Supporting Information

Visual Analysis and Inhibitor Screening of Leucine Aminopeptidase, A Key Virulence for Pathogenic Bacteria Associated Infection

Ming Zhang,^{†,‡,#} Zhenhao Tian,^{§,#} Jiayue Wang^{,†,}^{*,#} Xiangge Tian,[†] Chao Wang,^{†,*} Jingnan Cui,[‡] Xiaokui Huo,[†] Lei Feng,^{†,I,*} Zhenlong Yu,[†] Xiaochi Ma^{†,¤,*}

[†] Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China

[‡] State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

[§] School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China

*Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China

^a Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China

¹School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China

* Corresponding authors.

E-mail address: wach_edu@sina.com (C. Wang), leifeng@mail.dlut.edu.cn (L. Feng),

maxc1978@163.com (X. Ma)

[#] These authors contributed equally to this work.

Index

Experimental	S4
Materials and apparatus	S4
Synthesis of fluorescent probe DDBL	S4
Scheme S1. The synthetic route of the fluorescent probe DDBL.	S5
Enzymatic hydrolysis of DDBL mediated by leucine aminopeptidase (LAP)	S6
Identification of intestinal bacteria with active LAP	S6
Native-PAGE for bacterial lysates and LAP proteins	S7
Investigation about inhibitory effects of natural products on LAP	S7
Spectroscopic data of isolated natural compounds as LAP inhibitors	S7
Fluorescence imaging of <i>S. aureus</i> cells by DDBL	S8
Inhibitory effect of LAP inhibitors against the infection of RAW 264.7 by S. aureus	S8
Murine sepsis infection model and the attenuation effect of AKBA	S9
Fig. S1. The absorbance spectra (a) and fluorescence spectra (b) of DDBL and DDAO	S10
Fig. S2. HPLC analysis for the enzymatic hydrolysis of DDBL mediated by LAP	S10
Fig. S3. The fluorescence response of DDBL towards LAP at different incubation time	(0-120
min)	S10
Fig. S4. The fluorescence responses of DDBL and DDAO in phosphate buffer with differ	ent pH
values (pH 4-9).	S11
Fig. S5. The inference of phosphate buffer with different pH values on the hydrolysis of	DDBL
mediated by LAP.	S11
Fig. S6. The fluorescence response of DDBL hydrolyzed by LAP under different incu	ubation
temperature.	S11
Fig. S7. Inferences of various species on the fluorescence intensity of DDBL (a. amino ad	cids, c.
ions) and the hydrolysis of DDBL mediated by LAP (b. amino acids, d. ions)	S12
Fig. S8. The analysis of metabolism of DDBL by endogenous LAP in Klebsiella variicold	ı strain
F2R9.	S12
Table S1. Primers for the RT-PCR of homology LAP in six isolated intestinal bacteria	S13
Fig. S9. The native-PAGE analysis of a series LAP at different concentrations stained by sil	lver (a)
and Coomassie blue (b).	S13
Fig. S10. The native-PAGE analysis for bacterial lysates stained by Commassie blue	S14
Fig. S11. The amino acids sequence comparison about individual LAP expressed by six ba	acterial
species	S14
Table S2. Medical herbs for the inhibitory evaluation against LAP.	S15
Fig. S12. The inhibitory effects of herb medicines 1-54 against LAP.	S16
Fig. S13. (a) Inhibitory kinetics about AKBA against LAP. (b) Lineweaver–Burk plot. [s]	DDBL
as the substrate	S16
Fig. S14. Preparation of LAP inhibitors from R. officinalis	S17
Fig. S15. RT-PCR for LAP in S. aureus.	S18
Fig. S16. Interference evaluation about AKBA on the proliferation of S. aureus.	S18
Fig. S17. Interference evaluation about carnosic acid (CAA) on the proliferation of S. aureu	ısS18
Fig. S18. Images of blood cultured agar plate stained by DDBL from mice as the vehicle	group.
(a) Bright image, (b) fluorescence image.	S19
Fig. S19. ¹ H NMR spectrum of DDBL in MeOD.	S19

