ¹³C NMR (CDCl₃, 101

MHz): δ 174.4, 173.3, 136.2, 134.4, 129.1, 128.2, 127.5, 123.0, 122.5, 119.9, 118.5, 111.6, 109.4, 76.5, 53.0, 52.6, 49.9, 29.6, 26.9. **HRMS (ESI):** m/z calc. for C₂₃H₂₅N₄O₄ [M+H]⁺ 421.1870, found 421.1863.


Methyl (2-(3-oxopyrazolidin-1-yl)-2-phenylacetyl)-L-phenylalaninate (30)

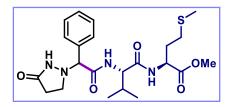
The product **30** was obtained as a yellow oil (37.2 mg, 65%,1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (Methanol-d4, 400 MHz): δ 8.02 (d, J = 8.2 Hz, 1H), 7.36 – 7.32 (m, 8H), 7.24 – 7.18 (m, 5H), 7.14 – 7.12 (m, 5H), 6.98 – 6.95 (m, 2H), 4.72 (ddd, J = 11.5, 9.2, 5.1 Hz, 2H), 4.42 (s, 1H), 4.35 (s, 1H), 3.70 (s, 6H), 3.23 (dd, J = 13.9, 5.0 Hz, 2H), 3.19 – 3.15 (m, 2H), 3.13 (dd, J = 13.9, 5.1 Hz, 2H), 2.99 (ddd, J = 22.2, 13.9, 9.3 Hz, 2H), 2.42 – 2.33

(m, 4H). ¹³C NMR (Methanol-*d*4, 101 MHz): δ 177.5, 173.4, 173.2, 172.1, 172.0, 138.1, 137.8, 136.6, 136.4, 133.9, 130.7, 130.3, 130.1, 130.1, 129.9, 129.85, 129.8, 129.6, 129.5, 127.9, 127.8, 76.6, 75.9, 54.9, 54.8, 52.9, 52.8, 51.3, 51.1, 37.8, 37.7, 30.3. HRMS (ESI): m/z calc. for C₂₁H₂₄N₃O₄ [M+H]⁺ 382.1761, found 382.1757.


Methyl (2R)-2-(2-(3-oxopyrazolidin-1-yl)-2-(4-(trifluoromethyl)phenyl)acetamido)-2-phenylacetate (31)

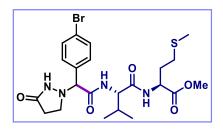
The product **31** was obtained as a white solid (78 mg, 45 %, 1:1 d.r) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (Methanol-d4, 400 MHz): δ 7.71–7.61 (m, 8H), 7.32–7.25 (m, 10H), 5.46 (s, 1H), 5.40 (s, 1H), 4.67 (s, 1H), 4.63 (s, 1H), 3.69 (s, 3H), 3.59 (s, 3H), 3.40–3.28 (m, 4H), 2.43 (brs, 4H). ¹³C NMR (Methanol-d4, 101 MHz): δ 177.7, 172.4, 172.3, 171.1, 170.9, 141.1, 136.9, 136.7, 132.0, 131.7, 130.7, 130.6, 129.9, 129.9, 129.7, 128.8, 128.7, 126.6, 126.5, 126.5, 75.3, 74.9, 58.3, 58.1, 53.1, 53.1, 51.5, 51.3, 30.3.

HRMS (ESI): m/z calc. for $C_{21}H_{21}F_3N_3O_4$ [M+H]⁺ 436.1479, found 436.1507.


Methyl 2-methyl-2-(2-(3-oxopyrazolidin-1-yl)-2-phenylacetamido)propanoate (32)

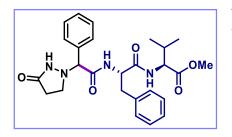
The product **32** was obtained as a yellow oil (33.5 mg, 70%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.39 – 7.35 (m, 5H), 6.89 (brs, 1H), 4.20 (s, 1H), 3.71 (s, 3H), 3.30 (dt, *J* = 10.8, 7.6 Hz, 1H), 2.41 (tt, *J* = 16.6, 9.2 Hz, 2H), 1.52 (s, 3H), 1.49 (s, 3H). ¹³C NMR (CDCl₃, 101 MHz): δ 175.4, 174.5, 169.6, 134.7, 129.3, 128.6, 76.6, 56.9,

53.1, 50.5, 29.8, 25.5, 24.5. HRMS (ESI): m/z calc. for C₁₆H₂₂N₃O₄ [M+H]⁺ 320.1605, found 320.1607.


Methyl (2-(3-oxopyrazolidin-1-yl)-2-phenylacetyl)-L-valyl-L-methioninate (33)

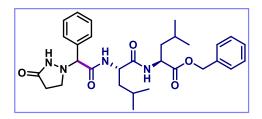
The product **33** was obtained as a yellow oil (51.5 mg, 74%, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹**H NMR (CDCI₃, 400 MHz):** δ 7.34 – 7.08 (m, 20H), 7.01 (d, *J* = 7.9 Hz, 1H), 6.77 (d, *J* = 8.7 Hz, 2H), 4.86 – 4.71 (m, 2H), 4.48 – 4.36 (m, 2H), 4.22 (s, 1H), 4.21 (s, 1H), 3.72 (s, 3H), 3.69 (s, 3H), 3.13 – 2.95 (m,

4H), 2.53 – 2.46 (m, 1H), 2.42 – 2.25 (m, 3H), 2.20 – 1.95 (m, 4H), 1.40 (dt, J = 11.0, 6.8 Hz, 2H), 0.89 – 0.80 (m, 8H), 0.68 (t, J = 7.2 Hz, 4H). ¹³**C NMR (CDCl₃, 101 MHz):** δ 174.9, 174.6, 172.2, 172.2, 171.9, 171.0, 170.7, 170.1, 135.2, 134.9, 129.4, 129.3, 128.9, 128.0, 75.6, 58.4, 58.1, 52.7, 52.7, 52.0, 51.7, 31.4, 31.2, 31.1, 30.9, 30.0, 29.8, 29.7, 19.5, 19.2, 18.1, 17.9, 15.6, 15.5. **HRMS (ESI):** m/z calc. for C₂₂H₃₃N₄O₅S [M+H]⁺ 465.2166, found 465.2163.


Methyl (2-(4-bromophenyl)-2-(3-oxopyrazolidin-1-yl)acetyl)-L-valyl-L-methioninate (34)

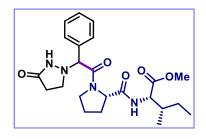
The product **34** was obtained as a yellow oil (78.1 mg, 96%, 1:1 dr) following the general procedure GP1. Reported spectra of the major diastereoisomer. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.51 (d, *J* = 7.9 Hz, 1H), 7.32 (d, *J* = 7.8 Hz, 1H), 7.13 (d, *J* = 8.9 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 4.70 (q, *J* = 7.3 Hz, 1H), 4.35 – 4.27 (m, 1H), 4.26 (s, 1H), 3.75 (s, 3H), 3.33 (dq, *J* = 18.9, 9.3 Hz, 2H), 2.50 (t, *J* = 7.2

Hz, 2H), 2.46 – 2.31 (m, 2H), 2.20 – 2.12 (m, 1H), 2.09 (s, 3H), 2.00 (tt, J = 13.9, 7.0 Hz, 2H), 0.90 (t, J = 7.6 Hz, 3H).¹³C NMR (CDCl₃, 101 MHz): δ 174.7, 172.2, 171.8, 170.2, 134.2, 132.4, 129.6, 123.3, 76.3, 58.1, 52.7, 52.0, 50.0, 31.1, 30.9, 30.0, 29.6, 19.5, 18.0, 15.6. HRMS (ESI): m/z calc. for C₂₂H₃₂BrN₄O₅S [M+H]⁺ 543.1271, found 543.1294.


Methyl (2-(3-oxopyrazolidin-1-yl)-2-phenylacetyl)-L-phenylalanyl-L-valinate (35)

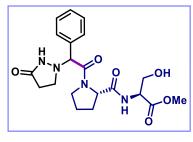
The product **35** was obtained as a yellow oil (56.9 mg, 79%, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H **NMR (CDCl₃, 400 MHz):** δ 7.36 – 7.06 (m, 6H), 7.01 (d, *J* = 7.9 Hz, 0H), 6.77 (d, *J* = 8.7 Hz, 1H), 4.87 – 4.68 (m, 1H), 4.50 – 4.34 (m, 1H), 4.22 (s, 1H), 4.21 (s, 1H), 3.72 (s, 1H), 3.69 (s, 1H), 3.16 – 2.93 (m, 1H), 2.55 – 2.39 (m, 0H), 2.31 (dp, *J* = 15.9, 7.8 Hz, 1H), 2.04 (ddq, *J* = 26.4, 12.8, 6.6 Hz, 1H), 1.40 (dt, *J* = 11.0, 6.8 Hz, 1H), 0.91 – 0.78 (m, 2H),

0.68 (t, J = 7.2 Hz, 1H). ¹³C NMR (CDCl₃, 101 MHz): δ 174.6, 172.0, 171.9, 170.7, 170.3, 170.0, 136.3, 136.1, 134.7, 129.4, 129.2, 129.2, 129.1, 129.1, 128.9, 128.8, 128.7, 128.5, 128.2, 127.3, 127.2, 76.6, 76.0, 57.7, 57.5, 54.0, 53.9, 52.2, 52.2, 50.4, 50.1, 37.9, 37.3, 31.0, 30.9, 29.7, 29.5, 18.9, 18.8, 17.8, 17.6. HRMS (ESI): m/z calc. for C₂₆H₃₃N₄O₅ [M+H]⁺ 481.2445, found 481.2446.


Benzyl (2-(3-oxopyrazolidin-1-yl)-2-phenylacetyl)-L-leucyl-L-leucinate (36)

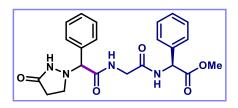
The product **36** was obtained as a yellow oil (78.8 mg, 98%, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.41 – 7.32 (m, 17H), 7.03 (d, *J* = 7.7 Hz, 1H), 6.99 (d, *J* = 8.7 Hz, 1H), 6.63 (d, *J* = 7.4 Hz, 1H), 5.24 – 5.12 (m, 4H), 4.58 (td, *J* = 8.9, 4.1 Hz, 1H), 4.48 (p, *J* = 7.8 Hz, 2H), 4.33 (s, 1H), 4.31 (s, 1H), 3.36 – 3.29 (m, 2H), 2.63

− 2.46 (m, 2H), 2.37 − 2.21 (m, 2H), 1.66 − 1.47 (m, 12H), 0.90 − 0.85 (m, 16H), 0.79 − 0.75 (m, 8H). ¹³C NMR (CDCl₃, 101 MHz): δ 174.7, 174.4, 173.6, 173.1, 172.4, 171.9, 170.5, 169.9, 135.3, 135.0, 129.2, 129.0, 128.6, 128.6, 128.4, 128.4, 127.9, 75.3, 67.5, 67.4, 51.1, 50.9, 50.8, 50.7, 41.2, 40.9, 40.7, 40.0, 29.7, 29.6, 24.9, 24.9, 24.8, 24.7, 22.9, 22.9, 21.9, 21.7. HRMS (ESI): m/z calc. for C₃₀H₄₁N₄O₅ [M+H]⁺ 537.3071, found 537.3077.


Methyl (-2-(3-oxopyrazolidin-1-yl)-2-phenylacetyl)-L-prolyl-L-isoleucinate (37)

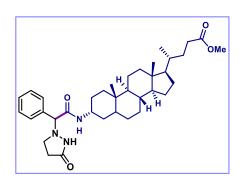
The product **37** was obtained as a yellow oil (49.9 mg, 75%, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, **400 MHz)**: δ 8.33 (s, 1H), 8.17 (d, *J* = 9.0 Hz, 1H), 7.48 (ddd, *J* = 7.1, 3.9, 2.0 Hz, 3H), 7.45 – 7.42 (m, 1H), 7.41 – 7.37 (m, 5H), 4.57 (ddd, *J* = 9.6, 5.9, 2.8 Hz, 2H), 4.49 (dd, *J* = 8.5, 4.7 Hz, 1H), 4.44 (dd, *J* = 8.6, 5.0 Hz, 1H), 4.40 (s, 1H), 3.79 (s, 3H), 3.69 (s, 3H), 3.71 – 3.66 (m, 2H), 3.61 – 3.55 (m, 2H), 3.27 – 3.13 (m, 2H), 3.10 – 3.01 (m, 2H), 2.48 – 2.23 (m,

4H), 2.10 – 1.80 (m, 10H), 1.50 – 1.33 (m, 4H), 0.93 – 0.87 (m, 12H). 13 C NMR (CDCl₃, 101 MHz): δ 174.9, 173.4, 172.3, 170.5, 170.4, 170.3, 170.1, 132.8, 129.9, 129.6, 129.5, 129.4, 129.3, 74.6, 60.0, 57.8, 57.0, 56.7, 52.8, 52.1, 49.5, 49.4, 47.2, 47.0, 38.1, 37.6, 30.1, 27.2, 26.2, 25.1, 25.1, 25.0, 24.2, 15.8, 15.7, 11.7, 11.7. HRMS (ESI): m/z calc. for C₂₃H₃₃N₄O₅ [M+H]⁺ 445.2445, found 445.2475.


Methyl (2-(3-oxopyrazolidin-1-yl)-2-phenylacetyl)-L-prolyl-L-serinate (38)

The product **38** was obtained as a yellow oil (31 mg, 51 %, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, **400 MHz)**: δ 8.37 (brs, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.46 – 7.40 (m, 5H), 4.62 (dd, *J* = 16.4, 7.3 Hz, 2H), 4.51 (s, 1H), 4.05 (dd, *J* = 11.1, 2.5 Hz, 1H), 3.90 (d, *J* = 10.6 Hz, 1H), 3.78 (s, 3H), 3.71 – 3.64 (dd, m, 1H), 3.29 – 3.22 (m, 1H), 3.16 – 3.05 (m, 2H), 2.55 – 2.49 (m, 1H), 2.29 – 2.24 (m, 2H), 2.12 – 2.08 (m, 1H), 1.85 – 1.75 (m, 2H). ¹³C NMR (CDCl₃, 101 MHz): δ

175.3, 171.3, 169.8, 132.6, 129.6, 129.3, 74.03, 62.5, 60.6, 54.7, 52.9, 49.1, 47.0, 30.0, 27.4, 24.8. **HRMS (ESI):** m/z calc. for $C_{20}H_{27}N_4O_6$ [M+H]⁺ 419.1925, found 419.1924.


Methyl (2S)-2-(2-(2-(3-oxopyrazolidin-1-yl)-2-phenylacetamido)acetamido)-2-phenylacetate (39)

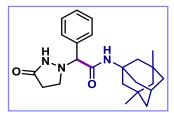
The product **39** was obtained as a yellow oil (39.4 mg, 62%, 1:1 dr) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H **NMR (CDCl₃, 400 MHz)**: δ 7.37 – 7.29 (m, 10H), 7.15 (d, *J* = 6.6 Hz, 1H), 7.01 (d, *J* = 7.4 Hz, 1H), 5.57 (d, *J* = 7.1 Hz, 1H), 4.29 (dd, *J* = 6.5 Hz, 1H), 4.24 (d, *J* = 16.5, 7.3 Hz, 1H), 4.09 (dd, *J* = 17.9, 7.4 Hz, 1H),

3.72 (s, 3H), 3.32 (p, J = 8.9 Hz, 1H), 3.13 (brs, 1H), 2.52 (brs, 1H), 2.31 (dt, J = 16.1, 7.9 Hz, 1H). ¹³C NMR (CDCl₃, 101 MHz): δ 174.8, 174.8, 171.5, 171.3, 170.9, 170.8, 169.0, 168.9, 136.0, 135.7, 134.8, 129.2, 129.2, 128.9, 128.8, 128.4, 128.3, 127.5, 127.4, 76.4, 56.7, 56.7, 53.2, 53.1, 50.1, 50.1, 42.4, 42.3, 29.8, 29.8. HRMS (ESI): m/z calc. for C₂₂H₂₅N₄O₅ [M+H]⁺ 425.1819, found 425.1844.

Methyl-(4*R*)-4-((3*R*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,13-dimethyl-3-(2-(3-oxopyrazolidin-1-yl)-2-phenylacetamido)hexadecahydro-1*H*-cyclopenta[a]phenanthren-17-yl)pentanoate (40)

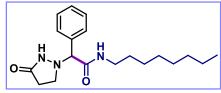
The product **40** was obtained as a yellow oil (42.6 mg, 48%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H **NMR (CDCI₃, 400 MHz)**: δ 7.37 – 7.24 (m, 5H), 6.46 (brs, 1H), 4.24 (s, 1H), 4.08 – 4.03 (m, 1H), 3.59 (s, 1H), 3.25 (dd, *J* = 17.0, 8.5 Hz, 1H), 2.45 – 2.20 (m, 3H), 2.14 (ddd, *J* = 15.6, 9.7, 6.4 Hz, 1H), 1.95 – 1.85 (m, 2H), 1.82 – 1.67 (m, 3H), 1.51 – 1.42 (m, 3H), 1.34 – 0.90 (m, 17H), 0.83 (d, *J* = 5.9 Hz, 6H), 0.76 – 0.68 (m, 2H), 0.56 (s, 3H). ¹³C NMR (CDCI₃, 101 MHz): δ 174.9, 174.3, 168.7, 135.1, 129.4, 128.5, 128.5, 76.0, 56.5, 56.0, 51.6, 50.7, 45.5, 42.8, 40.2, 39.8,

38.2, 35.7, 35.4, 35.1, 31.4, 31.4, 31.1, 31.1, 30.5, 30.3, 29.6, 28.3, 26.8, 26.8, 26.2, 24.7, 24.5, 24.3, 21.1, 18.3, 12.1. **HRMS (ESI):** m/z calc. for C₃₆H₅₄N₃O₄ [M+H]⁺ 592.4109, found 592.4105.


Methyl 4-methyl-3-((2-(3-oxopyrazolidin-1-yl)-2-phenylacetamido)methyl)hexanoate (41)

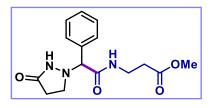
The product **41** was obtained as a yellow oil (30.9 mg, 55%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H **NMR (CDCl₃, 400 MHz)**: δ 7.74 (brs, 1H), 7.42 – 7.34 (m, 5H), 6.61 – 6.54 (m, 1H), 4.22 (s, 1H), 3.65 (d, *J* = 5.7 Hz, 3H), 3.30 – 3.21 (m, 3H), 3.14 (ddt, *J* = 13.7, 10.2, 6.8 Hz, 1H), 2.41 – 2.32 (m, 2H), 2.27 – 2.20 (m, 1H), 2.14 (dt, *J* = 15.2, 7.7 Hz, 1H), 2.09 – 2.02 (m, 1H),

1.55 (dp, J = 13.2, 6.6 Hz, 1H), 1.03 (td, J = 7.1, 3.9 Hz, 2H), 0.83 (dd, J = 6.6, 1.4 Hz, 3H), 0.79 (dd, J = 12.9, 6.5 Hz, 3H). ¹³C NMR (CDCl₃, 101 MHz): δ 174.5, 174.5, 174.1, 174.0, 170.0, 135.4, 135.3, 129.4, 129.3, 128.4, 128.4, 76.4, 76.4, 52.0, 52.0, 50.7, 50.6, 43.4, 43.3, 41.8, 37.5, 37.4, 33.2, 29.7, 25.2, 22.8, 22.8, 22.6, 22.5. HRMS (ESI): m/z calc. for C₂₀H₃₀N₃O₄ [M+H]⁺ 376.2231, found 376.2225.


