Supporting Information

Synthesis of Isothiazoles through *N*-Propargylsulfinylamide: TFA-Promoted Sulfinyl Group-Involved Intramolecular Cyclization

Ziyi Li,[†] Nana Wang,[†] Jiang Liu,[†] Haibo Mei,^{*,†} Vadim A. Soloshonok,^{‡,§} and Jianlin Han^{*,†}

[†] Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Email: meihb@njfu.edu.cn (H. Mei); hanjl@njfu.edu.cn (J. Han)

[‡] Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.

[§] IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013 Bilbao, Spain

Table of Contents

1. General information S	2
2. General procedure for the intramolecular cycloaddition	52
3. Procedure for the nucleophilic addition of 2a with benzaldehyde	2
4. Procedure for the reaction of 1a in the presence of DBU	53
5. Large scale synthesis	53
6. X-ray crystallography of 2a	54
7. Characterization data for product 2, 4, 5, 6	S6
8. ¹ H, ¹³ C, ¹⁹ F and ³¹ P NMR spectra	514

1. General information

All the commercial reagents including solvents were used directly without further purification. All the experiments were monitored by thin layer chromatography (TLC) with UV light. The TLC employed 0.25 mm silica gel coated on glass plates. Purification of products was carried out by silica gel 60 F-254 TLC plates of 20 cm × 20 cm. Melting points were recorded without correction on RY-1G of Tianjin Xintianguang instrument company. NMR spectra were recorded on Bruker 400 MHz and 600 MHz spectrometers. High resolution mass spectra (HRMS) were measured on Agilent 6210 ESI/TOF MS instrument. The X-ray data were collected at 100 K on a Rigaku Oxford Diffraction Supernova Dual Source, Mo at Zero equipped with an AtlasS2 CCD using Mo Kα radiation.

2. General procedure for the intramolecular cycloaddition

Into a flask were taken amine **1** (0.1 mmol), TFA (1.3 mL, 18 mmol), DCM/toluene (5 mL), and the mixture was stirred at room temperature for 4 h. Then, Et₃N was added to neutralize the acid, followed by H₂O (15 mL). The organic layer was taken and the aqueous layer was extracted with DCM (3×15 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed to give the crude product **2**. Further purification was carried out by TLC plate of 20 cm × 20 cm using petroleum ether/ethyl acetate (8:1, v/v) as eluent.

3. Procedure for the nucleophilic addition of 2a with benzaldehyde

Into an oven-dried flask flushed with N₂ were taken isothiazole 2a (0.1 mmol) and anhydrous THF (2 mL). After cooling to -78 °C, *n*-BuLi (1.6 M in hexane, 0.1 mL) was added dropwise with stirring.

Then, benzaldehyde (0.15 mmol) dissolved in anhydrous THF (1 mL) was added dropwise and stirring was continued at -78 °C for 2 h. The reaction was quenched with saturated NH₄Cl (2 mL), followed by H₂O (10 mL) and the mixture was brought to room temperature. The organic layer was taken and the aqueous layer was extracted with CH_2Cl_2 (3 × 15 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed in vacuum. Product **5** was purified by TLC plate of 20 cm × 20 cm with petroleum ether/ethyl acetate (8:1, v/v) as eluent.

4. Procedure for the reaction of 1a in the presence of DBU

Into a flask were taken amine **1a** (0.1 mmol) and DCM (5 mL). DBU (0.1 mmol) was added dropwise and the mixture was stirred at room temperature for 1 h, followed by H₂O (15 mL). The organic layer was taken and the aqueous layer was extracted with DCM (3×15 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed to give the crude product **6**, which was purified by TLC plate of 20 cm × 20 cm using petroleum ether/ethyl acetate (10:1, v/v) as eluent.

5. Large scale synthesis

Into a 250 mL flask were taken amine **1a** (2.0 mmol, 666.7 mg), dichloromethane (100 mL), TFA (27 mL, 360 mmol), and the mixture was stirred at room temperature for 5 h. Then, Et₃N was added to neutralize the acid, followed by H₂O (100 mL). The organic layer was taken and the aqueous layer was extracted with DCM (3 \times 150 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed to give the crude product **2a**. Purification by column using petroleum ether/ethyl acetate (8:1, v/v) as eluent gave **2a** (404.1 mg, 78% yield).

6. X-ray crystallography of 2a

Figure S1. ORTEP diagram showing of 2a (ellipsoid contour 30% probability, CCDC number

2086110).