Fig. S20. ¹³ C NMR spectrum of DDBL in CDCl ₃ +MeOD	S20
Fig. S21. HRMS spectrum of DDBL.	S20
Fig. S22. ¹ H NMR spectrum of compound 1 in CDCl ₃	S21
Fig. S23. ¹ H NMR spectrum of AKBA in DMSO- <i>d</i> ₆	S21
Fig. S24. ¹³ C NMR spectrum of AKBA in DMSO- <i>d</i> ₆	S22
Fig. S25. HRMS of AKBA.	S22
Fig. S26. ¹ H NMR spectrum of carnosic acid in DMSO- <i>d</i> ₆	S23
Fig. S27. ¹³ C NMR spectrum of carnosic acid in DMSO- <i>d</i> ₆	S23
Fig. S29. ¹ H NMR spectrum of carnosol in DMSO- <i>d</i> ₆ .	S24
Fig. S30. ¹³ C NMR spectrum of carnosol in DMSO- <i>d</i> ₆	S25
Fig. S31. HRMS of carnosol.	S25
Reference	S25

Experimental

Materials and apparatus

All of the constituents for bacterial culture medium such as yeast extracts, tryptone, agar, glucose, and NaCl were purchased from Dalian Meilun Biotechnology Co., Ltd (China). Chemical reagents for the synthesis of fluorescent probe and isolation of natural compounds were produced by Tianjin Kemio Chemical Reagent Co., Ltd (China). Chromatographic reagents, such as acetonitrile and methanol were purchased from sigma-aldrich (MERCK). Leucine aminopeptidase (LAP), Lipase, penicillin G acylase (PGA), bovine serum albumin (BSA), and human albumin (HSA) were purchased from sigma-aldrich (MERCK). Pyroglutamyl aminopeptidase I (PGP-1) was the production of Maibo Pharmaceutical Co., Ltd. CYP450 enzymes (CYP3A5, CYP4F2, CYP3A4) and human carboxylesterases (CE2, CE1c, CE1b) were purchased from Corning Incorporated Life Sciences.

NMR spectra of the synthesized compounds and isolated natural compounds were acquired using a Bruker-500 and 600 with tetramethylsilane (TMS) as the internal standard (Bruker, USA). High resolution mass spectral (HRMS) was measured using a G6224A TOF-MS. HPLC analysis was performed on a Dionex UltiMate 3000 equipped with a DAD detector and a C18 silica gel column (Thermo Scientific, USA). Natural compounds were purified using pre-HPLC manufactured by Agel Technology, which contained an YMC (250 mm \times 10 mm) column packed with C18 (5 µm) silica gel, following with a UV detector. A constant temperature incubator shaker (HZQ-C) was obtained from Harbin Donglian Electronic Technology Development Co., LTD (China). A confocal laser scanning microscope was manufactured by Leica (German). The fluorescence spectra and fluorescence intensity was recorded using a BioTek Synergy H1 microplate reader (BioTek, USA). Both fluorescence imaging of native-PAGE gel stained by **DDBL** and 96-well plate was performed using an Amersham Typhoon RGB (GE, USA).

Synthesis of fluorescent probe DDBL

Scheme S1. The synthetic route of the fluorescent probe DDBL.

Compound 1 was synthesized according to the previous procedure reported.¹ ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.48 (s, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 4.93 (s, 1H), 4.47 (s, 2H), 4.23 (s, 1H), 1.76 (ddd, J = 23.4, 13.9, 7.8 Hz, 2H), 1.58 – 1.53 (m, 1H), 1.46 (s, 9H), 0.97 (dd, J = 8.8, 6.4 Hz, 6H).