N-((1r,3R,5S,7r)-3,5-dimethyladamantan-1-yl)-2-(3-oxopyrazolidin-1-yl)-2-phenylacetamide (42)

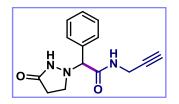
The product **42** was obtained as a yellow oil (44.6 mg, 78%) following the general procedure **GP1**. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.41 – 7.36 (m, 5H), 6.00 (s, 1H), 4.21 (s, 1H), 3.29 (dd, *J* = 16.2, 8.3 Hz, 2H), 2.43 - 2.38 (m, 2H), 2.13 – 2.11 (m, 1H), 1.77 (s, 2H), 1.57 (dd, *J* = 26.2, 11.7 Hz, 4H), 1.30 – 1.25 (m, 4H), 1.12 (s, 2H), 0.82 (s, 6H). ¹³C NMR (CDCl₃, 101 MHz):

 $\delta \ 174.1, \ 168.3, \ 134.9, \ 129.4, \ 128.5, \ 76.4, \ 53.9, \ 50.6, \ 47.5, \ 42.6, \ 40.0, \ 32.5, \ 30.1, \ 29.6. \ \text{HRMS} \ \text{(ESI)} \ \text{m/z calc.} \\ \text{for } C_{23}H_{32}N_3O_2 \ [\text{M}+\text{H}]^+ \ 382.2489, \ \text{found} \ 382.2483. \\ \end{array}$


N-octyl-2-(3-oxopyrazolidin-1-yl)-2-phenylacetamide (43)

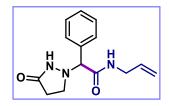
The product **43** was obtained as a yellow oil (22.0 mg, 44%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.38 – 7.34 (m, 5H), 6.32 (brs, 1H), 4.22 (s, 1H), 3.21 (tq, *J* = 13.7, 7.0 Hz, 2H), 2.39 (t, *J* = 8.0 Hz, 2H), 1.46 –

1.38 (m, 12H), 1.30 – 1.21 (m, 12H), 0.86 (t, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 101 MHz): δ 174.7, 169.7, 135.2, 129.2, 128.5, 76.2, 50.6, 39.5, 31.8, 29.6, 29.5, 29.2, 26.9, 22.7, 14.2. HRMS (ESI): m/z calc. for C₁₉H₃₀N₃O₂ [M+H]⁺ 332.2333, found 332.2358.


Methyl 3-(2-(3-oxopyrazolidin-1-yl)-2-phenylacetamido)propanoate (44)

The product **44** was obtained as a white solid (26.3 mg, 57%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.38 – 7.33 (m, 5H), 4.24 (s, 1H), 3.65 (s, 3H), 3.55 – 3.39 (m, 2H), 3.29 – 3.23 (m, 2H), 2.58 – 2.43 (m, 3H), 2.34 (dd, *J* = 16.6, 8.3 Hz, 1H). ¹³C NMR (CDCl₃, 101 MHz): δ 174.8, 173.3, 169.8, 135.2, 129.2,

129.1, 128.4, 76.2, 52.1, 50.4, 35.0, 33.4, 29.6. HRMS (ESI): m/z calc. for $C_{15}H_{20}N_3O_4$ [M+H]⁺ 306.1448, found 306.1444.


2-(3-oxopyrazolidin-1-yl)-2-phenyl-N-(prop-2-yn-1-yl)acetamide (45)

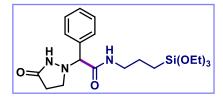
The product **45** was obtained as a white solid (22.7 mg, 59%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.40 – 7.36 (m, 5H), 6.71 (brs, 1H), 4.29 (s, 1H), 4.02 (d, *J* = 3.1 Hz, 2H), 3.26 (dd, *J* = 16.3, 8.1 Hz, 2H), 2.47 – 2.31 (m, 2H), 2.22 (t, *J* = 2.5 Hz, 1H).¹³C NMR (CDCl₃, 101 MHz): δ 174.7, 169.5, 134.7, 131.7, 129.3, 128.6, 79.2, 75.9, 72.1, 50.5, 29.6,

29.3.**HRMS (ESI):** m/z calc. for $C_{14}H_{16}N_3O_2$ [M+H]⁺ 258.1237, found 258.1235.


N-allyl-2-(3-oxopyrazolidin-1-yl)-2-phenylacetamide (46)

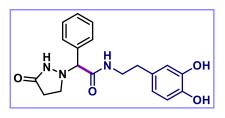
The product **46** was obtained as a white solid (19.8 mg, 51%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.42 – 7.35 (m, 5H), 6.41 (brs, 1H), 5.76 (ddt, *J* = 17.1, 10.4, 5.6 Hz, 1H), 5.09 – 5.02 (m, 2H), 4.27 (s, 1H), 3.91 – 3.79 (m, 2H), 3.26 (dt, *J* = 10.8, 4.1 Hz, 2H), 2.42 – 2.37 (m, 2H). ¹³C NMR (CDCl₃, 101 MHz): δ 174.7, 169.7, 135.2, 133.7, 129.3,

129.3, 128.5, 116.8, 76.2, 50.6, 41.8, 29.7. HRMS (ESI): m/z calc. for $C_{14}H_{18}N_3O_2$ [M+H]⁺ 260.1394, found 260.1382.


N-(3,5-bis(trifluoromethyl)benzyl)-2-(3-oxopyrazolidin-1-yl)-2-phenylacetamide (47)

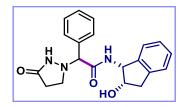
The product **47** was obtained as a colorless oil (25.4 mg, 38%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.73 (s, 1H), 7.52 (s, 1H), 7.42 – 7.38 (m, 5H), 7.01 (brs, 1H), 4.61 (dd, *J* = 15.7, 6.4 Hz, 1H), 4.49 (dd, *J* = 15.9, 5.6 Hz, 1H), 4.44 (s, 1H), 3.33 (q, *J* = 8.4 Hz, 1H), 3.24 (brs, 1H), 2.49 –

2.34 (m, 2H).¹³C NMR (CDCl₃, 126 MHz): δ 175.0, 170.1, 140.8, 134.5, 132.0 (q, *J* = 33.5 Hz), 129.7, 129.6, 128.3, 127.5, 123.22 (d, *J* = 272.8 Hz), 121.5 (hept, *J* = 3.8 Hz), 76.0, 50.5, 42.4, 29.6. HRMS (ESI): m/z calc. for C₂₀H₁₈F₆N₃O₂ [M+H]⁺ 446.1298, found 446.1292.


2-(3-oxopyrazolidin-1-yl)-2-phenyl-N-(3-(triethoxysilyl)propyl)acetamide (48)

The product **48** was obtained as a white solid (46.3 mg, 73%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H **NMR (CDCl₃, 400 MHz):** δ 7.31 – 7.25 (m, 3H), 6.40 (t, *J* = 5.5 Hz, 1H), 4.13 (s, 1H), 3.69 (q, *J* = 7.0 Hz, 6H), 3.14 (h, *J* = 7.6 Hz, 4H), 2.37 – 2.22 (m, 2H), 1.49 (p, *J* = 7.1 Hz, 2H), 1.11 (t, *J* = 7.0 Hz, 9H), 0.46 –

0.42 (m, 2H). ¹³C NMR (CDCl₃, 126 MHz): δ 174.6, 169.8, 135.4, 129.3, 129.2, 128.5, 76.3, 58.6, 50.6, 41.7, 29.7, 22.8, 18.4, 7.7. HRMS (ESI): m/z calc. for C₂₀H₃₄N₃O₅Si [M+H]⁺ 424.2262, found 424.2259.


N-(3,4-dihydroxyphenethyl)-2-(3-oxopyrazolidin-1-yl)-2-phenylacetamide (49)

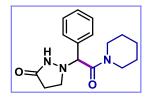
The product **49** was obtained as a white solid (39.7 mg, 74%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H **NMR (Methanol-***d***4**, **400 MHz)**: δ 7.42 – 7.35 (m, 5H), 6.65 (s, 1H), 6.63 – 6.62 (m, 1H), 6.42 (dd, *J* = 8.0, 1.7 Hz, 1H), 4.33 (s, 1H), 3.38 (dt, *J* = 6.8, 5.1 Hz, 1H), 3.21 (t, *J* = 7.8 Hz, 1H), 2.68 – 2.60 (m, 1H),

2.38 (t, *J* = 7.6 Hz, 1H).¹³C NMR (Methanol-*d*4, 101 MHz): δ 177.6, 172.1, 163.7, 146.3, 144.8, 136.9, 131.8, 129.9, 129.8, 129.8, 121.2, 116.9, 116.4, 76.6, 51.2, 41.9, 35.5, 30.3. HRMS (ESI): m/z calc. for C₁₉H₂₂N₃O₄ [M+H]⁺ 356.1605, found 356.1600

N-((1*R*,2*S*)-2-hydroxy-2,3-dihydro-1*H*-inden-1-yl)-2-(3-oxopyrazolidin-1-yl)-2-phenylacetamide (50)

The product **50** was obtained as a white solid (15.8 mg, 30%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 9.47 (brs, 1H), 7.50 (dd, *J* = 7.2, 2.1 Hz, 2H), 7.43 – 7.39 (m, 3H), 7.28 – 7.21 (m, 5H), 6.98 (d, *J* = 7.5 Hz, 1H), 5.37 (dd, *J* = 9.4, 5.2 Hz, 1H), 4.72 – 4.70 (m, 1H), 4.40 (s, 1H), 3.34 (dt, *J* = 11.8, 8.9 Hz, 1H), 3.14 (d, *J* = 5.7 Hz, 1H), 2.96 (dd,

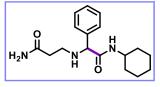
J = 17.0, 8.2 Hz, 1H), 2.63 (dt, *J* = 17.3, 8.8 Hz, 1H), 2.30 (ddd, *J* = 17.0, 9.0, 5.8 Hz, 1H). ¹³C NMR (CDCl₃, **126 MHz)**: δ 175.8, 170.6, 140.7, 140.4, 135.6, 129.3, 129.2, 128.4, 128.1, 127.2, 125.4, 124.3, 77.2, 73.0, 57.3, 49.7, 40.1, 29.9. HRMS (ESI): m/z calc. for $C_{20}H_{22}N_3O_4$ [M+H]⁺ 352.1656, found 352.1649.


1-(2-oxo-1-phenyl-2-(pyrrolidin-1-yl)ethyl)pyrazolidin-3-one (51)

The product **51** was obtained as a colorless oil (27.4 mg, 67%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.48 (dd, *J* = 6.7, 2.9 Hz, 2H), 7.41 – 7.35 (m, 3H), 4.71 (s, 1H), 3.62 (dt, *J* = 10.0, 6.2 Hz, 1H), 3.49 (dt, *J* = 12.8, 6.8 Hz, 1H), 3.35 – 3.21 (m, 4H), 3.04 (dt, *J* = 10.1, 6.7 Hz, 1H), 2.33 (dt, *J* = 16.0, 8.0 Hz, 1H), 1.84 – 1.67 (m, 4H). ¹³C NMR (CDCl₃, 126 MHz): δ

177.3, 170.1, 134.9, 130.8, 130.2, 130.0, 73.6, 47.5, 30.6, 26.9, 24.8. HRMS (ESI): m/z calc. for $C_{15}H_{20}N_3O_2$ [M+H]⁺ 274.1550, found 274.1571.

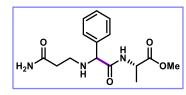
1-(2-oxo-1-phenyl-2-(piperidin-1-yl)ethyl)pyrazolidin-3-one (52)



The product **52** was obtained as a colorless oil (22.8 mg, 53%) following the general procedure GP1. The crude material was purified by flash column chromatography (DCM/MeOH 20:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.39 – 3.35 (m, 5H), 4.70 (s, 1H), 3.72 (dd, *J* = 13.2, 6.4 Hz, 1H), 3.39 – 3.29 (m, 3H), 3.21 (t, *J* = 5.4 Hz, 2H), 3.31 – 3.21 (m, 1H), 2.08 (brs, 1H), 1.58 – 1.46 (m, 4H), 1.40 – 1.27 (m, 2H). ¹³C NMR (CDCl₃, 126 MHz): δ 174.4, 167.7, 132.7, 129.7, 129.4, 129.3,

72.2, 49.4, 46.6, 43.4, 30.0, 25.5, 25.4, 24.3. **HRMS (ESI):** m/z calc. for C₁₆H₂₂N₃O₂ [M+H]⁺ 288.1707, found 288.1703.

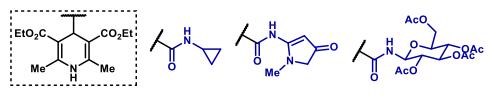
Derivatization


3-((2-(cyclohexylamino)-2-oxo-1-phenylethyl)amino)propanamide (53)

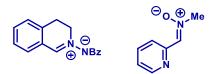
The product **53** was obtained as a white solid (44.0 mg, 73%) following the general procedure GP3. The crude material was purified by flash column chromatography (DCM/MeOH 9:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.37 – 7.29 (m, 5H), 6.87 (d, *J* = 8.4 Hz, 1H), 6.45 (brs, 1H), 5.58 (brs, 1H), 4.22 (s, 1H), 3.72 (ddt, *J* = 14.5, 10.9, 5.5 Hz, 1H), 2.95 – 2.84 (m, 2H), 2.43 (qt, *J* = 9.7, 5.3 Hz,

2H), 1.87 – 1.82 (m, 2H), 1.67 (d, J = 13.7 Hz, 2H), 1.61 – 1.57 (m, 1H), 1.37 – 1.27 (m, 2H), 1.25 – 1.09 (m, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 174.6, 171.0, 139.3, 128.9, 128.3, 127.5, 67.3, 48.1, 44.0, 35.3, 32.9, 25.5, 24.9. HRMS (ESI): m/z calc. for C₁₇H₂₆N₃O₂ [M+H]⁺ 304.2020, found 304.2040.

2S)-methyl 2-(2-((3-amino-3-oxopropyl)amino)-2-phenylacetamido)propanoate (54)

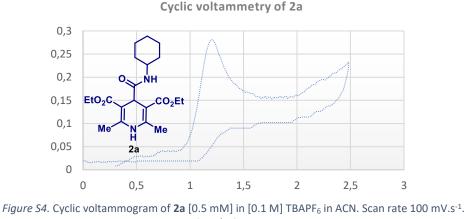


The product **54** was obtained as a yellow oil (13.5 mg, 32%) following the general procedure GP3. Reported signals of the major diastereoisomer (3:1) (* for overlapped signals). The crude material was purified by flash column chromatography (DCM/MeOH 9:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.41 – 7.31 (m, 7H)*, 6.34 (s, 1H), 5.53 (s, 1H), 4.61 – 4.54 (m, 2H)*, 4.21 (d, *J* = 8.3 Hz, 1H), 3.73 (s, 3H), 3.00 – 2.90 (m, 2H), 2.55 – 2.29 (m, 3H)*,


1.40 (dd, J = 11.7, 5.0 Hz, 4H)*. ¹³C NMR (CDCl₃, 126 MHz): δ 174.5, 174.3, 173.9, 173.4, 171.9, 169.3, 138.7, 129.3, 129.2, 128.9, 128.4, 127.6, 127.2, 67.6, 67.1, 52.7, 52.5, 47.9, 47.7, 44.3, 43.8, 29.7, 18.1. HRMS (ESI): m/z calc. for C₁₅H₂₁N₃O₄ [M+H]⁺ 308.1605, found 308.1612.

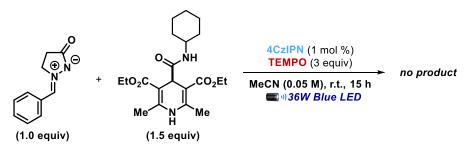
Unsuccessful Substrates

4-carbamoyl-1,4-dihydropyridines:


1.3-Dipoles:

Mechanistic Evidences

Cyclic voltammetry


The measurement was performed using a glassy carbon working electrode, a Pt wire auxiliary electrode, and Ag/AgCl (satd. KCl) reference electrode. The ferrocene was considered as the external standard. The analysis was performed under N₂ atmosphere and using a degasified solution of the compound in MeCN (0.5 mM) containing a 0.1 M TBAPF₆ solution in MeCN. The potential range scanned was typically -2.5 V – 2.5 V at a 100 mV/s.

 $Eox (1a^{+}/1a) = +1.21 V.$

Trapping experiment

Experimental Procedure: The radical-trapping experiment was carried out using TEMPO (2,2,6,6-Tetramethyl-1-piperidinyloxy) as radical scavenger. The starting material **1a** (0.15 mmol, 1.0 equiv), **2a** (0.22 mmol, 1.5 equiv), the photocatalyst 4CzIPN (1 mol %) and TEMPO (3.0 equiv) were dissolved in 3.0 mL of MeCN in a dried Schlenk tube equipped with a stir bar. The Schlenk tube was sealed with PTFE/silicon septum and connected to a vacuum line and the solution was degassed 3 times via a freeze-pump-thaw procedure. The resulting solution was stirred for 15 h at ~5 cm from the irradiation source (a 34 W Kessil H150 blue LED lamp).

Results: After the reaction time, the product **3** could not be noticed on the TLC plate. An aliquot was removed from the crude reaction and a sample was prepared in 1 % HCOOH/ MeOH and analyzed by mass spectrometry using an ACQUITY UPC²-MS apparatus through direct infusion.

The MS full scan experiment indicated the presence of the radical scavenger and the starting material **1a** as showed in *Figure S5*. Additionally, the peak at m/z 283.1702 could be an evidence of the trapping of the carbamoyl radical by **TEMPO**. The peak at m/z 332.1838 is associated with the direct addition of the radical scavenger to the azomethine imine, since the mismatch of the redox potentials of the iminium ion and the photocatalyst do not supports the formation of the reduced azomethine imine, as discussed for the mechanism proposals. Besides these peaks, other intermediates were evidenced as showed in the *Figure S5*.

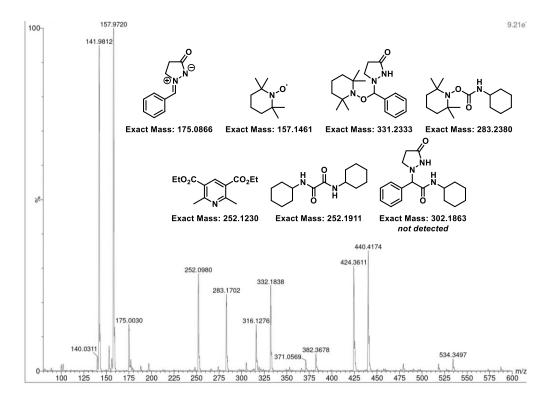


Figure S5. MS full scan experiment via direct infusion of the reaction crude. The exact mass of compounds are reported as the [M+H]⁺ adduct.