The single crystals for compound **2a** were prepared via slowly evaporating the solution of the compounds in ethyl acetate and hexane.

Table S1.	. Crystal	parameters.
-----------	-----------	-------------

space_group_crystal_system	orthorhombic
space_group_IT_number	60
space_group_name_H-M_alt	Pbcn
space_group_name_Hall	-P 2n 2ab
cell_length_a	13.2986(6)
cell_length_b	11.5969(5)
cell_length_c	13.9831(7)
cell_angle_alpha	90
cell_angle_beta	90
cell_angle_gamma	90
cell_volume	2156.51(17)
cell_formula_units_Z	8
cell_measurement_reflns_used	4958
cell_measurement_temperature	100.0(2)
cell_measurement_theta_max	28.9940
cell_measurement_theta_min	2.7120

absorpt_coefficient_mu	0.323
absorpt_correction_T_max	1.00000
absorpt_correction_T_min	0.81568
absorpt_correction_type	multi-scan
absorpt_process_details	CrysAlisPro 1.171.38.43f (Rigaku Oxford
	Diffraction, 2015)
	Empirical absorption correction using
	spherical harmonics,
	implemented in SCALE3 ABSPACK scaling
	algorithm

7. Characterization data for product 2, 4, 5, 6

Compound **2a**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 18.7 mg, 72% yield, yellow solid, mp 40-41 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.58-7.54 (m, 3H), 7.02 (d, *J* = 8.68 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 170.9, 161.4, 158.5 (q, *J* = 36.8 Hz), 128.1, 122.3, 121.0 (d, *J* = 271.2), 116.5, 114.9, 55.5. ¹⁹F NMR (376 MHz, CDCl₃): δ = -64.4 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₉F₃NOS⁺ 260.0351, found 260.0362.

Compound **2b**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 21.9 mg, 80% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.56-7.53 (m, 3H), 7.00 (d, *J* = 8.76 Hz, 2H), 4.14 (q, *J* = 6.96 Hz, 2H), 1.49 (t, *J* = 6.96 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 170.9, 160.8, 158.4 (q, *J* = 36.6 Hz), 128.1, 122.1, 121.0 (d, *J* = 271.1), 116.4, 115.3, 63.8, 14.7. ¹⁹F NMR (376 MHz, CDCl₃): δ = -64.4 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₁F₃NOS⁺ 274.0508, found 274.0517.

Compound **2c**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 15.2 mg, 53% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.56-7.53 (m, 3H), 7.00 (d, *J* = 8.52 Hz, 2H), 4.01 (t, *J* = 6.48 Hz, 2H), 1.91-1.82 (m, 2H), 1.10 (t, *J* = 7.40 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 171.0, 161.0, 158.1 (d, *J* = 36.9 Hz), 128.1, 122.1, 121.0 (d, *J* = 271.4), 116.4, 115.3, 69.8, 22.5, 10.5. ¹⁹F NMR (376 MHz, CDCl₃): δ = -64.4 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₃F₃NOS⁺ 288.0664, found 288.0669.

Compound **2d**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 14.4 mg, 50% yield, yellow oil. ¹H NMR (600 MHz, CDCl₃): δ = 7.55-7.53 (m, 3H), 6.98 (d, *J* = 8.76 Hz, 2H), 4.67-4.61 (m, 1H), 1.40 (s, 3H), 1.39 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ = 171.0, 159.8, 158.2 (q, *J* = 36.7 Hz), 128.1, 121.9, 120.6 (d, *J* = 271.4), 116.4, 116.3, 70.2, 21.9. ¹⁹F NMR (565 MHz, CDCl₃): δ = -64.4 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₃F₃NOS⁺ 288.0664, found 288.0664.

Compound **2e**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 18.6 mg, 72% yield, colorless oil. ¹H NMR (600 MHz, CDCl₃): δ = 7.84 (s, 1H), 7.81 (d, *J* = 7.74 Hz, 1H), 7.47-7.44 (m, 1H), 7.13-7.09 (m, 2H), 4.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 164.8, 156.0, 155.6 (d, *J* = 36.9 Hz), 131.4, 126.9, 121.5 (d, *J* = 271.5), 121.3, 119.2, 116.4, 111.6, 55.7. ¹⁹F NMR (565 MHz, CDCl₃): δ = -64.1 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₉F₃NOS⁺ 260.0351, found 260.0359.