A solution of compound 1 (398.1 mg, 1.0 mmol), K₂CO₃ (138.2 mg, 1.0 mmol) and 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO, 307.0 mg, 1.0 mmol) in DMF (15 mL) was stirred at room temperature (RT) overnight. Then the reaction solution was diluted with 300 mL CH₂Cl₂ and washed with water and brine. The crude compound 2 was obtained after removing the organic phase by reduced pressure distillation, which was used without further purification. Then, trifluoroacetic acid (5 mL) was added into the solution of the crude product 2 in CH₂Cl₂ (15 mL), and the mixture was stirred overnight at RT for the deprotection. After removing the solvent, the residues were purified over a silica column with $CH_2Cl_2/MeOH$ (16/1 v/v) to afford **DDBL** as an orange solid (164.9 mg, yield: 31.4%). ¹H NMR (500 MHz, MeOD) $\delta_{\rm H}$ 7.70 (s, 1H), 7.65 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 8.7 Hz, 1H), 7.47 (d, J =8.3 Hz, 2H), 7.26 (s, 1H), 7.09 (d, J = 8.8 Hz, 1H), 5.22 (s, 2H), 3.56 – 3.52 (m, 1H), 1.90 (s, 6H), 1.78 (dt, J = 13.2, 6.6 Hz, 1H), 1.69 – 1.63 (m, 1H), 1.55 – 1.49 (m, 1H), 1.00 (dd, J = 9.9, 6.6 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃+MeOD) $\delta_{\rm C}$ 175.01, 173.82, 162.83, 147.61, 141.48, 141.22, 139.67, 138.34, 136.73, 136.07, 134.66, 134.39, 131.89, 128.77, 120.36, 114.40, 114.33, 70.57, 54.13, 44.31, 39.54, 26.90, 25.09, 23.20, 21.83. HRMS (ESI negative) calcd. for [M+CF₃COO]⁻ 638.1442, found 638.1443.

Enzymatic hydrolysis of DDBL mediated by leucine aminopeptidase (LAP)

The enzymatic hydrolysis of **DDBL** mediated by LAP was performed in phosphate buffer (PB, pH 7.4) containing K₂HPO₄ and KH₂PO₄ (K⁺ 100 mM). 200 μ L PB containing LAP (0.063 U/mL) and **DDBL** (10 μ M) were shaken under constant temperature (37 °C) for 1 h. Then, 100 μ L acetonitrile was used to terminate the enzymatic reaction before the removing of denatured protein by centrifugation (20000 *g*, 10 min). The supernate was subjected to microplate reader for the measurement of fluorescence spectra (λ_{ex} 600/ λ_{em} 660 nm).

In addition, a series enzymatic hydrolysis of **DDBL** (10 μ M) were performed in presence of LAP at different concentrations (0 – 0.0945 U/mL) with an incubation at 37 °C for 1 h, as well as the records of fluorescence intensities. The relationship was calculated between fluorescence intensities and LAP concentrations.

The selectivity investigation of **DDBL** toward LAP was performed with the co-incubation of **DDBL** (37 °C, 1 h) and various biological enzymes CYP3A5, CYP4F2, CYP3A4, CE2, CE1c, CE1b, PGP-1, PGA and lipase (3 μ g/mL). The interference on the fluorescence intensity of **DDBL** and the enzymatic hydrolysis of **DDBL** was performed for various species, including ions (Mn²⁺, Ca²⁺, Mg²⁺, Ni²⁺, Zn²⁺, Sn⁴⁺, Fe³⁺, Ba²⁺, Cr⁶⁺, 200 μ M), amino acids (Ser, Trp, Tyr, Gly, Gys, Arg, Lys, Gln, GSH, 10 μ M), even glucose (10 μ M).

Identification of intestinal bacteria with active LAP

Fresh human stools were dispersed in sterile water, and coated on nutrient broth (NB) agar plate, which was cultured at 37 °C for about 24 h until the obvious bacterial colonies. Then, **DDBL** (50 μ M) was sprayed on these colonies for an incubation at 37 °C for 2 h. Imaged by Amersham Typhoon RGB, the fluorescence image of agar plate was recorded, which displayed fluorescence colonies ($\lambda_{ex} = 635$ nm, $\lambda_{em} = 670 \pm 15$ nm). After further purification, target bacteria strains were obtained as LAP active bacteria species. The isolated bacterial strains were identified by 16S rRNA gene sequencing. The RT-PCR primer was as followed.