UV-Vis Spectra

The UV/Vis absorption spectroscopy was recorded at room temperature with a 10 mm quartz cuvette.

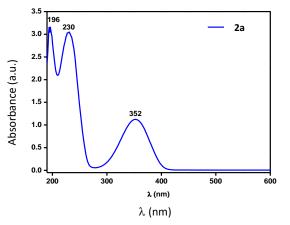


Figure S6. Absorption spectra of a solution of **2a** (MeCN, 0.9 uM).

The UV-Vis spectra of the cyclohexyl amine-derived dihydropyridine **2a** showed the absorption maximum at 352 nm. This value ruled out the possibility of occurring a direct excitation under the blue LED

irradiation source (λ = 456 nm) employed in this study. At its wavelength, the only active specie is the photocatalyst, which exhibits absorption at 507 nm.¹¹

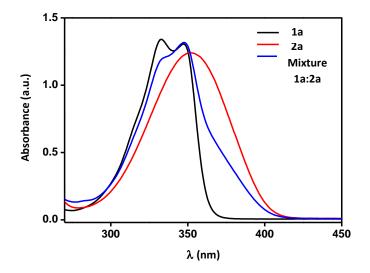


Figure S7. UV-Vis spectra of azomethine **1a** (black line, 0.050 M in MeCN), 4-carbamoyl-1,4-dihydropyridines **2a** (red line, 0.050 M in MeCN), and an equimolar mixture of **1a** and **2a** (blue line, 0.050 M in MeCN).

The UV-Vis spectra of 1a, 2a, and of their equimolar combination ruled out a possible formation of an electron donor-acceptor (EDA) complex since no bathochromic shift could be noticed when the spectra of the equimolar mixture was recorded.

Fluorescence quenching experiments

Fluorescence measurements were acquired at room temperature using a RF-5301 PC Fluorescence Spectrophotometer with excitation slits open at 1.5 nm and emission slit open at 3 nm. Emission quenching was done using quartz cuvettes with argon-purged solvent (MeCN). All the prepared solutions were degassed and successively added to the cuvette using 2.5 mL gas tight syringe through a rubber septum fitted with an argon balloon.

¹¹ H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, *Nature*, **2012**, *492*, 234 – 240.

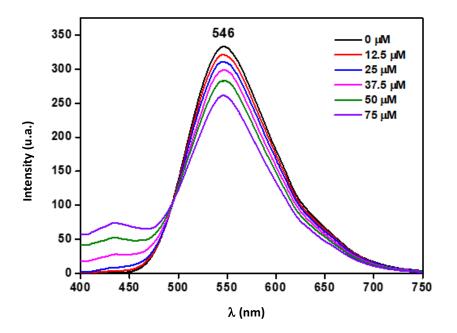


Figure S8. Emission of the 4CZIPN solution (black line, MeCN) recorded in presence of increasing amounts of HEH 2a as quencher with a $\lambda ex = 410$ nm.

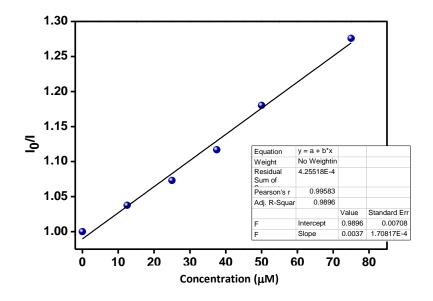


Figure S9. Stern-Volmer plot analysis derived from the data extracted from Figure S8.

The Stern–Volmer relationship

The data obtained from the Stern-Volmer analysis allowed the determination of the kinetic of the photophysical intermolecular deactivation process, following the Stern–Volmer relationship:

$$\frac{10}{1} = 1 + KSV \ge [Q]$$

$KSV = K_q \times t_0$

Considering:

 I_0 = intensity, or rate of catalyst fluorescence, without the quencher

I = = intensity, or rate of catalyst fluorescence, with the quencher

K_{sv} = Stern-Volmer constant

[Q] = concentration of the quencher

k_q= quencher rate coefficient

t₀= lifetime of the emissive excited state of the catalyst without the quencher

The quencher rate coefficient was determined from the Stern-Volmer equation (1) and using a lifetime of $t_0 = 5.1$ us for 4CZIPN.

$$K_q = 7.2 \times 10^8 \text{ L.mol}^{-1}.\text{s}^{-1}$$

Control reactions

Control experiments were carried out in order to investigate the reactivity of the reaction components under photolytic conditions. Thus, the reactions were conducted under the optimized condition **a**) in the absence of the carbamoyl radical source and **b**) in the absence of azomethine imine as the trapper of the generated radical. The reaction crudes were analyzed by HRMS (ESI-QTOF).

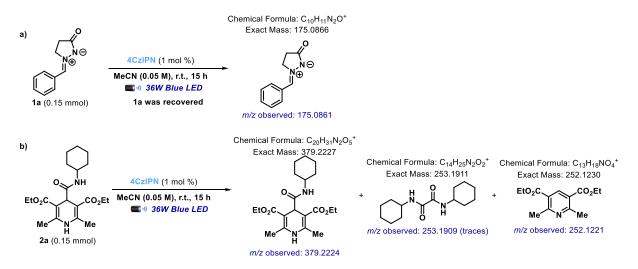
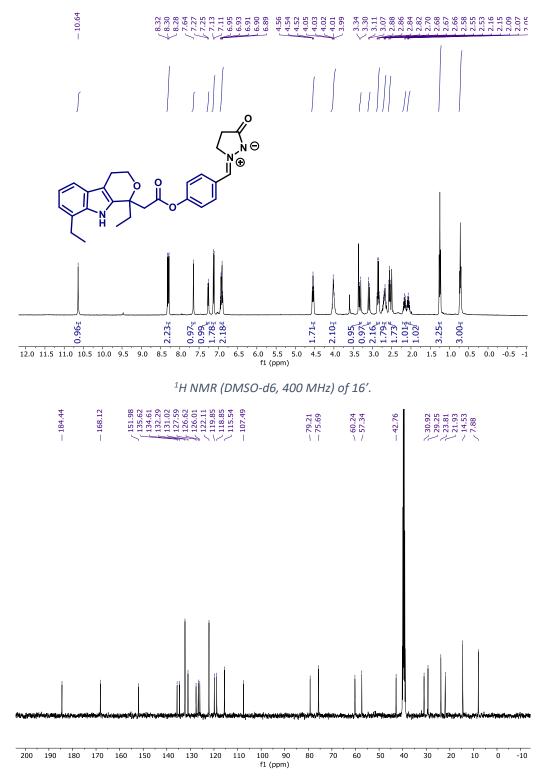
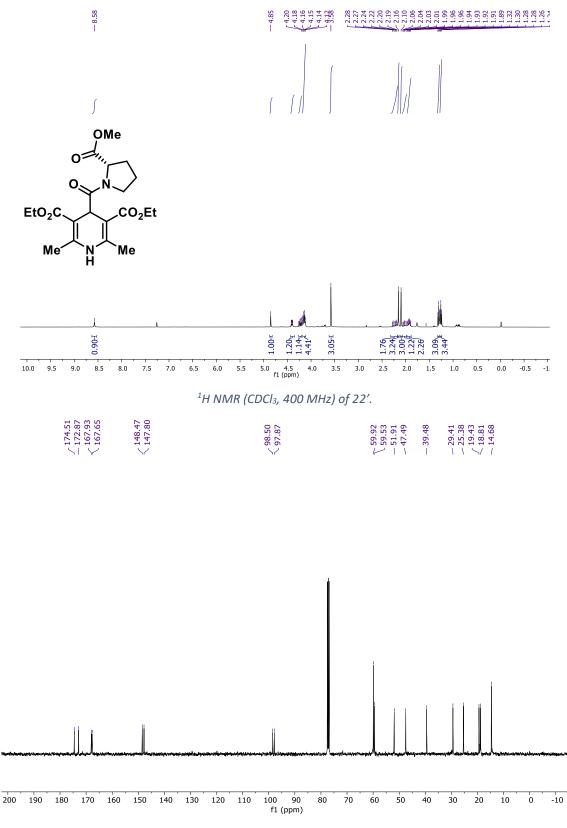
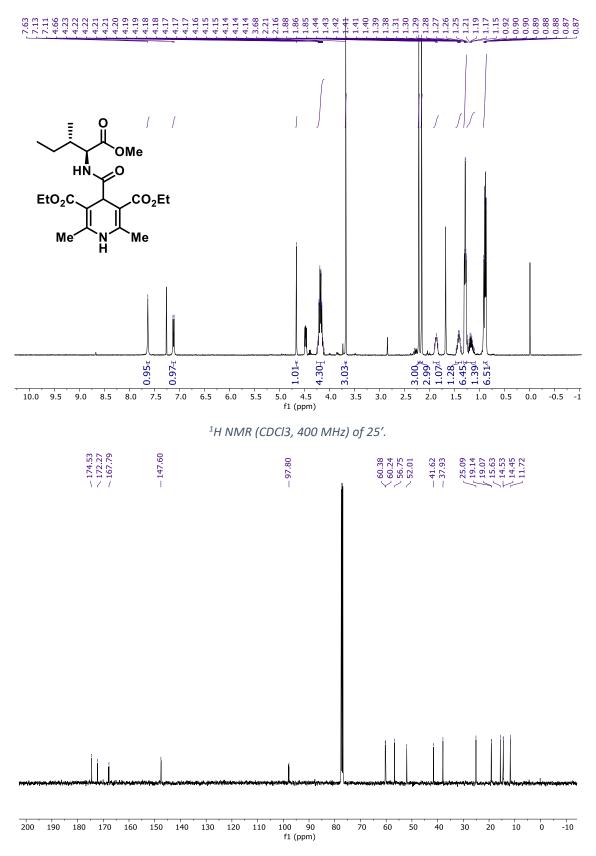
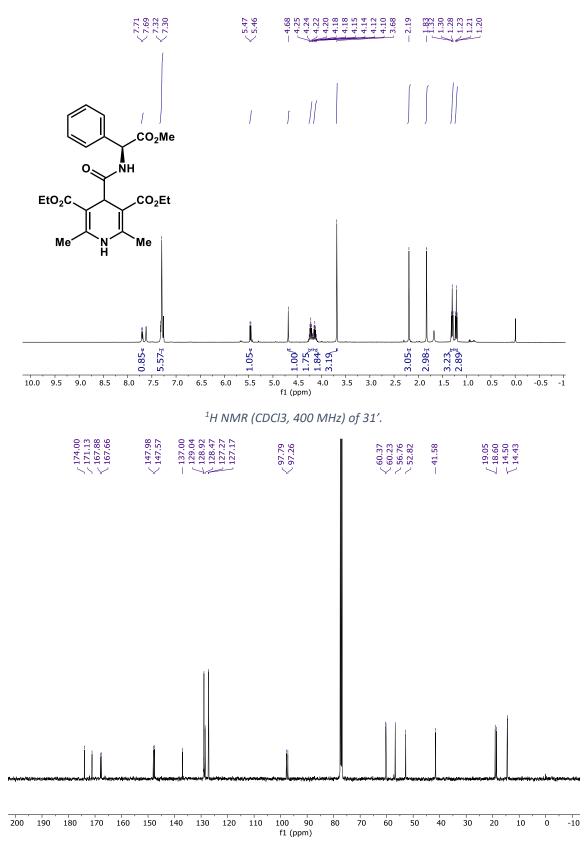
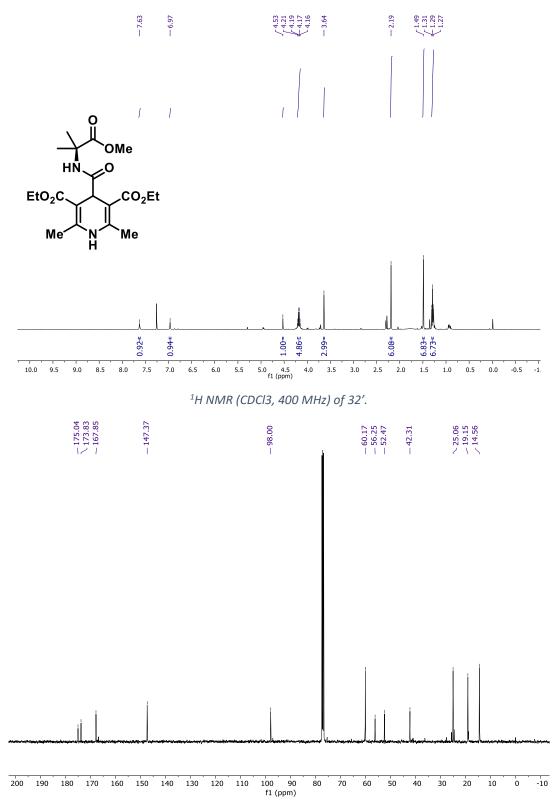
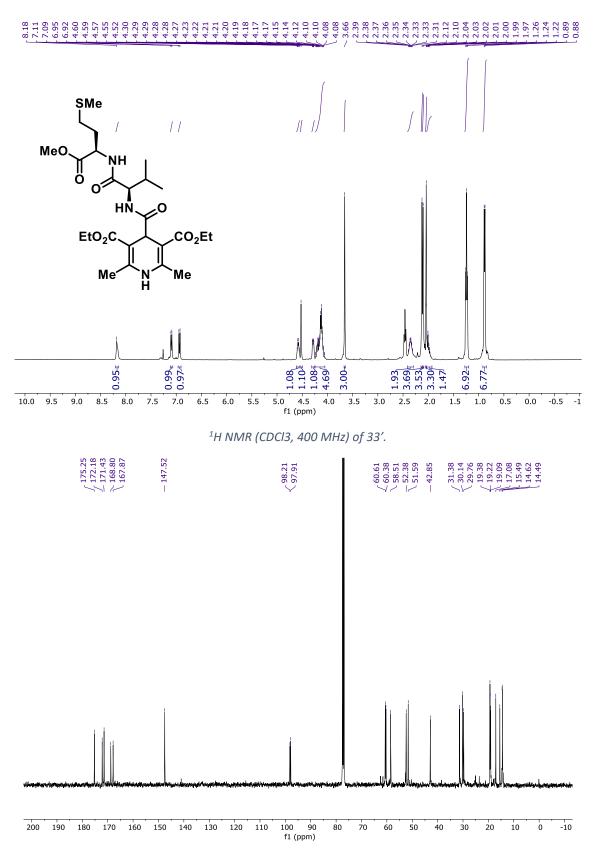




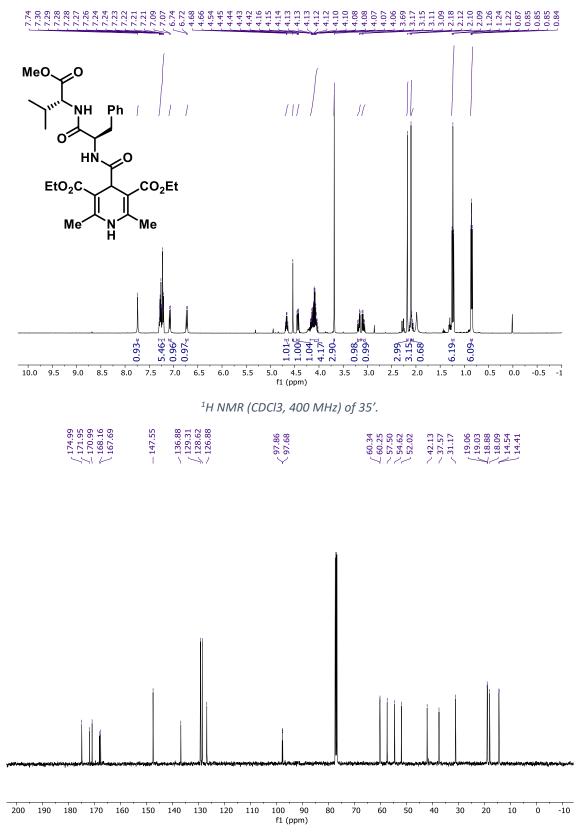
Figure S10. Control experiments to evaluate the reactivity of the isolated components under the optimized reaction condition.

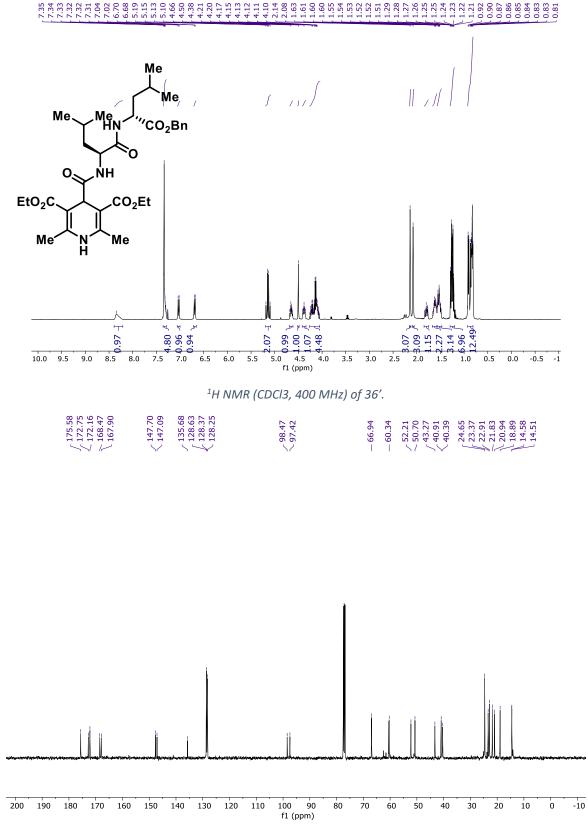

NMR Spectra

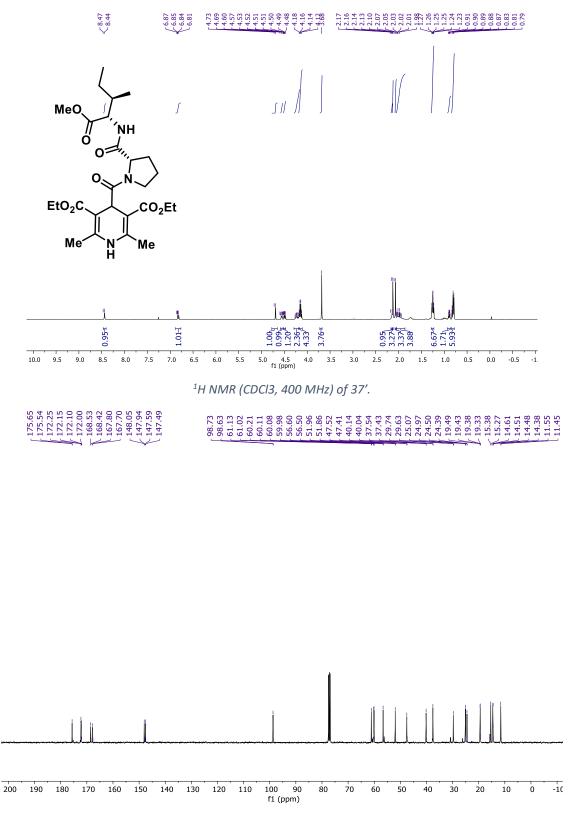

¹³C NMR (DMSO-d6, 126 MHz) of 16'.