Compound **2f**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 16.3 mg, 60% yield, white solid, mp 68-69 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.84 (s, 1H), 7.81 (d, *J* = 7.88 Hz, 1H), 7.44-7.40 (m, 1H), 7.12-7.05 (m, 2H), 4.35 (q, *J* = 6.96 Hz, 2H), 1.66 (t, *J* = 6.88 Hz, 3H). ¹³C NMR

(150 MHz, CDCl₃): δ = 164.9, 155.4 (d, *J* = 36.3 Hz), 155.3, 131.3, 126.8, 121.2, 121.1 (d, *J* = 271.3 Hz), 119.3, 116.2, 112.1, 65.1, 14.8. ¹⁹F NMR (565 MHz, CDCl₃): δ = -64.1 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₁F₃NOS⁺ 274.0508, found 274.0519.

Compound **2i**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 19.4 mg, 67%, yellow solid, mp 66-67 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.72-7.70 (m, 2H), 6.65 (dd, *J* = 2.40, 8.64 Hz, 1H), 6.60 (d, *J* = 2.36 Hz, 1H), 4.05 (s, 3H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 165.0, 162.4, 157.4, 155.9 (q, *J* = 36.8 Hz), 127.9, 124.2 (q, *J* = 271.1 Hz), 115.1, 112.6, 106.1, 98.5, 55.7, 55.6. ¹⁹F NMR (376 MHz, CDCl₃): δ = -64.1 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₁F₃NO₂S⁺ 290.0457, found 290.0468.

Compound **2j**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 19.6 mg, 68% yield, white solid, mp 98-100 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.42 (s, 1H), 7.40-7.36 (m, 1H), 6.76 (d, *J* = 8.40 Hz, 2H), 4.05 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ = 161.0, 157.4, 155.4 (q, *J* = 35.9 Hz), 130.8, 123.2 (q, *J* = 271.4 Hz), 120.3, 109.1, 104.2, 55.9. ¹⁹F NMR (565 MHz, CDCl₃): δ = -64.0 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₁F₃NO₂S⁺ 290.0457, found 290.0466.

Compound **2k**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 17.0 mg, 56% yield, white solid, mp 67-68 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.53 (s, 1H), 7.22 (d, *J* = 8.32 Hz, 1H),

7.08 (s, 1H), 6.96 (d, J = 8.32 Hz, 1H), 4.21 (q, J = 6.96 Hz, 2H), 3.95 (s, 3H), 1.55 (t, J = 6.96 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.1$, 158.4 (q, J = 36.7 Hz), 151.3, 149.0, 123.7 (q, J = 271.1 Hz), 122.4, 119.8, 116.6, 111.8, 110.9, 64.7, 56.1, 14.7. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -64.3$ (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₃F₃NO₂S⁺ 304.0614, found 304.0624.

Compound **21**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 16.7 mg, 55% yield, yellow solid, mp 75-77 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.54 (s, 1H), 7.20 (d, *J* = 8.20 Hz, 1H), 7.07 (s, 1H), 6.95 (d, *J* = 8.28 Hz, 1H), 4.20 (q, *J* = 6.92 Hz, 2H), 3.96 (s, 3H), 1.53 (t, *J* = 6.96 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 171.1, 158.4 (q, *J* = 36.8 Hz), 150.5, 149.8, 123.7 (q, *J* = 271.9 Hz), 122.3, 119.8, 116.6, 112.7, 109.7, 64.5, 56.1, 14.7. ¹⁹F NMR (376 MHz, CDCl₃): δ = -64.4 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₃F₃NO₂S⁺ 304.0614, found 324.0627.

Compound **2m**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 24.2 mg, 76% yield, white solid, mp 138-140 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.29 (s, 1H), 6.26 (s, 2H), 4.02 (s, 6H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 162.1, 161.4, 158.5, 155.5 (q, *J* = 35.8 Hz), 121.8 (d, *J* = 271.2 Hz), 118.8, 102.8, 90.8, 55.9, 55.5. ¹⁹F NMR (376 MHz, CDCl₃): δ = -64.0 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₃F₃NO₃S⁺ 320.0563, found 320.0575.