1510 R: 5'-ACGGYTACCTTGTTACGACTT-3'

7F: 5'-AGAGTTTGATYMTGGCTCAG-3'

Native-PAGE for bacterial lysates and LAP proteins

The native gel was prepared containing 10% polyacrylamide separation gel and 4% concentrated gel. After solidification at room temperature, bacterial lysates containing equal amounts of protein (18 μ g) or the recombinant LAP enzyme with different loading amount (10, 20, 50, 100, 200, 300, 400, 500 ng) were loaded into the gel, respectively. The electrophoresis of native-PAGE was carried out under constant pressure (100 V for 0.5 h and 150 V for 2 h) with ice-water bath until the marker strips are separated and the bromophenol blue was electrophoresed to the bottom of the gel.

When the electrophoresis was finished, the gel was subjected to **DDBL** solution (50 μ M) for incubation at 37 °C (4.5 h). After washing by PB solution, the gel was scanned using a fluorescence scanner and fluorescence images were obtained ($\lambda_{ex} = 635 \text{ nm}$, $\lambda_{em} = 670 \pm 15 \text{ nm}$).

Investigation about inhibitory effects of natural products on LAP

The high throughput screening for LAP inhibitors were performed in 96-well plate by the co-incubation about LAP (0.063 U/mL), **DDBL** (10 μ M) and various herb extractions (100 μ g/mL) with the same enzymatic reaction conditions as mentioned above. Then, the plate was subjected to Amersham Typhoon RGB for the fluorescence imaging ($\lambda_{ex} = 635$ nm, $\lambda_{em} = 670 \pm 15$ nm). According to the fluorescence intensity of individual well, the inhibitory effect of each herb was determined. The inhibitory effect of isolated compounds was evaluated as the same protocol.

Spectroscopic data of isolated natural compounds as LAP inhibitors

3-acetyl-11-keto-*β***-boswellic acid.** ¹H-NMR (600 MHz, DMSO-*d*₆) $\delta_{\rm H}$ 5.44 (s, 1H), 5.10 (t, *J* = 2.5 Hz, 1H), 2.38 (m, 1H), 2.36 (m, 1H), 2.09 (m, 2H), 2.04 (s, 3H), 1.82 (m, 2H), 1.65 (m, 2H), 1.56 (d, *J* = 10.8 Hz, 1H), 1.36-1.46 (m, 4H), 1.30-1.34 (m, 4H), 1.31 (s, 3H), 1.18-1.23 (m, 3H), 1.10 (s, 3H), 1.09 (s, 3H), 1.05 (s, 3H), 0.99 (m, 1H), 0.92 (s, 3H), 0.79 (s, 3H), 0.76 (d, *J* = 6.4 Hz, 3H). ¹³C-NMR (150 MHz, DMSO-*d*₆) $\delta_{\rm C}$ 198.2, 177.4, 169.9, 164.5, 129.6, 72.5, 59.6, 58.2, 49.4, 45.7, 44.5

43.4, 40.4, 38.7, 38.5, 36.8, 34.1, 33.6, 32.2, 30.4, 28.5, 26.9, 26.7, 23.5, 23.1, 21.0, 20.9, 20.1, 18.6, 18.0, 17.0, 13.1. (+)-HR-ESI-MS *m/z* 513.3563 [M+H]⁺, calcd for C₃₂H₄₉O₅⁺, *m/z* 513.3575.

Carnosol. ¹H-NMR (600 MHz, DMSO- d_6) $\delta_{\rm H}$ 8.37 (s, 1H), 8.13 (s, 1H), 6.70 (s, 1H), 5.46 (dd, J = 4.2, 1.2 Hz, 1H), 3.20 (m, 1H), 2.66 (m, 1H), 2.46 (dt, J = 13.8, 4.2 Hz, 1H), 2.07 (m, 1H), 1.79 (m, 2H), 1.60 (dd, J = 10.8, 6.0 Hz, 1H), 1.52 (m, 1H), 1.45 (m, 1H), 1.23 (m, 1H), 1.19 (d, J = 6.8 Hz, 6H), 0.81 (s, 3H), 0.79 (s, 3H). ¹³C-NMR (150 MHz, DMSO- d_6) $\delta_{\rm C}$ 175.5, 143.2, 143.0, 134.2, 131.5, 121.9, 111.3, 76.9, 47.8, 44.9, 40.5, 34.1, 31.3, 29.2, 28.8, 26.2, 22.8, 22.6, 19.4, 18.5. (+)-HR-ESI-MS m/z 331.1892 [M+H]⁺, calcd for C₂₀H₂₇O₄⁺, m/z 331.1904.