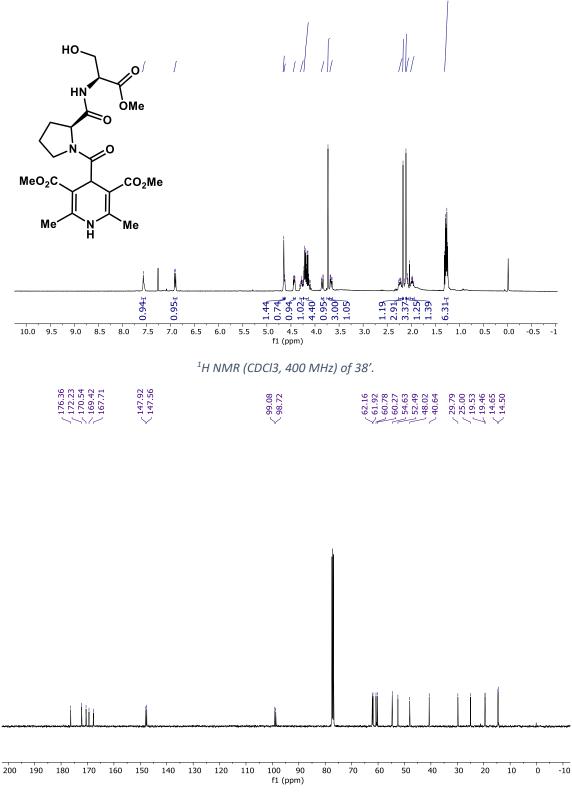

¹³C NMR (CDCl3, 126 MHz) of 25'.


¹³C NMR (CDCl3, 126 MHz) of 31'.

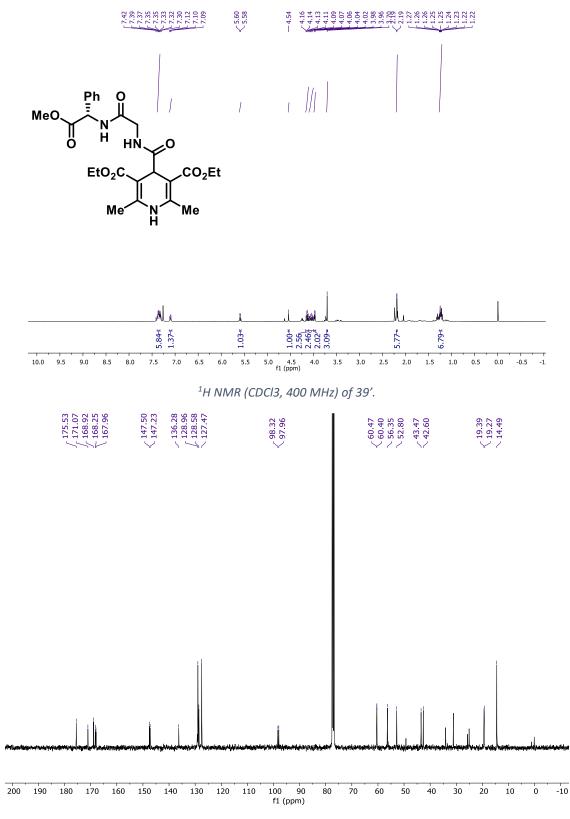

¹³C NMR (CDCl3, 126 MHz) of 32'.


¹³C NMR (CDCl3, 126 MHz) of 33'.

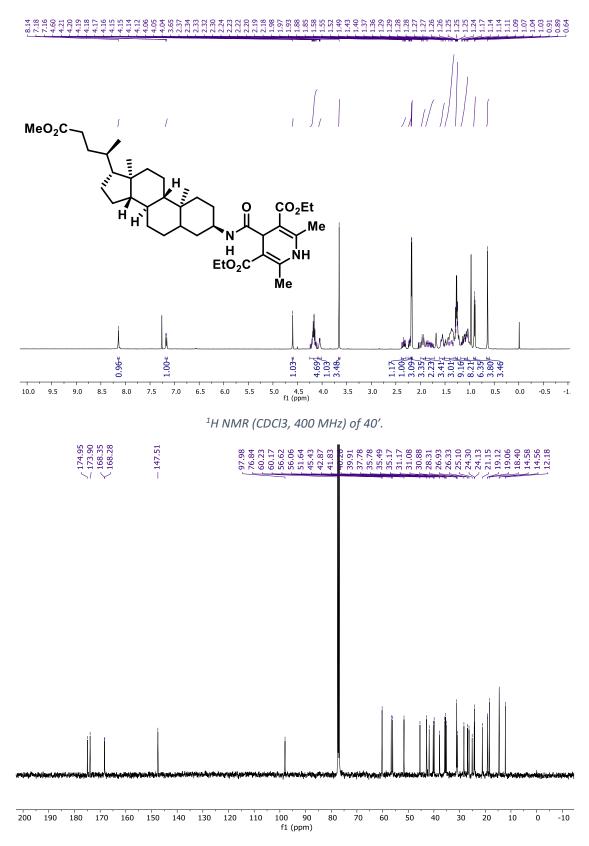
¹³C NMR (CDCl3, 126 MHz) of 35'.

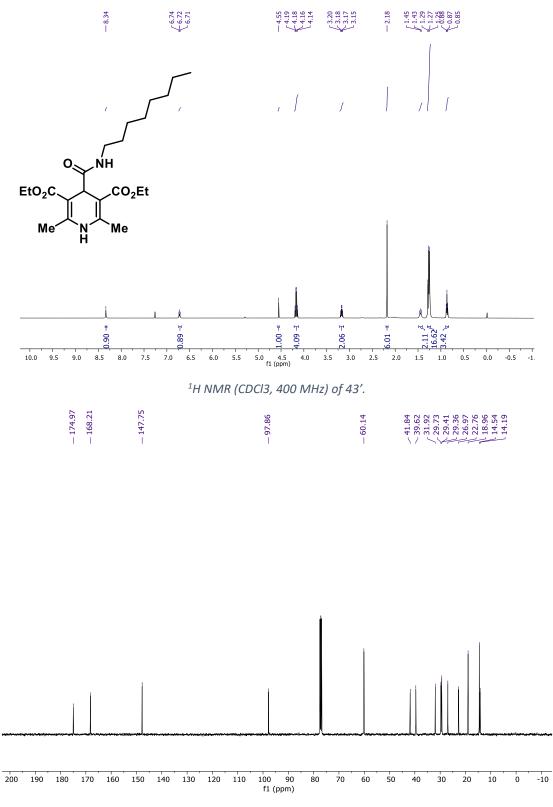


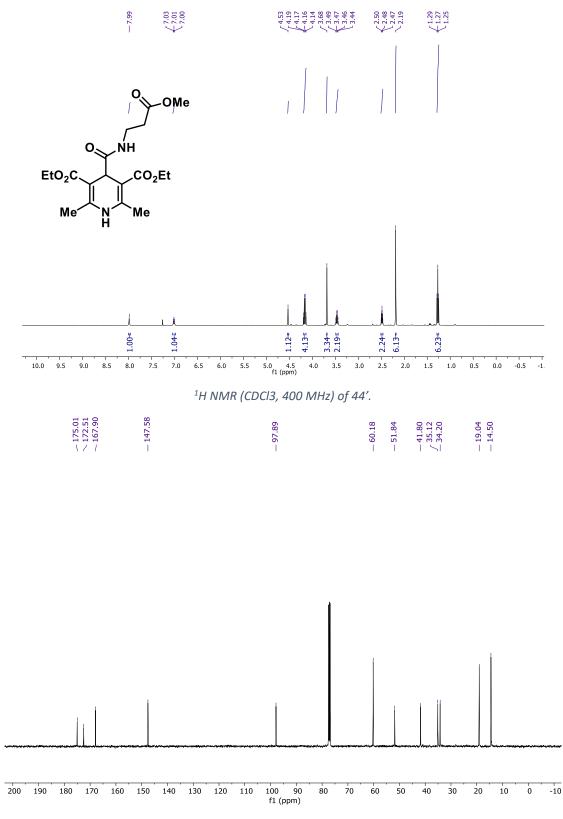
¹³C NMR (CDCl3, 126 MHz) of 36'.

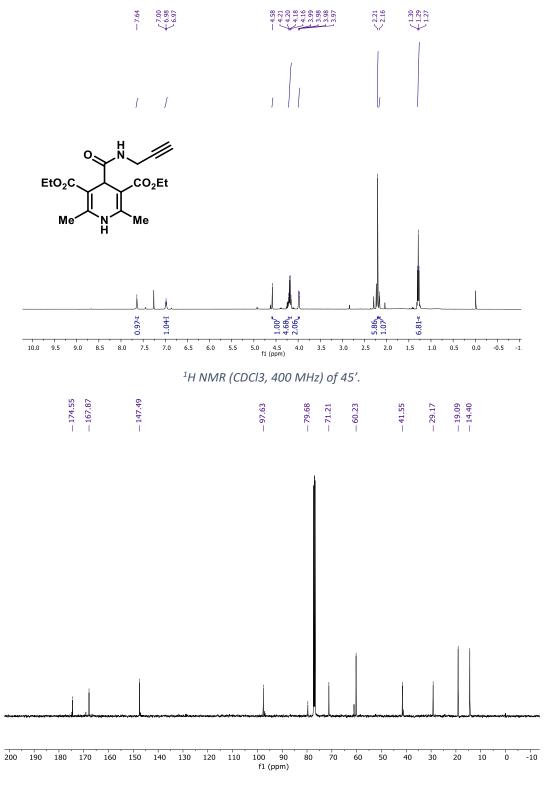


¹³C NMR (CDCl3, 126 MHz) of 37'.



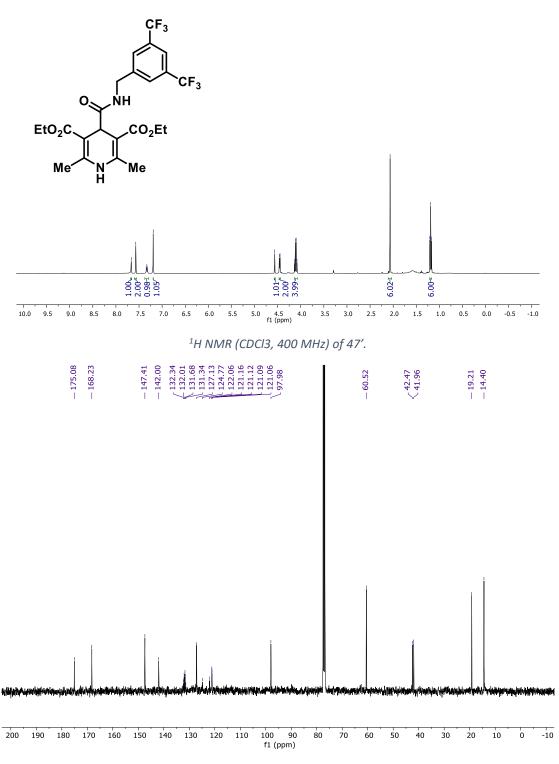

¹³C NMR (CDCl3, 126 MHz) of 38'.


¹³C NMR (CDCl3, 126 MHz) of 39'.

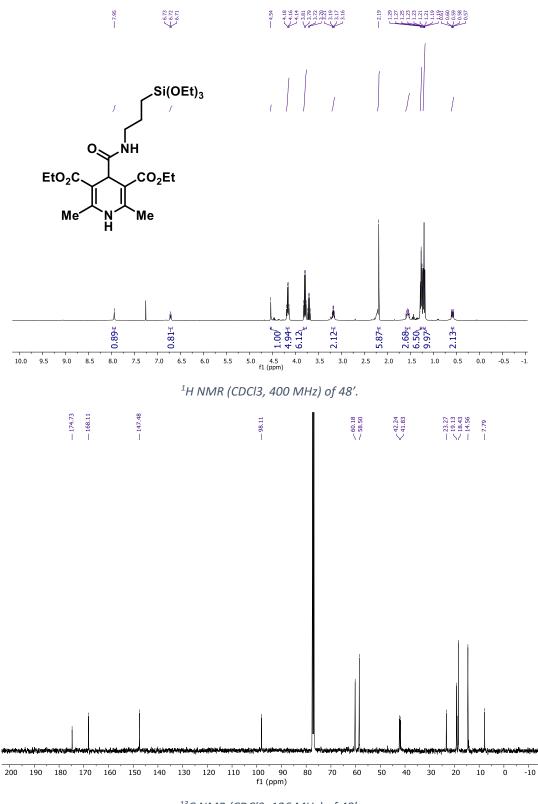

¹³C NMR (CDCl3, 126 MHz) of 40'.

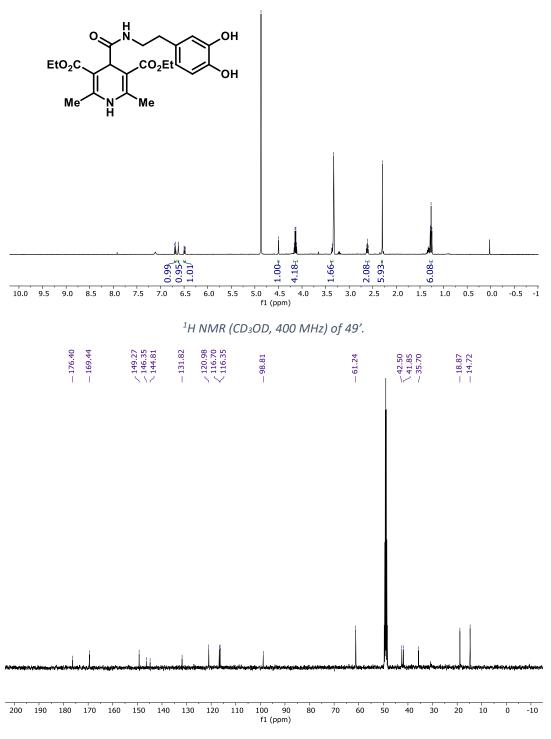


¹³C NMR (CDCl3, 126 MHz) of 43'.

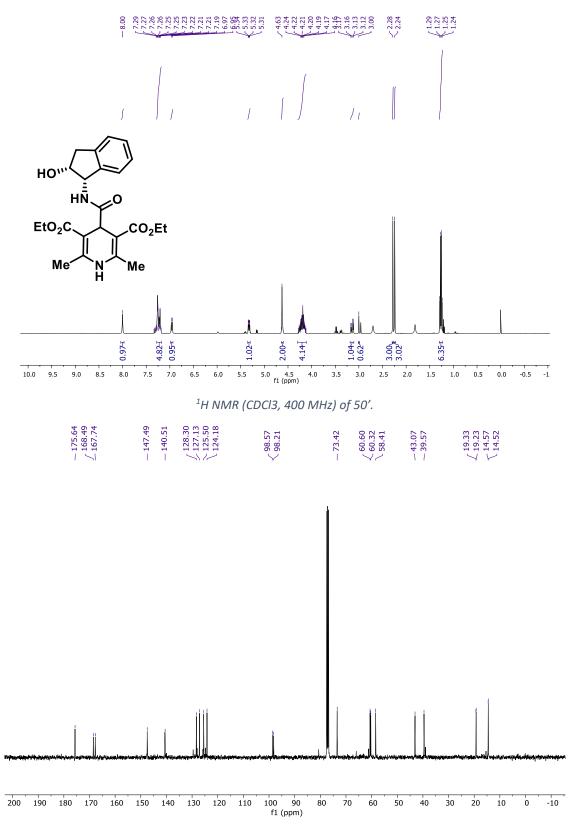


¹³C NMR (CDCl3, 126 MHz) of 44'.

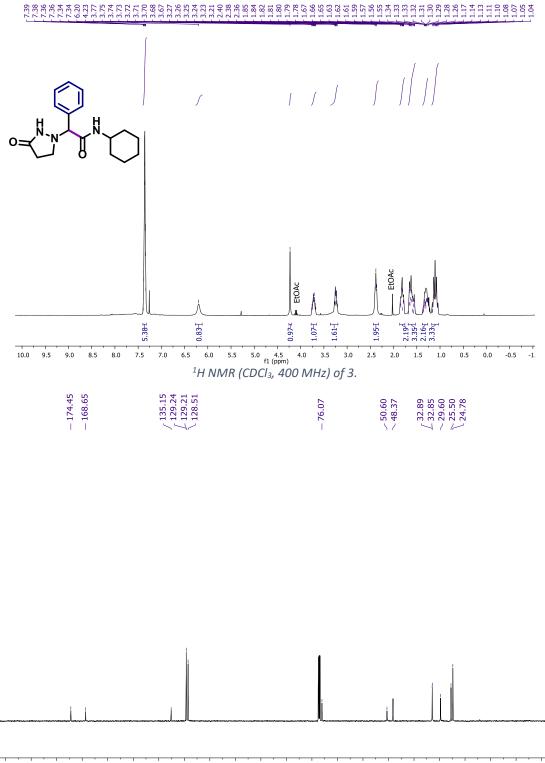




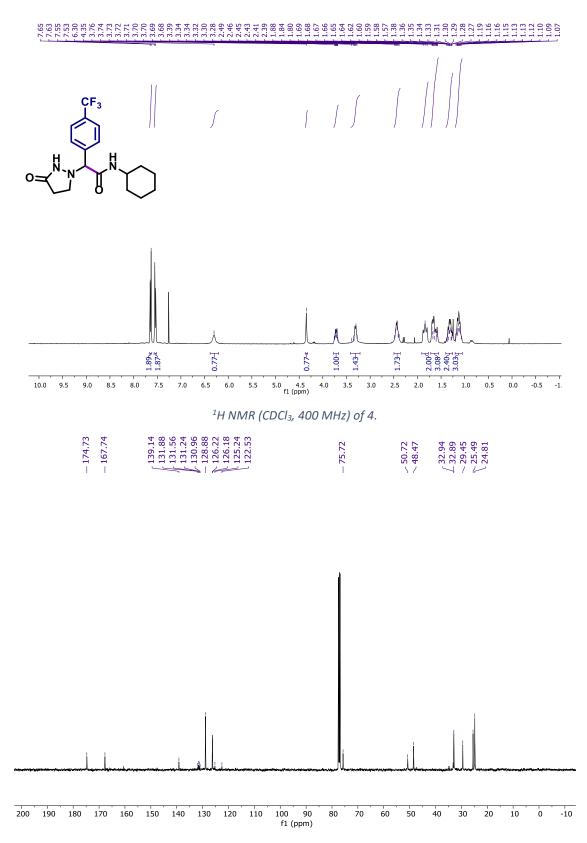
¹³C NMR (CDCl3, 126 MHz) of 47'.