Compound 2n: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 23.1 mg, 72% yield,

yellow solid, mp 59-60 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.71 (s, 1H), 7.48 (d, *J* = 8.76 Hz, 1H), 6.80 (d, *J* = 8.82 Hz, 1H), 4.08 (s, 3H), 3.95 (s, 3H), 3.93 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ = 164.9, 156.0 (q, *J* = 36.7 Hz), 155.3, 151.0, 142.1, 122.8 (q, *J* = 271.7 Hz), 121.2, 117.1, 115.8, 107.9, 60.9, 60.5, 56.2. ¹⁹F NMR (565 MHz, CDCl₃): δ = -64.3 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₃F₃NO₃S⁺ 320.0563, found 320.0576.

Compound **20**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 13.6 mg, 45% yield, white solid, mp 50-51 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.70 (s, 1H), 7.59 (d, *J* = 8.70 Hz, 1H), 6.77 (d, *J* = 8.76 Hz, 1H), 3.91 (s, 3H), 3.82 (s, 3H), 2.26 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ = 165.5, 160.5, 156.6, 156.2 (q, *J* = 36.5 Hz), 124.7, 122.8 (q, *J* = 271.1 Hz), 120.2, 116.6, 115.9, 106.8, 60.5, 55.8, 9.47. ¹⁹F NMR (565 MHz, CDCl₃): δ = -64.3 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₃F₃NO₂S⁺ 304.0614, found 304.0626.

Compound **2p**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 10.3 mg, 37% yield, yellow solid, mp 77-79 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.54 (s, 1H), 7.39-7.34 (m, 2H), 7.08-7.04 (m, 1H), 3.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 169.6, 158.6 (q, *J* = 37.0 Hz), 153.7 (d, *J* = 247.1 Hz), 149.6 (d, *J* = 10.2 Hz), 123.1 (d, *J* = 3.6 Hz), 122.6 (d, *J* = 7.2 Hz), 120.9 (d, *J* = 271.5 Hz), 117.1, 114.6 (d, *J* = 19.6 Hz), 113.9 (d, *J* = 2.7 Hz), 56.4. ¹⁹F NMR (376 MHz, CDCl₃): δ = -64.4 (s, 3F), -133.0 (s, 1F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₈F₄NOS⁺ 278.0257, found 278.0261.

Compound **2q**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 13.0 mg, 54% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.59-7.56 (m, 2H), 7.53 (s, 1H), 7.02-6.98 (m, 2H), 6.84 (t, *J* = 54.9 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ = 169.9, 163.6 (t, *J* = 28.4 Hz), 161.1, 128.1, 122.8, 116.0, 114.8, 112.7 (t, *J* = 237.8 Hz), 55.5. ¹⁹F NMR (376 MHz, CDCl₃): δ = -113.3 (s, 2F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₀F₂NOS⁺ 242.0446, found 242.0457.

Compound **2r**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 3.9 mg, 14% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.58 (d, *J* = 8.68 Hz, 2H), 7.53 (s, 1H), 7.01 (d, *J* = 8.64 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 170.7, 162.3 (t, *J* = 31.0 Hz), 161.4, 128.1, 122.4, 122.0, 115.9, 114.8, 55.5. ¹⁹F NMR (376 MHz, CDCl₃): δ = -50.3 (s, 2F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₉ClF₂NOS⁺ 276.0056, found 276.0063.

Compound **2t**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 23.9 mg, 77% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.59-7.56 (m, 3H), 7.02 (d, *J* = 8.64 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ = 170.9, 161.4, 157.3 (t, *J* = 27.9 Hz), 128.2, 122.2, 119.6, 117.6, 114.9, 109.9, 55.5. ¹⁹F NMR (376 MHz, CDCl₃): δ = -83.6 (s, 3F), -113.4 (s, 2F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₉F₅NOS⁺ 310.0320, found 310.0331.

Compound **2u**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 26.9 mg, 75% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.59-7.55 (m, 3H), 7.03-6.99 (m, 2H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ = 170.8, 161.4, 157.2 (t, *J* = 27.6 Hz), 128.2, 122.2, 119.0-116.6 (m), 117.8, 113.7-111.5 (m), 110.3-108.2 (m), 114.9, 55.5. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.2--80.3 (m, 3F), -111.2 - -111.3 (m, 2F), -126.6 (s, 2F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₉F₇NOS⁺ 360.0288, found 360.0299.

Compound **2v**: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 33.7 mg, 82% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.60-7.56 (m, 3H), 7.02-6.99 (m, 2H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 170.8, 161.4, 157.4 (t, *J* = 27.3 Hz), 128.2, 122.2, 119.2-118.5 (m), 117.9, 116.3-115.7 (m), 114.9, 112.9-112.2 (m), 110.3-108.6 (m), 55.5. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.9--81.0 (m, 3F), -110.5--110.6 (m, 2F), -123.0--123.1 (m, 2F), -125.7--125.8 (m, 2F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₉F₉NOS⁺ 410.0256, found 410.0268.