Carnosic acid. ¹H-NMR (600 MHz, DMSO- d_6) $\delta_{\rm H}$ 11.95 (br s, 1H), 7.79 (s, 2H), 6.33 (s, 1H), 3.53 (m, 1H), 3.15 (m, 1H), 2.70 (m, 2H), 2.16 (m, 2H), 1.69 (s, 1H), 1.48 (m, 1H), 1.47 (m, 1H), 1.43 (m, 2H), 1.24 (dt, J = 13.2, 4.8 Hz, 1H), 1.12 (d, J =7.2 Hz, 3H), 1.09 (d, J = 7.2 Hz, 3H), 0.96 (m, 1H), 0.81 (s, 3H), 0.78 (s, 3H). ¹³C-NMR (150 MHz, DMSO- d_6) $\delta_{\rm C}$ 176.9, 145.1, 139.0, 134.3, 129.0, 126.8, 116.3, 53.4, 47.0, 40.9, 33.8, 33.6, 32.5, 31.6, 26.0, 22.9, 22.7, 20.1, 19.7, 18.2. (+)-HR-ESI-MS m/z 333.2051 [M+H]⁺, calcd for C₂₀H₂₉O₄⁺, m/z 333.2060.

Fluorescence imaging of S. aureus cells by DDBL

S. aureus was cultured in NB medium to get enough cells with OD₆₀₀ values at 0.7-0.8. The medium was removed by centrifugation (5000 rpm, 10 min). The bacterial cells were washed two times by PB (1 mL) and suspended into PB (1 mL) following pre-incubation for 3 min at 37 °C. Then, **DDBL** (50 μ M) was added into the bacterial suspension for incubation at 37 °C (6 h). For the inhibitory experiment, inhibitors (50 μ M) were added into the bacterial suspension together with the fluorescent probe. After the incubation, the clear bacterial cells were prepared by the washing procedure using PB and centrifugation (5000 rpm). The bacterial cells were resuspended in 30 μ L PB for fluorescence imaging experiments. The bacterial suspension was dropped onto a glass slide, which was subjected on confocal laser scanning microscopy to obtain fluorescence images ($\lambda_{ex} = 633$ nm, $\lambda_{em} = 645 - 690$ nm).

Inhibitory effect of LAP inhibitors against the infection of RAW 264.7 by S. aureus

The infection of murine RAW 264.7 macrophage-like cells was performed as previous protocol.² RAW 264.7 cells were maintained in tissue culture medium (TCM) consisting of DMEM supplemented with 10% fetal bovine serum. For infection assays cells were seeded into 6-well plates 24 h prior to use and infected at an MOI of 100 by *S. aureus* for 2 h. The *S. aureus* in inhibitor group has been pre-incubated by inhibitors before infection (**AKBA** 25 μ M, **CAA** 50 μ M). Then, cells were washed with PBS (×2) for the clearance of *S. aureus*, which were subjected into fresh DMEM for a continue culture about 12 h. Meantime, inhibitors and DMSO (control group) were added. Finally, the cells were washed with PBS and lysed using PBS containing 0.5% Triton X-100. Samples were withdrawn to determine bacterial numbers and the remaining bacteria pelleted by centrifugation. The inflammatory cytokines interleukin (IL)-6, tumour necrosis factor-alpha (TNF- α) were also determined using ELISA kits (Elabscience).