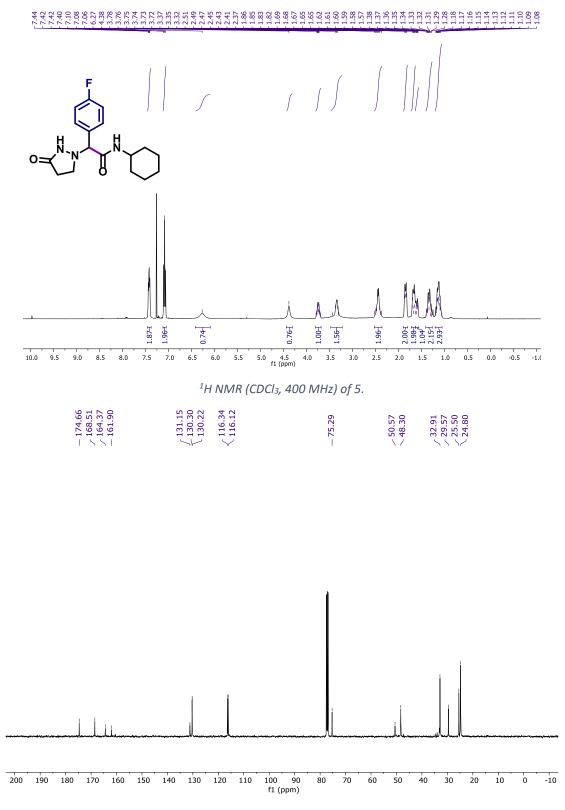


¹³C NMR (CDCl3, 126 MHz) of 48'.


$\begin{array}{c} 6.570\\ 6.672\\ 6.662\\ 6.662\\ 6.662\\ 6.648\\ 6.648\\ 6.48\\ 7.16\\ 4.17\\ 4.15\\ 6.48\\ 7.33\\ 4.13\\ 7.33\\ 3.33\\ 3.33\\ 3.33\\ 7.128\\ 1.26\\ 1.28\\ 1.$

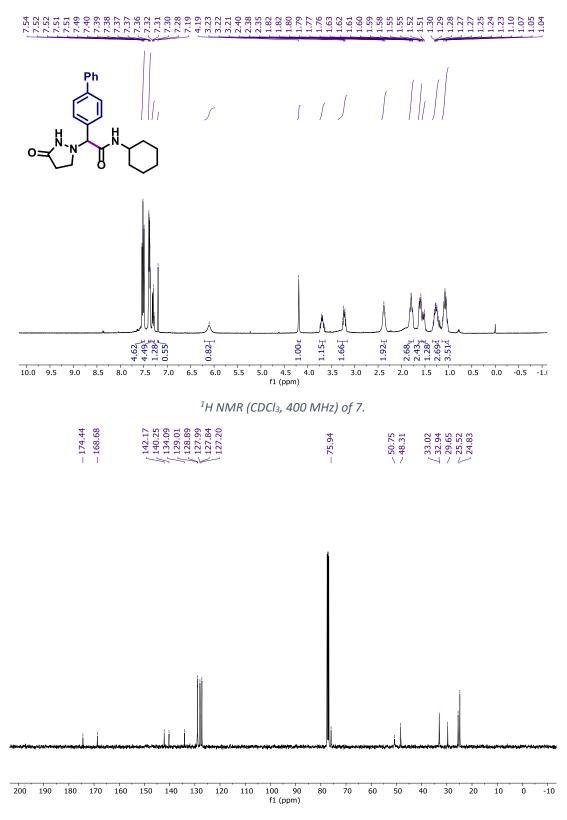
¹³C NMR (CD₃OD, 126 MHz) of 49'.

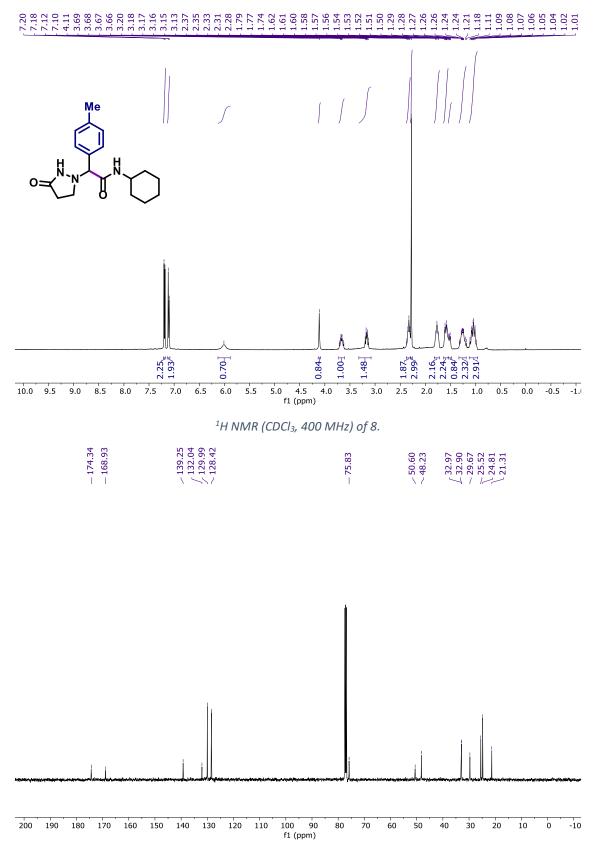


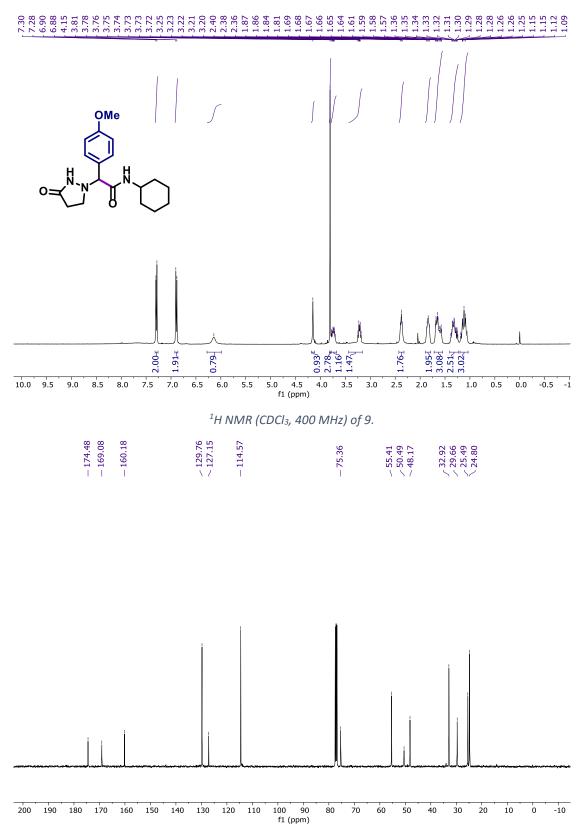


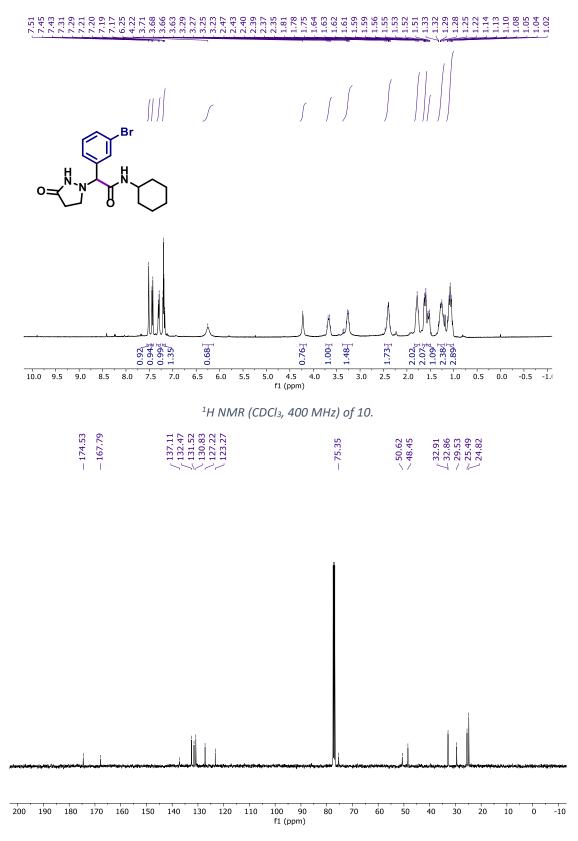
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

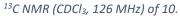

¹³C NMR (CDCl₃, 126 MHz) of 3.

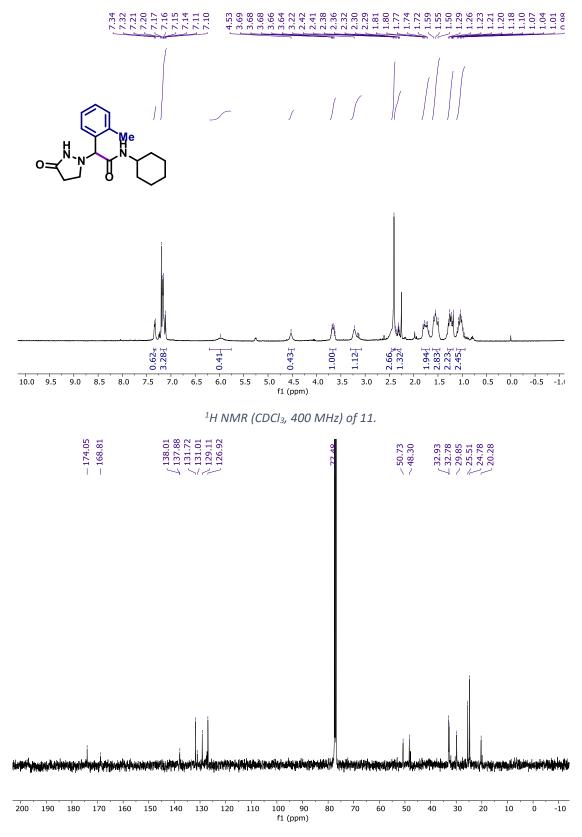

¹³C NMR (CDCl₃, 126 MHz) of 4.

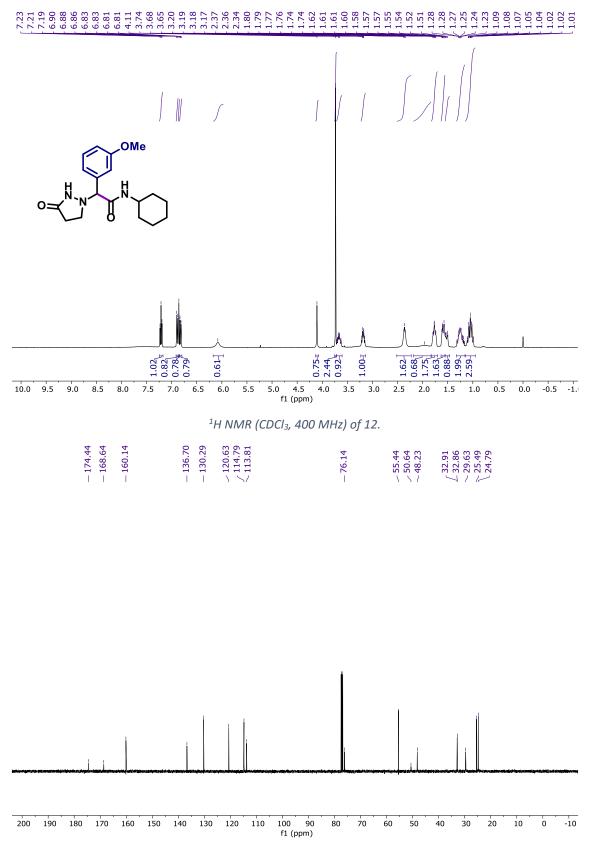

¹³C NMR (CDCl₃, 126 MHz) of 5.

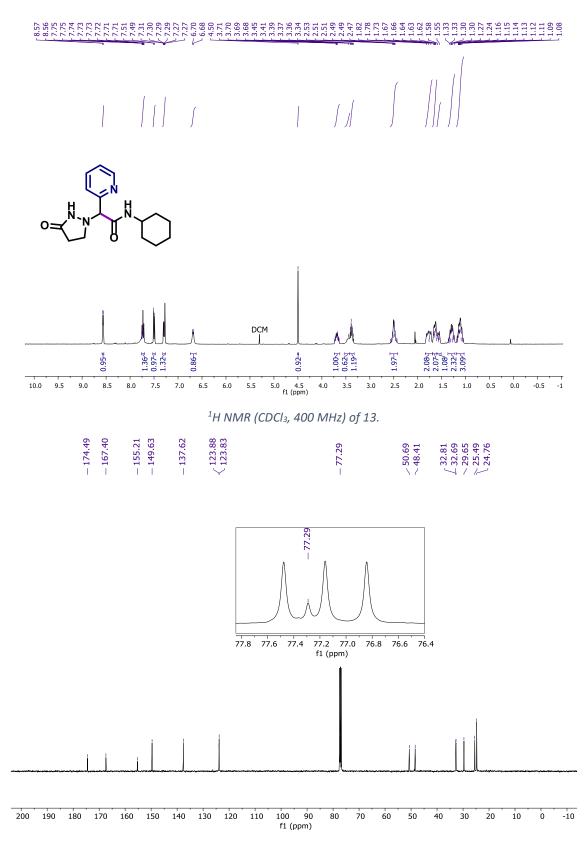

¹³C NMR (CDCl₃, 126 MHz) of 6.

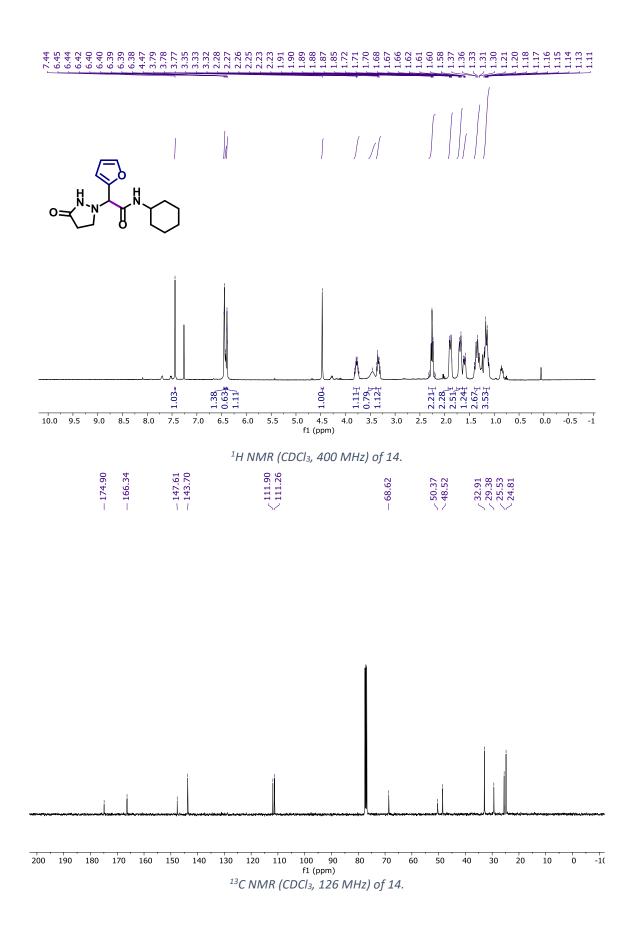

¹³C NMR (CDCl₃, 126 MHz) of 7.

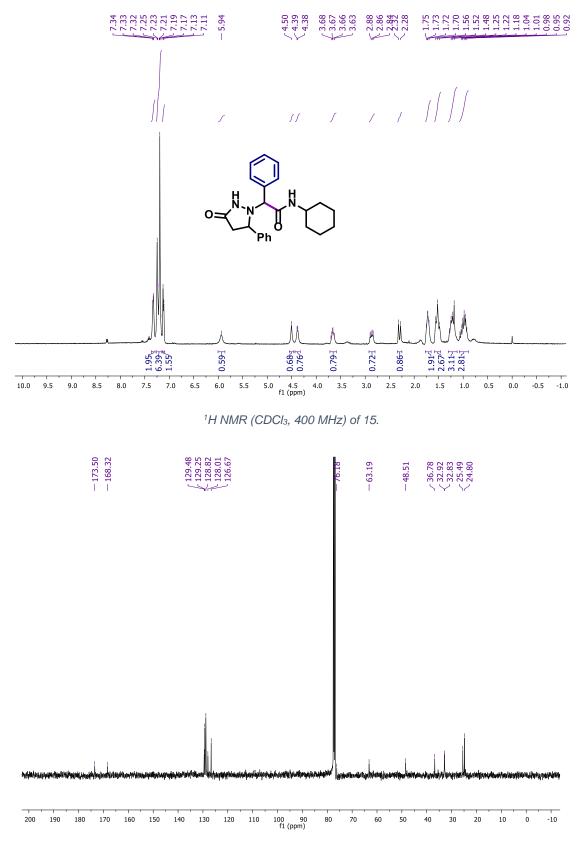


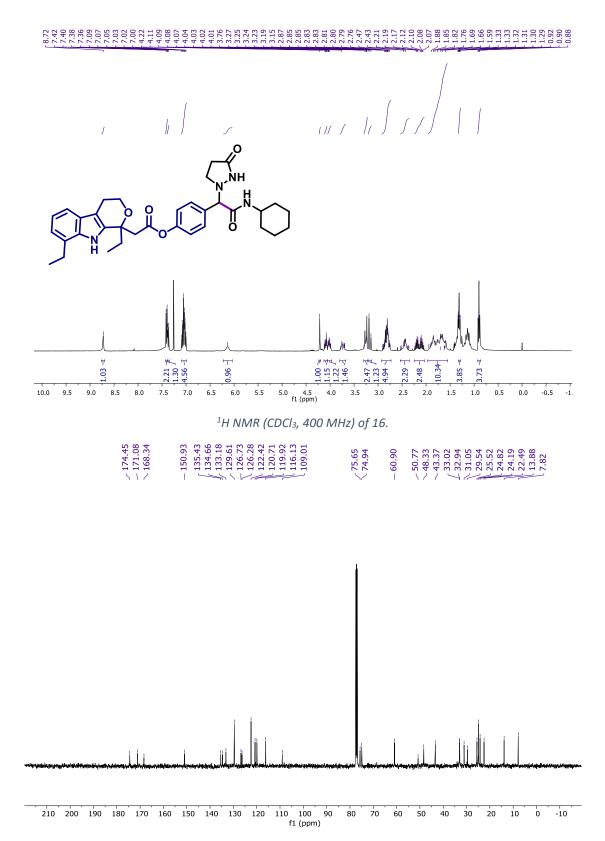

¹³C NMR (CDCl₃, 126 MHz) of 8.