Compound 4: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 5.7 mg, 21% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 8.02 (d, *J* = 7.76 Hz, 2H), 7.69 (s, 1H), 7.63 (d, *J* = 8.84 Hz, 2H), 7.51-7.42 (m, 3H), 7.01 (d, *J* = 8.88 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ = 168.3, 168.1, 160.7, 135.0, 129.2, 128.8, 128.0, 126.9, 123.7, 116.7, 114.6, 55.4. HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{16}H_{14}NOS^+$ 268.0791, found 268.0795.

Compound 5: purified by TLC plate (petroleum ether/ethyl acetate = 8:1, v/v), 26.0 mg, 71% yield, colorless oil. ¹H NMR (600 MHz, CDCl₃): δ = 7.29-7.23 (m, 5H), 7.20 (d, *J* = 7.38 Hz, 2H), 6.88 (d, *J* = 8.34 Hz, 2H), 6.25 (d, *J* = 2.94 Hz, 1H), 3.83 (s, 3H), 2.73 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ = 169.4, 160.9, 155.9 (q, *J* = 36.1 Hz), 141.6, 134.8, 130.7, 128.2, 127.4, 125.7, 122.7 (q, *J* = 272.5 Hz), 121.2, 114.3, 68.0, 55.4. ¹⁹F NMR (565 MHz, CDCl₃): δ = -61.4 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₅F₃NO₂S⁺ 366.0770, found 366.0783.

Compound 6: purified by TLC plate (petroleum ether/ethyl acetate = 10:1, v/v), 13.3 mg, 58% yield, white solid, mp 43-44 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, *J* = 15.72 Hz, 1H), 7.64 (d, *J* = 8.36 Hz, 2H), 6.99 (d, *J* = 8.36 Hz, 2H), 6.93 (d, *J* = 15.84 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 180.4 (q, *J* = 34.9 Hz), 163.2, 150.0, 131.4, 126.2, 120.9 (q, *J* = 288.9 Hz), 114.8, 114.1, 55.5. ¹⁹F NMR (376 MHz, CDCl₃): δ = -77.5 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₀F₃O₂⁺ 231.0627, found 231.0633.

8. ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra

¹H NMR (400 MHz, CDCl₃) of **2a**:

110 100 f1 (ppm) 80 70 140 130 120

¹⁹F NMR (376 MHz, CDCl₃) of **2a**:

¹H NMR (400 MHz, CDCl₃) of **2b**:

¹³C NMR (100 MHz, CDCl₃) of **2b**:

¹⁹F NMR (376 MHz, CDCl₃) of **2b**:

¹H NMR (400 MHz, CDCl₃) of **2c**:

¹³C NMR (100 MHz, CDCl₃) of **2c**:

¹⁹F NMR (376 MHz, CDCl₃) of **2c**:

¹H NMR (600 MHz, CDCl₃) of **2d**:

¹³C NMR (150 MHz, CDCl₃) of **2d**:

¹⁹F NMR (565 MHz, CDCl₃) of **2d**:

¹H NMR (600 MHz, CDCl₃) of **2e**:

¹³C NMR (100 MHz, CDCl₃) of **2e**:

¹⁹F NMR (565 MHz, CDCl₃) of **2e**:

¹H NMR (400 MHz, CDCl₃) of **2f**:

¹³C NMR (150 MHz, CDCl₃) of **2f**:

¹⁹F NMR (565 MHz, CDCl₃) of **2f**:

¹H NMR (400 MHz, CDCl₃) of **2i**:

¹³C NMR (100 MHz, CDCl₃) of **2i**:

165.0432 162.4229 157.4168 155.8577 155.4899 155.1284 154.7593	127.9136 124.2433 121.5320 118.15320 118.168 116.1068 115.1485 112.5561	106.0937	98.4576	55.7307 55.6146
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			\checkmark

¹⁹F NMR (376 MHz, CDCl₃) of **2i**:

¹H NMR (400 MHz, CDCl₃) of **2**j:

¹³C NMR (150 MHz, CDCl₃) of **2**j:

¹⁹F NMR (565 MHz, CDCl₃) of **2j**:

¹H NMR (400 MHz, CDCl₃) of **2**k:

¹³C NMR (100 MHz, CDCl₃) of **2k**:

171.1214	158.3925 158.0253 157.6566 157.2898 157.2898 151.3395 151.3395	123.6995 122.4116 122.4116 122.4116 119.7687 119.7687 119.7687 111.55581 111.55581 111.55581 111.55582 110.9097	. 64.7265 56.0836	14.7246
				- I

¹⁹F NMR (376 MHz, CDCl₃) of **2k**:

¹H NMR (400 MHz, CDCl₃) of **2l**:

¹³C NMR (100 MHz, CDCl₃) of **2l**:

¹⁹F NMR (376 MHz, CDCl₃) of **2l**:

¹H NMR (400 MHz, CDCl₃) of **2m**:

¹³C NMR (100 MHz, CDCl₃) of **2m**:

162.1176 161.3604 158.5083 155.1645 155.1645 155.1645 154.4463 154.4463 154.4463	121.8493 119.1378 118.7547	102.8135	90.8353	55.8536 55.4924
	$\langle \cdot \rangle$	1		\sim

110 100 f1 (ppm) 200 190 160 150 140 130 120

¹⁹F NMR (376 MHz, CDCl₃) of **2m**:

¹H NMR (600 MHz, CDCl₃) of **2n**:

¹³C NMR (150 MHz, CDCl₃) of **2n**:

¹H NMR (600 MHz, CDCl₃) of **20**:

¹³C NMR (150 MHz, CDCl₃) of **20**:

165.4895 160.4712 156.5987 156.2122 155.9691 155.4809 155.4809	124,7178 122,7579 120,508 120,508 120,2416 120,2416 117,3325 115,8683 115,8683 116,8229 106,8299	60.4601 55.8477	9.4665
			1

¹⁹F NMR (565 MHz, CDCl₃) of **20**:

¹H NMR (400 MHz, CDCl₃) of **2p**:

¹³C NMR (100 MHz, CDCl₃) of **2p**:

¹H NMR (400 MHz, CDCl₃) of **2q**:

¹³C NMR (150 MHz, CDCl₃) of **2q**:

- 169.8969 - 163.6020 - 163.4126 - 163.2257 - 161.1396	- 128,1000 - 122,8104 - 112,5550 - 111,7557 - 111,7551 - 111,7551 - 111,7551 - 111,7551 - 111,7551 - 110,5517	- 55.4627

¹⁹F NMR (376 MHz, CDCl₃) of **2q**:

¹H NMR (400 MHz, CDCl₃) of **2r**:

¹³C NMR (100 MHz, CDCl₃) of **2r**:

¹⁹F NMR (376 MHz, CDCl₃) of **2r**:

¹H NMR (400 MHz, CDCl₃) of **2t**:

¹³C NMR (150 MHz, CDCl₃) of **2t**:

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) of **2t**:

¹H NMR (400 MHz, CDCl₃) of **2u**:

¹³C NMR (150 MHz, CDCl₃) of **2u**:

¹⁹F NMR (376 MHz, CDCl₃) of **2u**:

¹H NMR (400 MHz, CDCl₃) of **2v**:

¹³C NMR (100 MHz, CDCl₃) of **2v**:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(f1 (ppm) ¹⁹F NMR (376 MHz, CDCl₃) of **2v**:

¹H NMR (400 MHz, CDCl₃) of 4:

¹³C NMR (150 MHz, CDCl₃) of **4**:

¹H NMR (600 MHz, CDCl₃) of **5**:

¹³C NMR (150 MHz, CDCl₃) of **5**:

¹⁹F NMR (565 MHz, CDCl₃) of **5**:

¹H NMR (400 MHz, CDCl₃) of **6**:

¹³C NMR (100 MHz, CDCl₃) of **6**:

180.4394 180.0906 179.7436 179.3952	163.2017	149.9669	1131,4032 126,1886 120,9188 118,0218 1115,0218 1114,7656 1114,0657	55.5422
\sim	1		1 1	

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹⁹F NMR (376 MHz, CDCl₃) of 6:

-70. 0 -70. 5 -71. 0 -71. 5 -72. 0 -72. 5 -73. 0 -73. 5 -74. 0 -74. 5 -75. 0 -75. 5 -76. 0 -76. 5 -77. 0 -77. 5 -78. 0 -78. 5 -79. 0 -79. 5 -80. 0 -80. 5 -81. 0 -81. 5 -82. 0 -82. 5 -83. 0 -83. 5 f1 (ppm)