Murine sepsis infection model and the attenuation effect of AKBA

Femal six-week old Swiss mice were randomly divided into three groups: vehicle group (n = 7), sepsis model (n = 12), **AKBA** group (n = 12). The mice of three groups were administrated with different samples via intraperitoneal injection: vehicle group (sterile water 0.1 mL), sepsis model (*S. aureus* 3.75×10^8 CFU in 0.1 mL), **AKBA** group (pre-incubated *S. aureus* by 25 µM **AKBA**). Then, the behaviors of experimental mice were recorded and imaged, together with the survival within 24 h. When the death was observed for experimental mice, they were extracted the eyeball blood, as well as the collection of different organs and tissues in aseptic clean bench, including heart, lung, liver, kidney, spleen, kidney, belly. The loaded *S. aureus* in these organs were determined by culture. And, the inflammatory cytokines IL-6, TNF- α , INF- γ were determined using ELISA kits (Elabscience).

Fig. S1. The absorbance spectra (a) and fluorescence spectra (b) of DDBL and DDAO.

Fig. S2. HPLC analysis for the enzymatic hydrolysis of **DDBL** mediated by LAP. (a) LAP solution. (b) **DDAO** reference standard. (c) The reaction solution about **DDBL** and LAP. (d) **DDBL** reference standard.

Fig. S3. The fluorescence response of **DDBL** toward LAP at different incubation time (0-120 min). (a) Fluorescence spectra, (b) Relationship between fluorescence intensity and incubation time.

Fig. S4. The fluorescence responses of DDBL and DDAO in phosphate buffer with different pH values (pH 4-9), λ_{ex} 600 nm, λ_{em} 660 nm.

Fig. S5. The inference of phosphate buffer with different pH values on the hydrolysis of **DDBL** mediated by LAP.

Fig. S6. The fluorescence response of **DDBL** hydrolyzed by LAP under different incubation temperature.

Fig. S7. Inferences of various species on the fluorescence intensity of **DDBL** (a. amino acids, c. ions) and the hydrolysis of **DDBL** mediated by LAP (b. amino acids, d. ions).

Fig. S8. The analysis of metabolism of **DDBL** by endogenous LAP in *Klebsiella variicola* strain F2R9. (a) The culture of *K. variicola* strain F2R9. (b) **DDAO** reference. (c) The co-incubation of **DDBL** and *K. variicola* strain F2R9. (d) **DDBL** reference.

Strain	Forward primer sequences (5'-3')	Reverse primer sequences (5'-3')
P. gergoviae	GCGCATATGATGGAGTTCAGT	TATGGATCCTCACTCCTCGCCGTTA
	GTAAAAAG	TACC
K. variicola	GCGCATATGATGGAGTTCAGT	TATGGATCCTCACTCTTCGCCGTTA
	GTAAAAAG	AA
E. fergusonii	GCGCATATGATGGAGTTTAGT	TATGGATCCTTACTCTTCGCCGTTA
	GTAAAAAG	AA
E.hormaechei	GCGCATATGATGGAGTTCAGT	TATGGATCCTCACTCGTCGCCGTTA
	GTAAAAAG	AA
S. flexneri	GCGCATATGATGGAGTTTAGT	TATGGATCCTTACTCTTCGCCGTTA
	GTAAAAAG	AA
R. planticola	GCGCATATGATGGAGTTCAGT	TATGGATCCTCACTCTTCGCCGTTA
	GTAAAAAG	AA

Table S1. Primers for the RT-PCR of homology LAP in six isolated intestinal bacteria.

Fig. S9. The native-PAGE analysis of a series LAP at different concentrations stained by silver (a) and Coomassie blue (b).

Fig. S10. The native-PAGE analysis for bacterial lysates stained by Commassie blue.

Fig. S11. The amino acids sequence comparison about individual LAP expressed by six bacterial species.