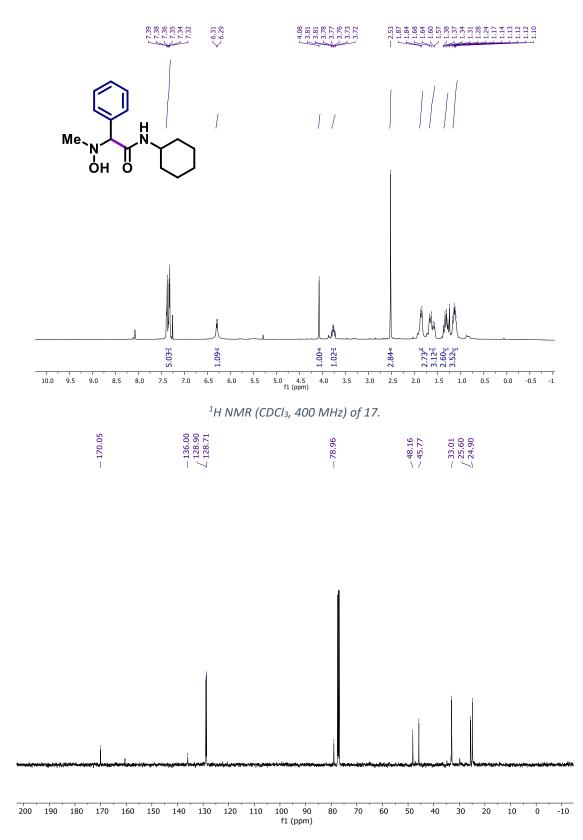

¹³C NMR (CDCl₃, 126 MHz) of 9.

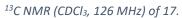


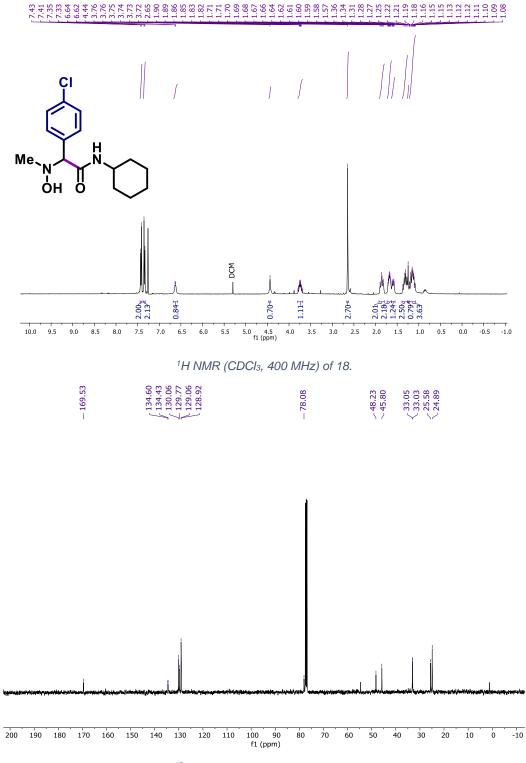

¹³C NMR (CDCl₃, 126 MHz) of 11.

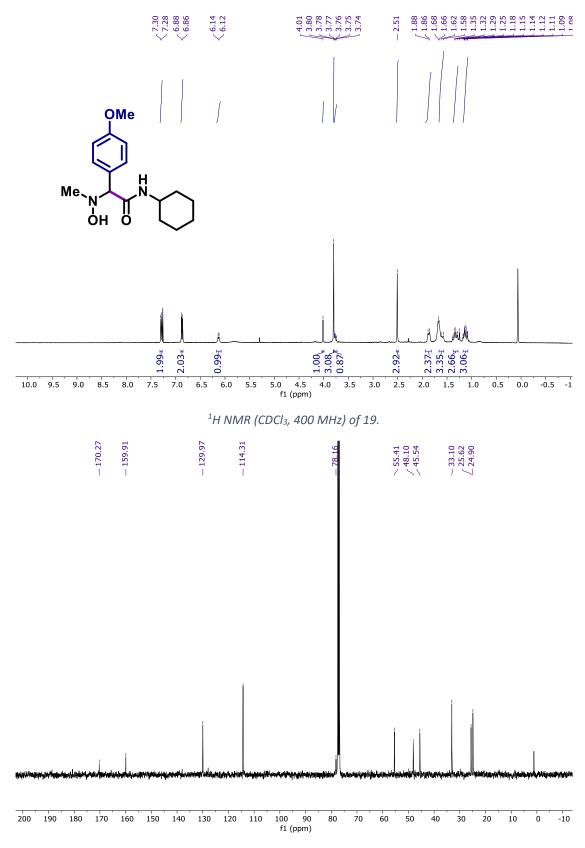

¹³C NMR (CDCl₃, 126 MHz) of 12.

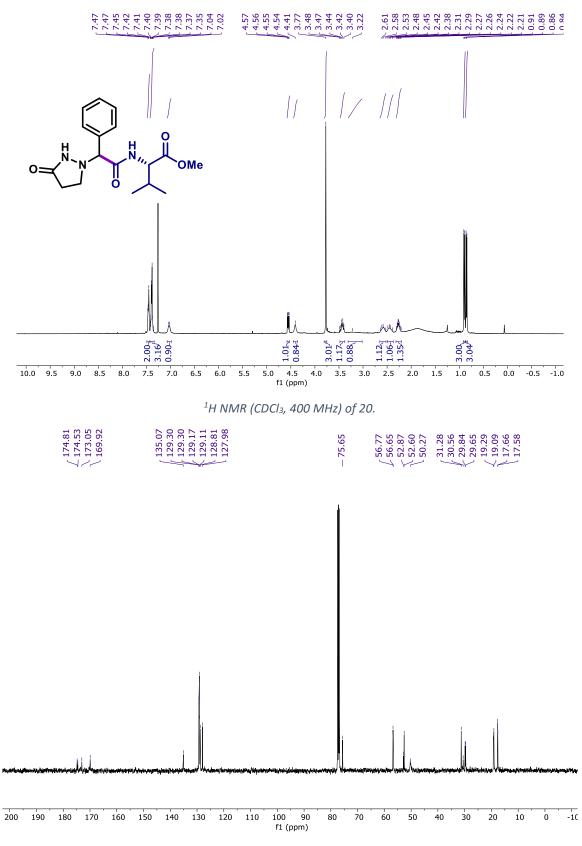

¹³C NMR (CDCl₃, 126 MHz) of 13.

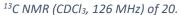

S67

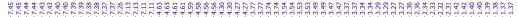


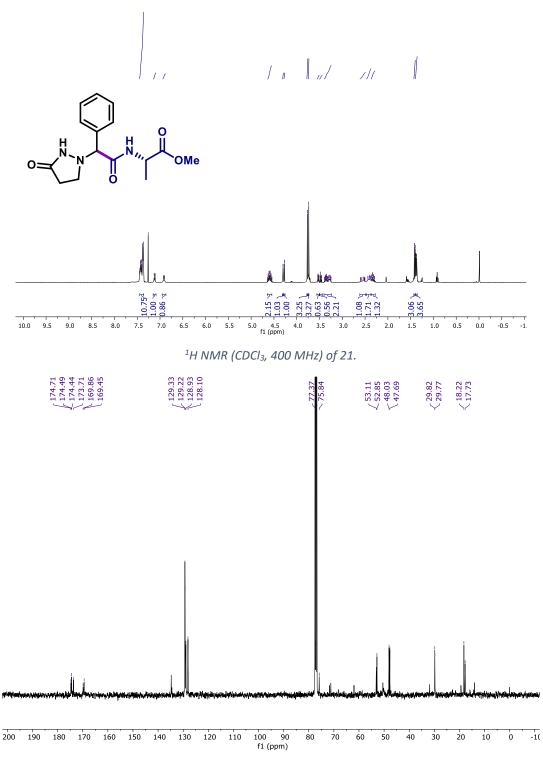

¹³C NMR (CDCl₃, 126 MHz) of 15.


¹³C NMR (CDCl₃, 126 MHz) of 16.

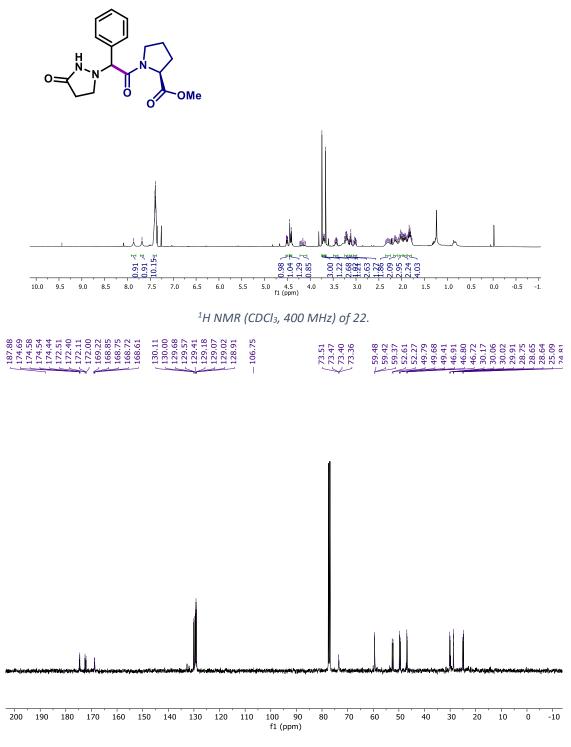


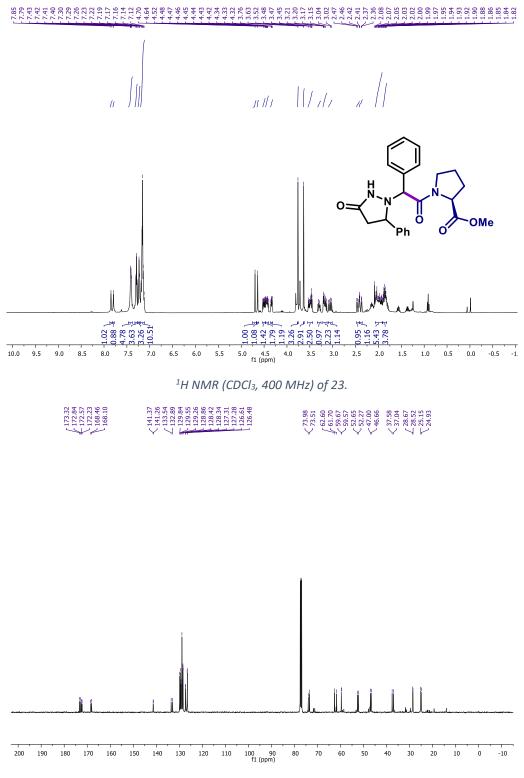


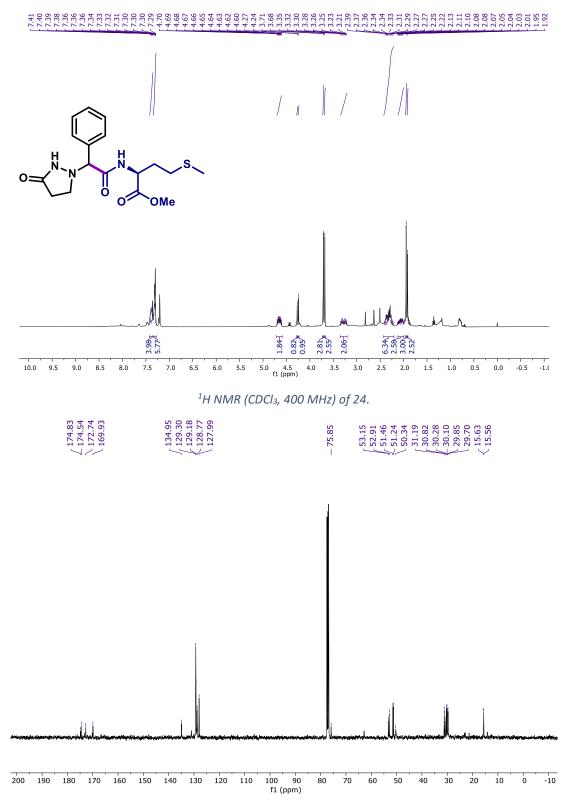


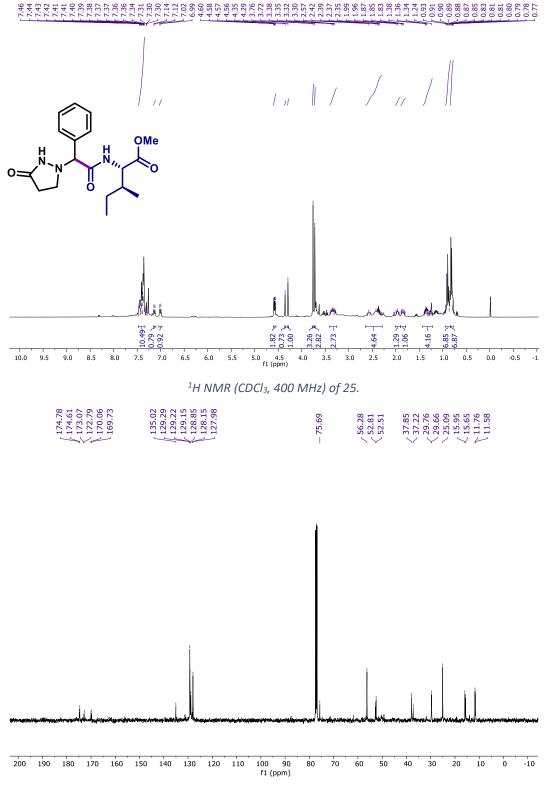


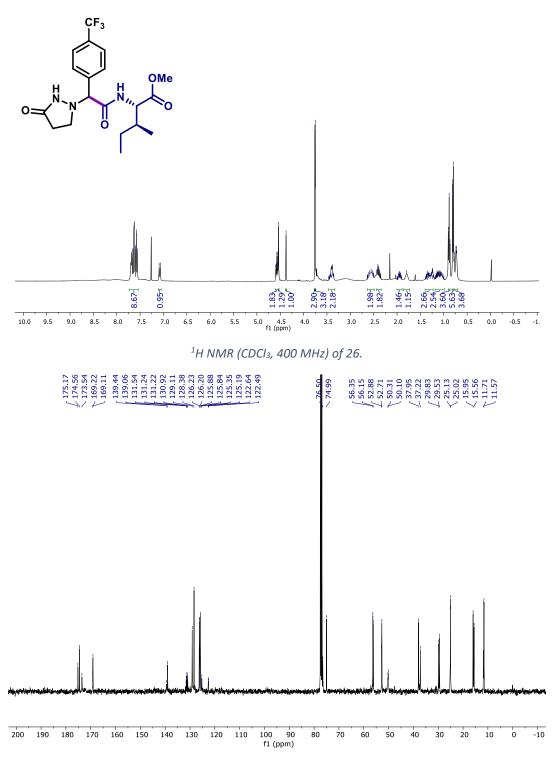
¹³C NMR (CDCl₃, 126 MHz) of 19.





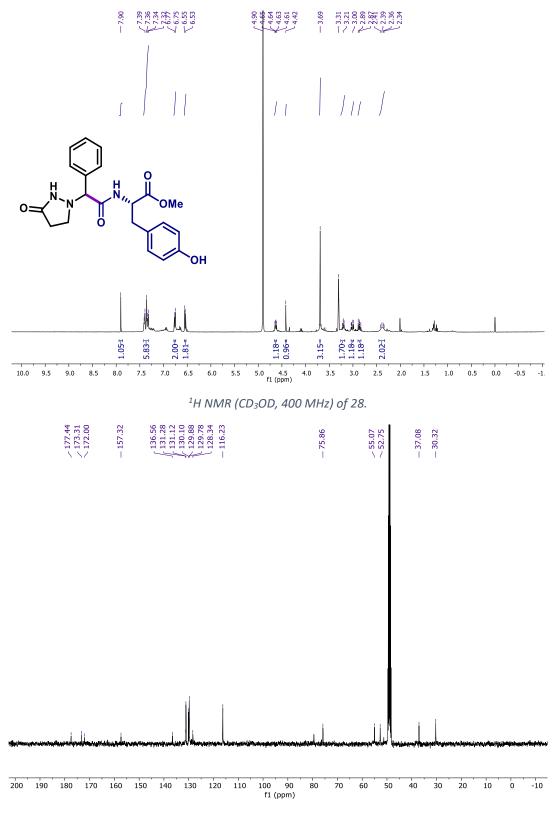

¹³C NMR (CDCl₃, 126 MHz) of 21.

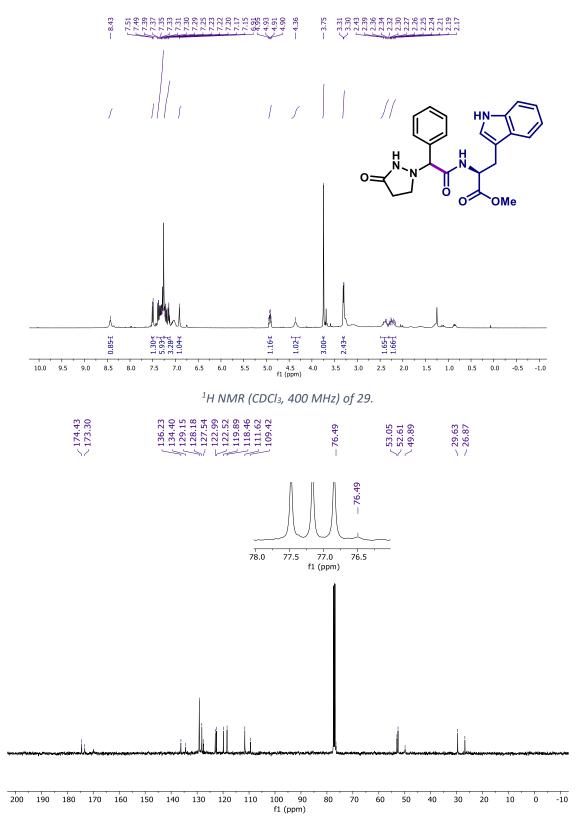

¹³C NMR (CDCl₃, 126 MHz) of 22.

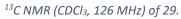


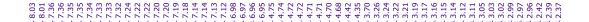
¹³C NMR (CDCl₃, 126 MHz) of 24.

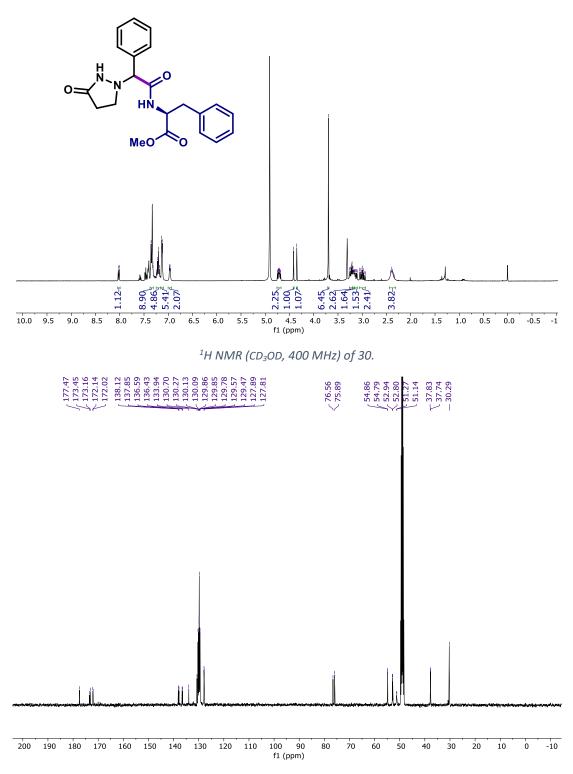
¹³C NMR (CDCl₃, 126 MHz) of 25.