No.	Name	No.	Name
1	Rhei radix et rhizoma	28	Uncariae ramulus cum uncis
2	Polygonati rhizoma	29	Sparganii rhizoma
3	Corydalis rhizoma	30	Leonurifructus
4	Stemonae radix	31	Artemisiae scopariae herba
5	Polygoni cuspidati rhizoma et radix	32	Rubiae radix et rhizoma
6	Euodiae fructus	33	Angelicae dahuricae radix
7	Lycopi herba	34	Vaccariae semen
8	Olibanum	35	Erigerontis herba
9	Imperatae rhizoma	36	Cistanches herba
10	Asari radix et rhizoma	37	Houttuynlae herba
11	Aucklandlae radix	38	Radix bupleuri
12	Polygoni multiflori radix	39	Eucommiae cortex
13	Solanum nigrum L.	40	Zingiberis rhizoma
14	Notopterygii rhizoma et radix	41	Ephedrae herba
15	Dryopteridis crassirhizomatis rhizoma	42	Cannabis fructus
16	Aconiti lateralis radix praeparaia	43	Stachyuri medulla
17	Agrimonlae herba	44	Galla chinensis
18	Forsythiae fructus	45	Hedyotis diffusa
19	Ganoderma	46	Aconiti radix
20	Angelicae sinensis radix	47	Curcumae rhizoma
21	Angelicae pubescentis radix	48	Dipsaci radix
22	Prunellae spica	49	Curcumae longae rhizoma
23	Sophorae flavescentis radix	50	Astragali radix
24	Arecae pericarpium	51	Anemonealtaica fisch.ex C.A.Mey
25	Euphorbia fischeriana steud.	52	Scrophulariae radix
26	Houttuynia cordata thunb.	53	Gastrodlae rhizoma
27	Sinapis semen	54	Rosmarinus officinalis

Table S2. Medical herbs for the inhibitory evaluation against LAP.

Fig. S12. The inhibitory effects of herb medicines 1-54 against LAP.

Fig. S13. (a) Inhibitory kinetics about AKBA (0-8 μ M) against LAP. (b) Lineweaver–Burk plot.

Fig. S14. Preparation of LAP inhibitors from *R. officinalis*. (a) HPLC chromatogram of *R. officinalis* and preparative fractions. (b) Inhibitory effects of fractions on LAP. (c) Inhibitory activity of carnosol. (d) Inhibitory activity of carnosic acid. (e) Simulated interactions between carnosol and LAP. (f) Simulated interactions between carnosic acid and LAP.

Fig. S15. RT-PCR for LAP in S. aureus.

Fig. S16. Interference evaluation about AKBA on the proliferation of S. aureus.

Fig. S17. Interference evaluation about carnosic acid (**CAA**) on the proliferation of *S. aureus*.

Fig. S18. Images of blood cultured agar plate stained by **DDBL** from mice as the vehicle group. (a) Bright image, (b) Fluorescence image.

Fig. S19. ¹H NMR spectrum of DDBL in MeOD.

Fig. S20. ¹³C NMR spectrum of DDBL in CDCl₃+MeOD.

Fig. S21. HRMS spectrum of DDBL.

Fig. S22. ¹H NMR spectrum of compound 1 in CDCl₃.

Fig. S23.¹H NMR spectrum of AKBA in DMSO- d_6 .

Fig. S24.¹³C NMR spectrum of AKBA in DMSO- d_6 .

Fig. S25. HRMS of AKBA.

Fig. S26. ¹H NMR spectrum of carnosic acid in DMSO-*d*₆.

Fig. S27. ¹³C NMR spectrum of carnosic acid in DMSO-*d*₆.

Fig. S28. HRMS of carnosic acid.

Fig. S29. ¹H NMR spectrum of carnosol in DMSO- d_6 .

Fig. S30. ¹³C NMR spectrum of carnosol in DMSO- d_6 .

Reference

[1] Huang, Y.; Qi, Y.; Zhan, C. Y.; Zeng, F.; Wu, S. Z. Diagnosing drug-induced liver injury by multispectral optoacoustic tomography and fluorescence imaging using a leucine-aminopeptidase-activated probe. *Anal. Chem.* **2019**, *91*, 8085–8092.

[2] Carroll, R. K.; Robison, T. M.; Rivera, F. E.; Davenport, J. E.; Jonsson, I. M.; Florczyk, D.; Tarkowski, A.; Potempa, J.; Koziel, J.; Shaw, L. N. Identification of an intracellular M17 family leucine aminopeptidase that is required for virulence in Staphylococcus aureus. *Microbes Infect.* 2012, *14*, 989–999.