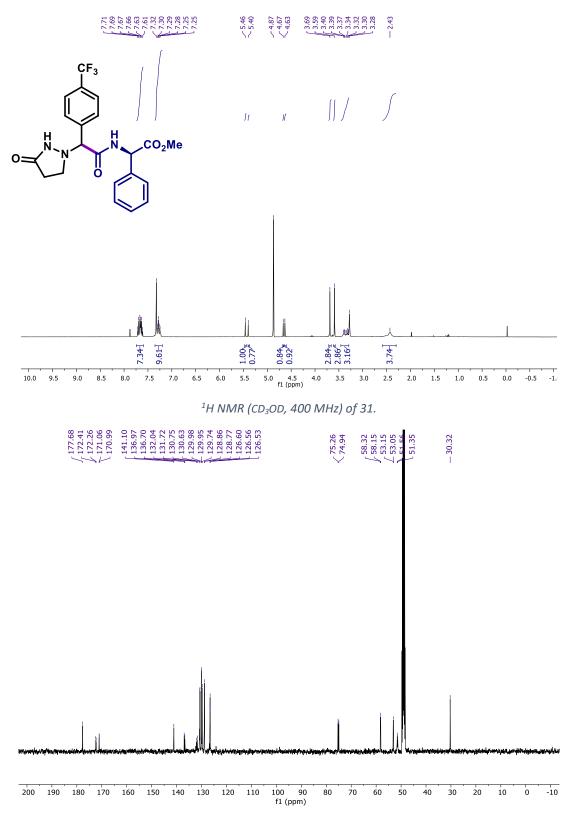

¹³C NMR (CDCl₃, 126 MHz) of 26.

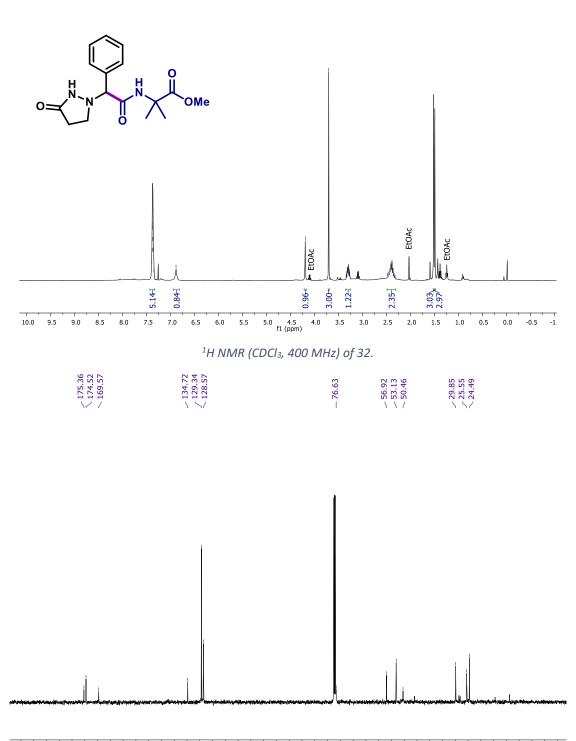



¹³C NMR (CDCl₃, 126 MHz) of 27.

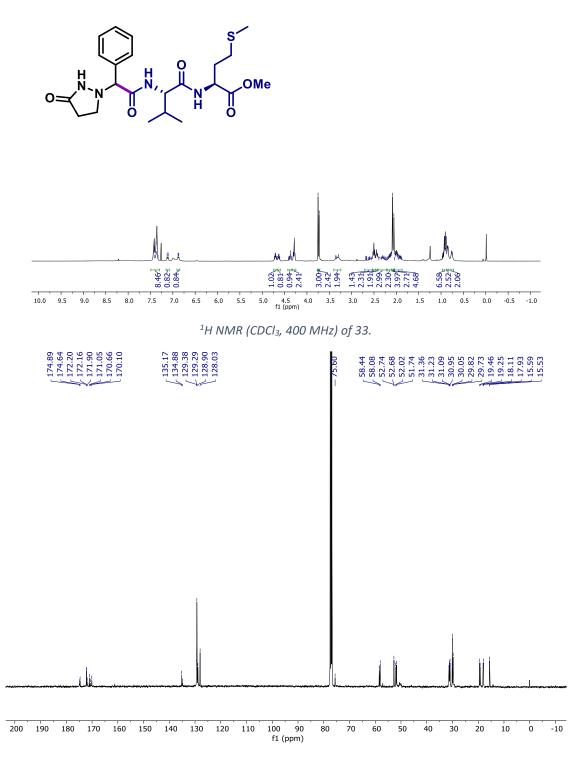


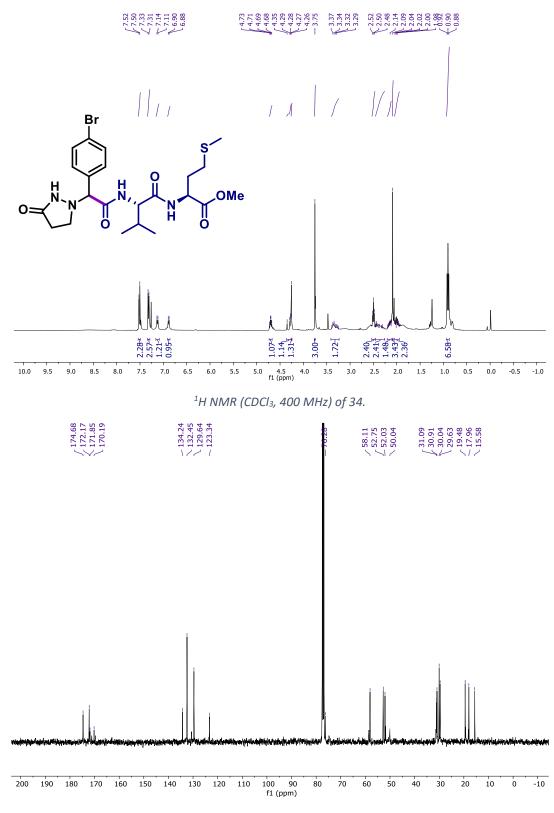
¹³C NMR (CD₃OD, 126 MHz) of 28.



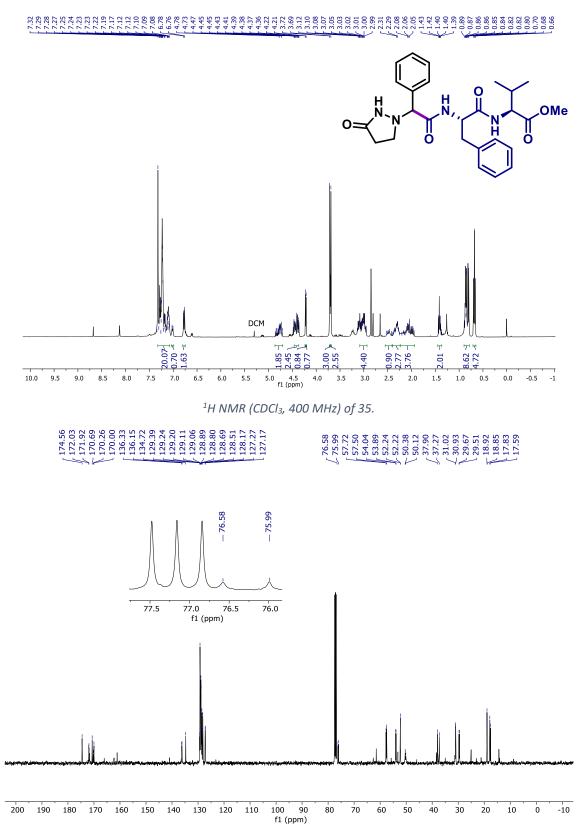


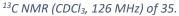
¹³C NMR (CD₃OD, 126 MHz) of 30.

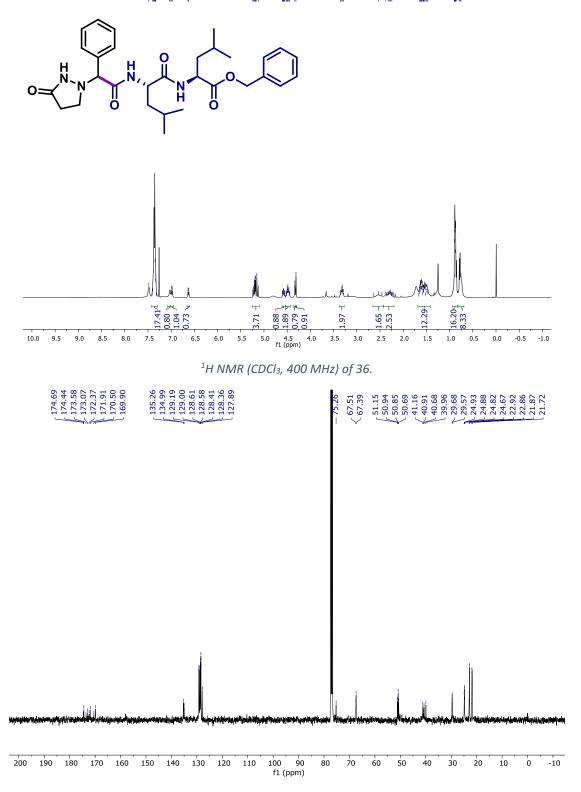

¹³C NMR (CD₃OD, 126 MHz) of 31.

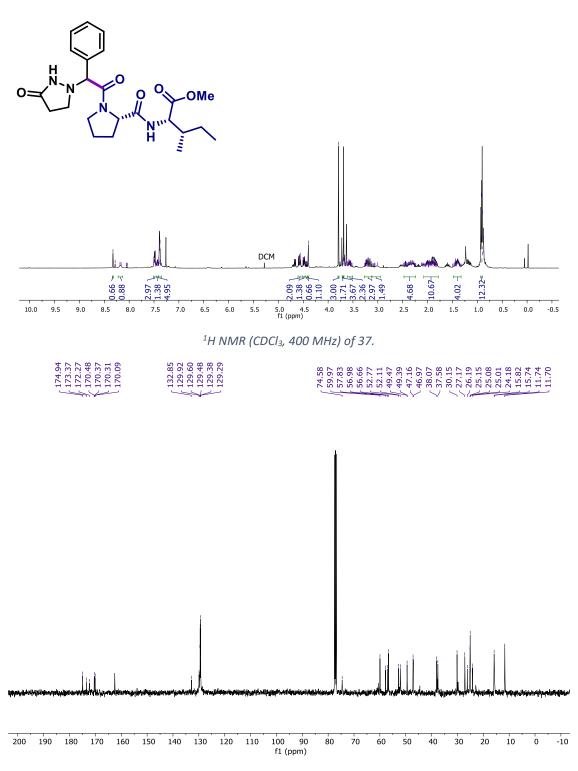


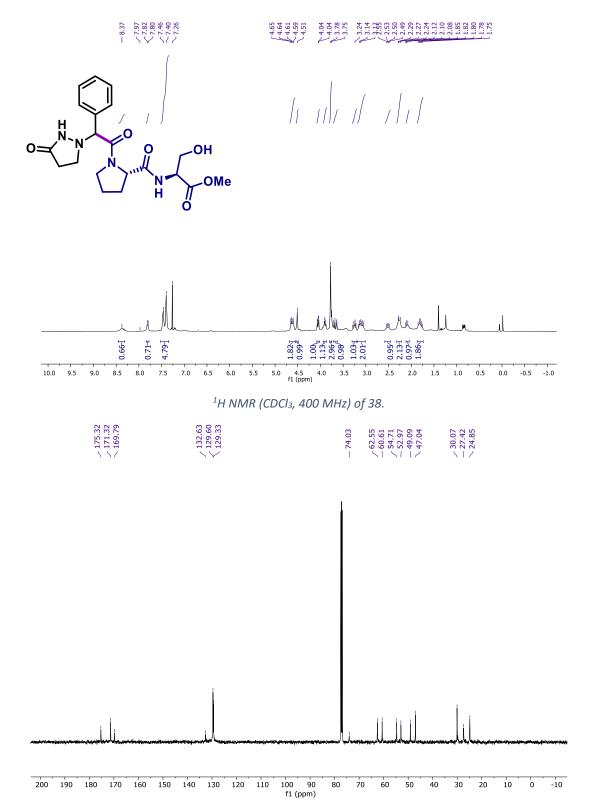
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

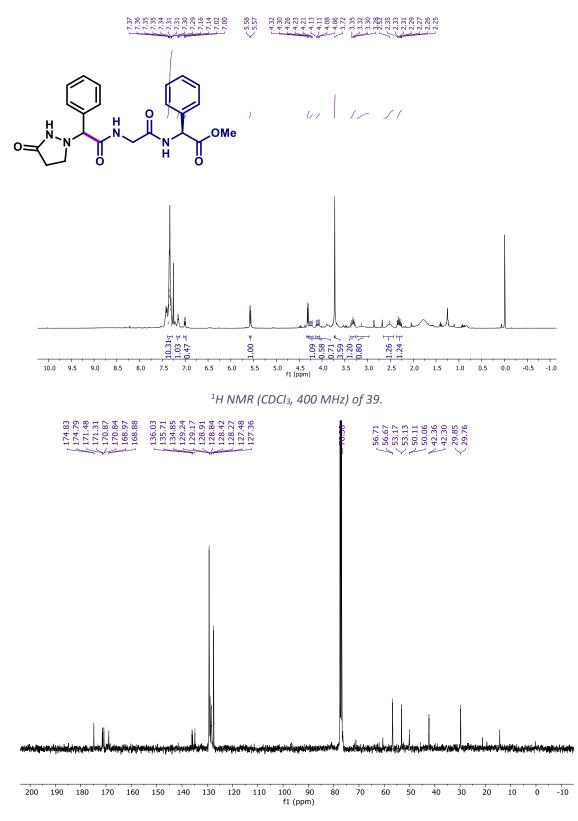

¹³C NMR (CDCl₃, 126 MHz) of 32.



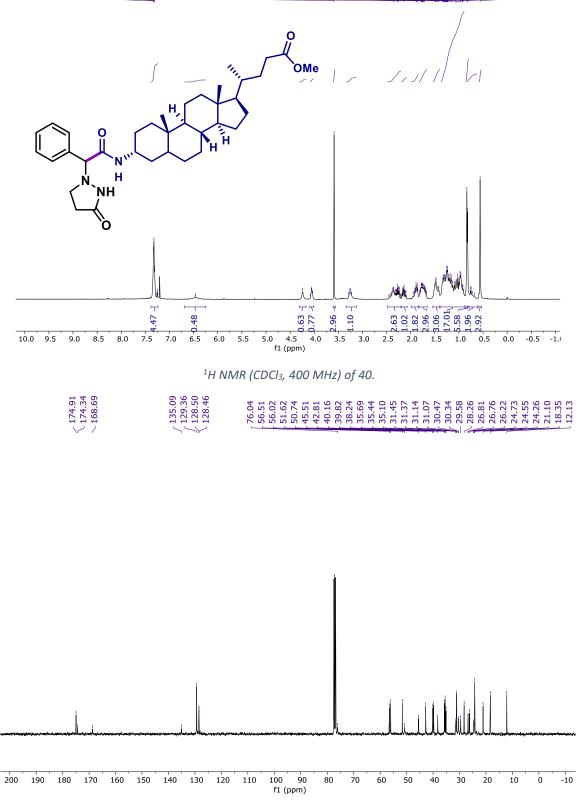

¹³C NMR (CDCl₃, 126 MHz) of 33.

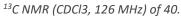

¹³C NMR (CDCl₃, 126 MHz) of 34.

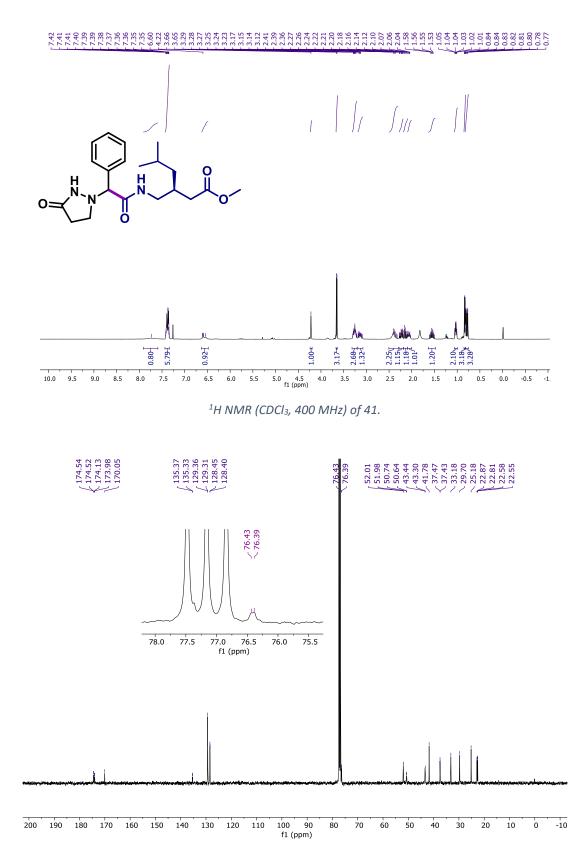



¹³C NMR (CDCl₃, 126 MHz) of 36.

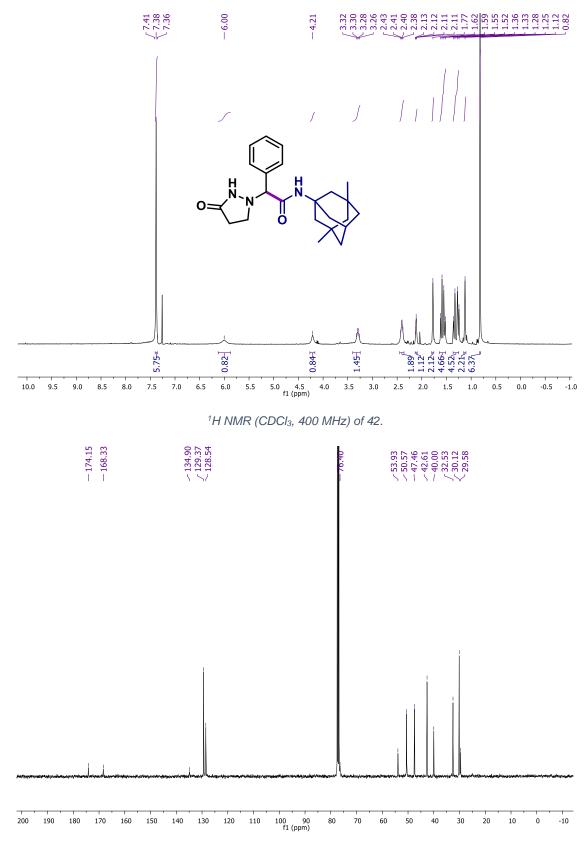
¹³C NMR (CDCl₃, 126 MHz) of 37.

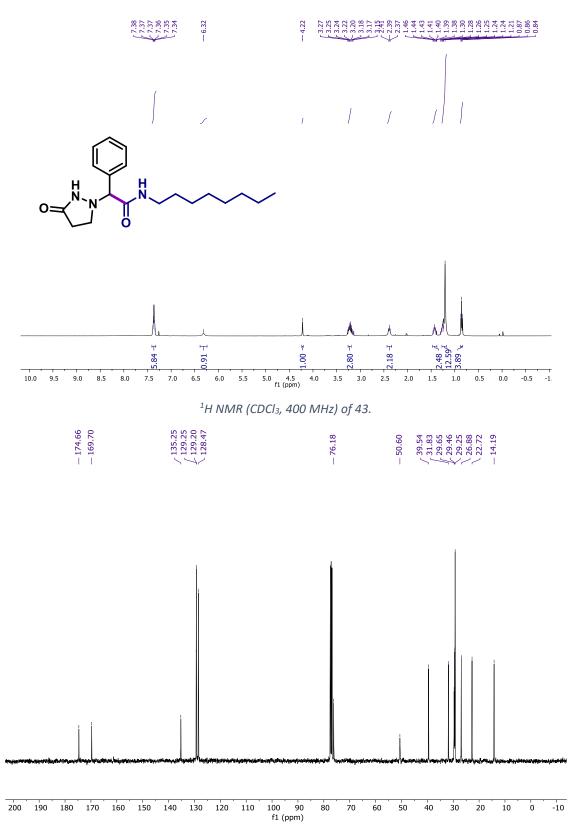


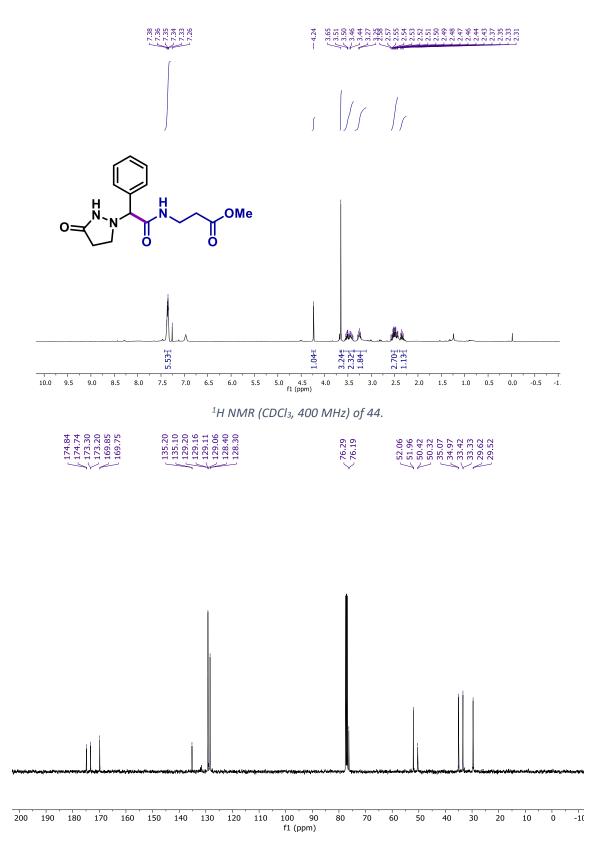

³C NMR (CDCl₃, 126 MHz) of 38.

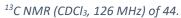


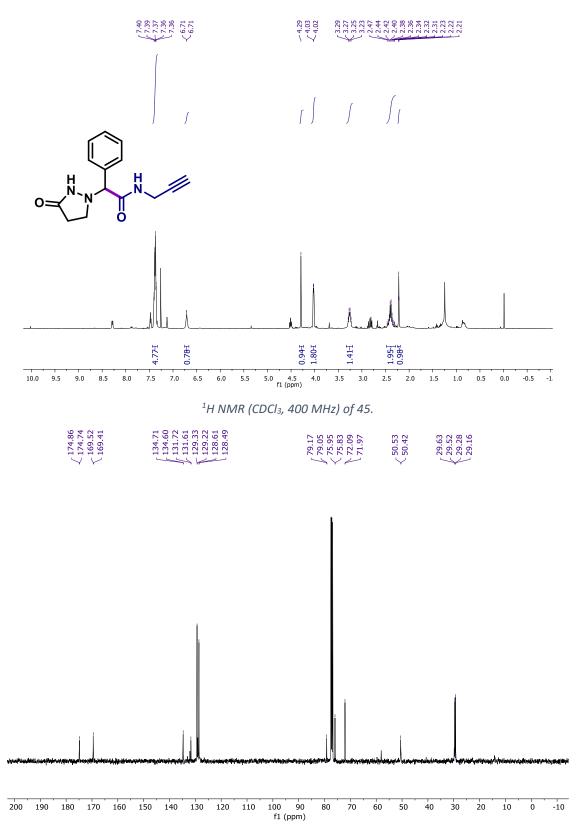
¹³C NMR (CDCl₃, 126 MHz) of 39.

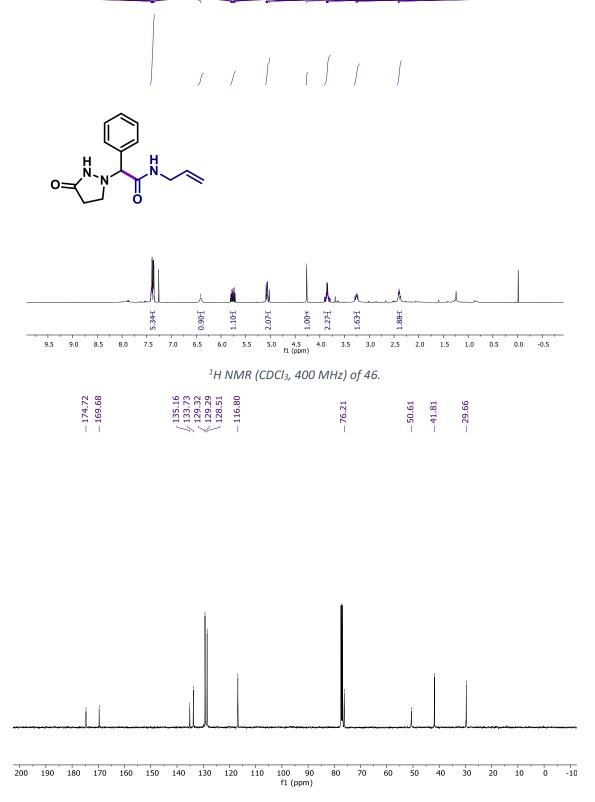


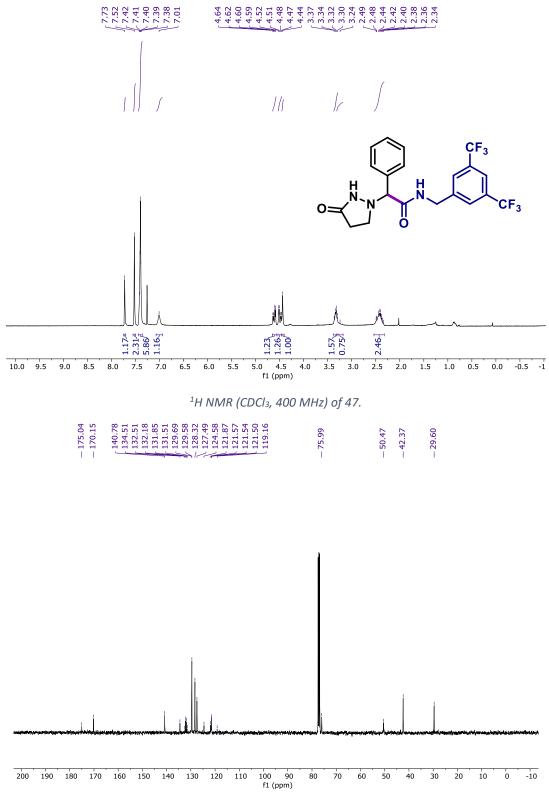


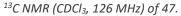

¹³C NMR (CDCl3, 126 MHz) of 41.

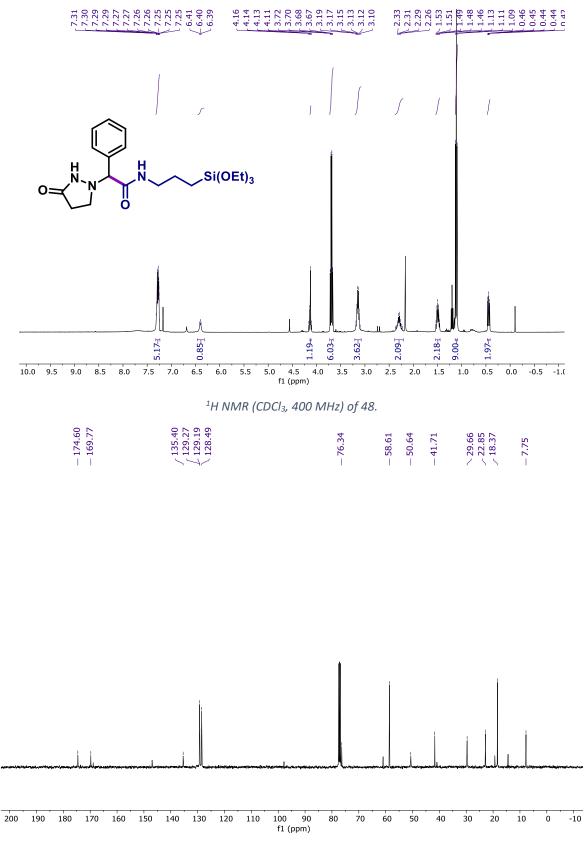


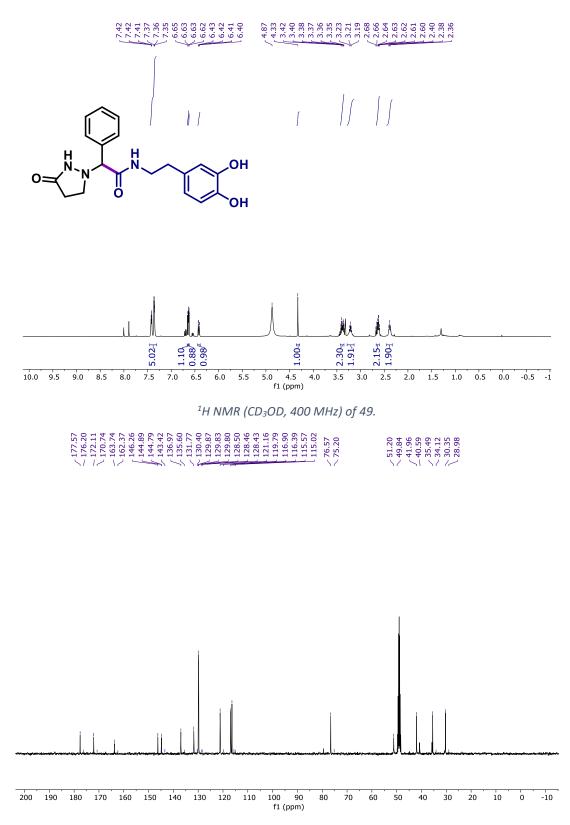


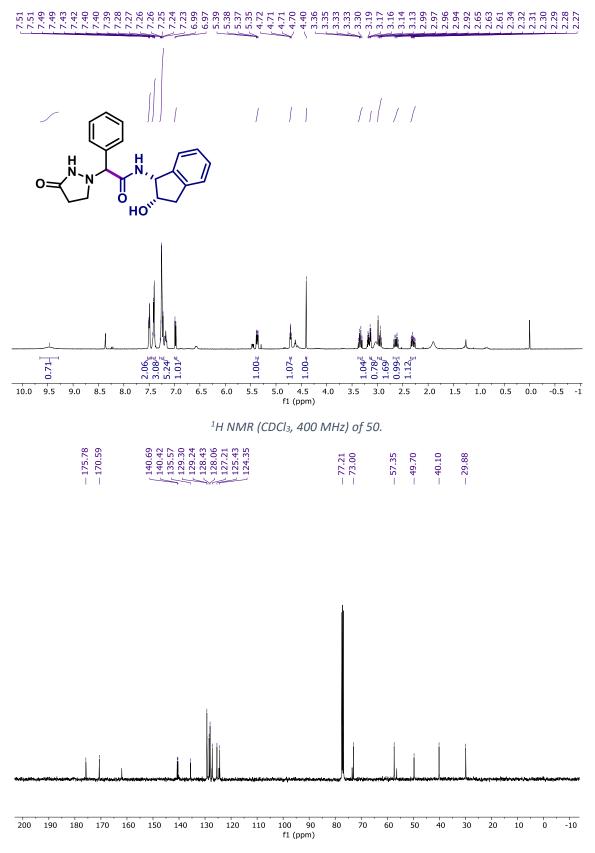


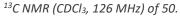


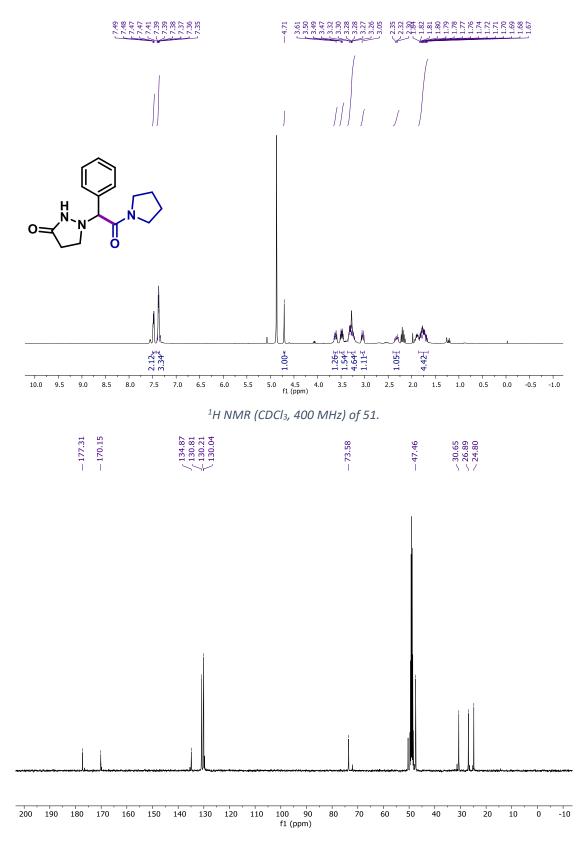


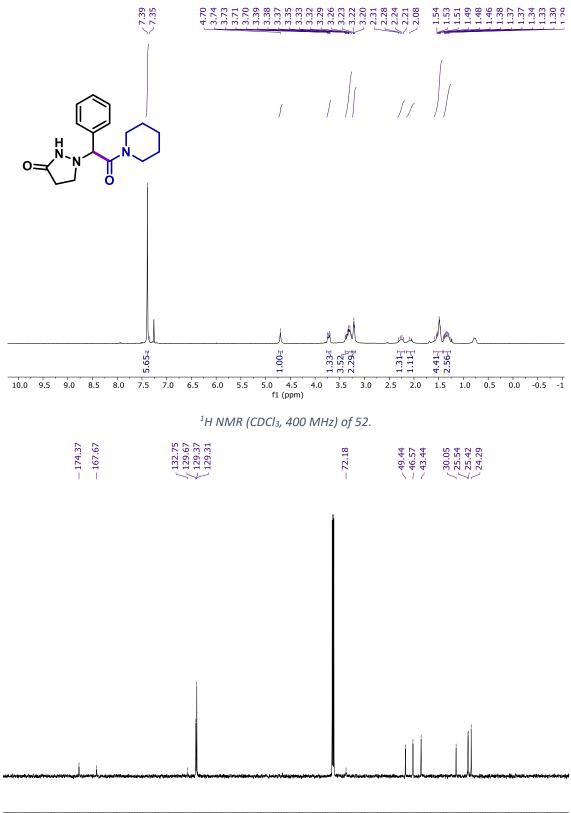

¹³C NMR (CDCl₃, 126 MHz) of 45.

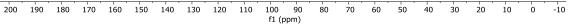

¹³C NMR (CDCl₃, 126 MHz) of 46.

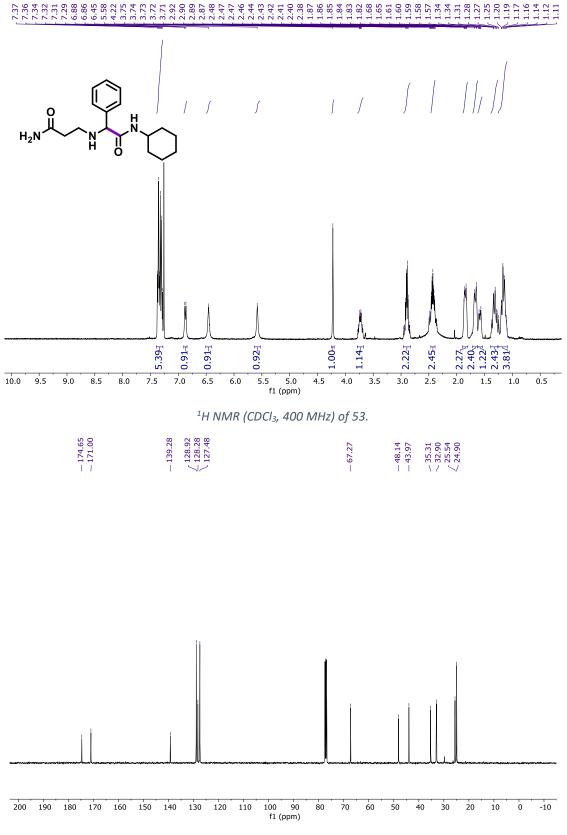




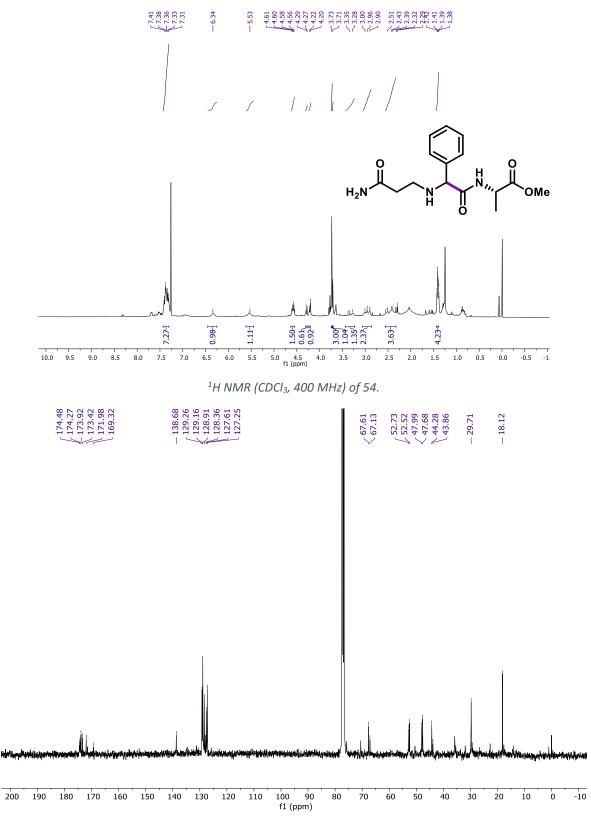

¹³C NMR (CDCl₃, 126 MHz) of 48.


¹³C NMR (CD₃OD, 126 MHz) of 49.






¹³C NMR (CDCl₃, 126 MHz) of 51.



¹³C NMR (CDCl₃, 126 MHz) of 52.

¹³C NMR (CDCl₃, 126 MHz) of 54.