Supporting Information Contents Page

Title: Cytotoxic C₂₀ Diterpenoid Alkaloids from the Australian Endemic Rainforest Plant Anopterus macleayanus

Authors: Claire Levrier,^{†,‡} Martin C. Sadowski,[‡] Colleen C. Nelson,[‡] and Rohan A. Davis^{*,†}

Address:

[†]Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia

[‡]Australian Prostate Cancer Research Centre–Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102, Australia

Corresponding author contact details:

Tel.: +61 7 3735 6043; Fax: +61 7 3735 6001; E-mail: r.davis@griffith.edu.au

Contents:

- **S1** ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 6α -Acetoxyanopterine (1)
- S2 COSY (Acetone- d_6) Spectrum of 6α -Acetoxyanopterine (1)
- S3 HSQC (Acetone- d_6) Spectrum of 6α -Acetoxyanopterine (1)
- S4 HMBC (Acetone- d_6) Spectrum of 6α -Acetoxyanopterine (1)
- S5 ROESY (Acetone- d_6) Spectrum of 6α -Acetoxyanopterine (1)
- **S6** ¹H NMR (600 MHz, DMSO- d_6) Spectrum of 6α -Acetoxyanopterine (1)
- **S7** Comparison of NMR Data of 6α -Acetoxyanopterine (1) in DMSO- d_6 and Acetone- d_6
- **S8** ROESY (DMSO- d_6) Spectrum of 6α -Acetoxyanopterine (1)
- **S9** ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 4'-Hydroxy-6 α -acetoxyanopterine (2)
- **S10** COSY (Acetone- d_6) Spectrum of 4'-Hydroxy-6 α -acetoxyanopterine (2)
- **S11** HSQC (Acetone- d_6) Spectrum of 4'-Hydroxy- 6α -acetoxyanopterine (2)
- **S12** HMBC (Acetone- d_6) Spectrum of 4'-Hydroxy-6 α -acetoxyanopterine (2)
- **S13** ROESY (Acetone- d_6) Spectrum of 4'-Hydroxy-6 α -acetoxyanopterine (2)
- **S14** ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 4'-Hydroxyanopterine (**3**)
- **S15** COSY (Acetone- d_6) Spectrum of 4'-Hydroxyanopterine (3)

Supporting Information Contents Page

S16 HSQC (Acetone- d_6) Spectrum of 4'-Hydroxyanopterine (3) **S17** HMBC (Acetone- d_6) Spectrum of 4'-Hydroxyanopterine (3) **S18** ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 4'-Hydroxyanopterine (3) **S19** ROESY (Acetone- d_6) Spectrum of 4'-Hydroxyanopterine (3) ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 11 α -Benzoylanopterine (4) **S20 S21** COSY (Acetone- d_6) Spectrum of 11 α -Benzoylanopterine (4) S22 HSQC (Acetone- d_6) Spectrum of 11α -Benzoylanopterine (4) **S23** HMBC (Acetone- d_6) Spectrum of 11α -Benzoylanopterine (4) S24 ROESY (Acetone- d_6) Spectrum of 11 α -Benzoylanopterine (4) S25 ¹H NMR (600 MHz, Acetone- d_6) Spectrum of Anopterine (5) **S26** COSY (Acetone- d_6) Spectrum of Anopterine (5) **S27** HSQC (Acetone- d_6) Spectrum of Anopterine (5) **S28** HMBC (Acetone- d_6) Spectrum of Anopterine (5) **S29** ROESY (Acetone- d_6) Spectrum of Anopterine (5) **S30** Comparison of NMR Data of TFA Salt and Free Base of Anopterine **S31** ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 7 β -Hydroxyanopterine (6) **S32** COSY (Acetone- d_6) Spectrum of 7 β -Hydroxyanopterine (6) **S33** HSQC (Acetone- d_6) Spectrum of 7 β -Hydroxyanopterine (6) **S34** HMBC (Acetone- d_6) Spectrum of 7β -Hydroxyanopterine (6) **S35** Comparison of NMR Data of TFA Salt and Free Base of 7β -Hydroxyanopterine **S36** ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 7 β ,4'-Dihydroxyanopterine (7) **S37** COSY (Acetone- d_6) Spectrum of 7 β ,4'-Dihydroxyanopterine (7) **S38** HSQC (Acetone- d_6) Spectrum of 7β ,4'-Dihydroxyanopterine (7) **S39** HMBC (Acetone- d_6) Spectrum of 7 β ,4'-Dihydroxyanopterine (7) Comparison of NMR Data of TFA Salt and Free Base of 7β ,4'-Dihydroxyanopterine **S40 S41** ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 7 β -Hydroxy-11 α -benzoylanopterine (8) S42 COSY (Acetone- d_6) Spectrum of 7 β -Hydroxy-11 α -benzoylanopterine (8)

Supporting Information Contents Page

- **S43** HSQC (Acetone- d_6) Spectrum of 7β -Hydroxy-11 α -benzoylanopterine (**8**)
- S44 HMBC (Acetone- d_6) Spectrum of 7β -Hydroxy-11 α -benzoylanopterine (8)
- S45 Comparison of NMR Data of TFA Salt and Free Base of 7β -Hydroxy-11 α -benzoylanopterine (8)
- S46 ¹H NMR (600 MHz, Acetone- d_6) Spectrum of Tiglic Acid
- S47 13 C NMR (150 MHz, Acetone- d_6) Spectrum of Tiglic Acid
- S48 Cytotoxicity Evaluation of Compounds 2–8 Using a Live-Cell Imaging Assay (Confluence)
- S49 Cytotoxicity Evaluation of Compounds 2–8 Using a Live-Cell Imaging Assay (Cell Morphology)

S1. ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 6α -Acetoxyanopterine (1)

S2. COSY (Acetone- d_6) Spectrum of 6α -Acetoxyanopterine (1)

S3. HSQC^{*} (Acetone- d_6) Spectrum of 6α -Acetoxyanopterine (1)

^{*13}C decoupler out of order at time of acquisition, resulting in signals being split by ${}^{1}J_{CH}$

S4. HMBC (Acetone- d_6) Spectrum of 6α -Acetoxyanopterine (1)

S5. ROESY (Acetone- d_6) Spectrum of 6α -Acetoxyanopterine (1)

S6. ¹H NMR (600 MHz, DMSO- d_6) Spectrum of 6 α -Acetoxyanopterine (1)

S7. Comparison of NMR Data of 6α -Acetoxyanopterine (1) in DMSO- d_6 and Acetone- d_6

Position	1 ^{<i>a</i>}	1^{b}	
	$\delta_{\rm H}$ (mult. J in Hz)	$\delta_{ m H}$ (mult. J in Hz)	
1	2.22, dd (14.6, 4.7)	1.95, dd (14.5, 4.4)	
	2.75, br d (14.6)	2.40, m	
5	4.24, m	3.95, br s	
OH-2		5.15, br s	
3	1.66, br d (14.3)	1.40, br d (14.3)	
	2.12, dd (14.3, 3.8)	1.88, m	
0H-5		5.38, br s	
9	5.22, br d (6.7)	4.96, d (6.9)	
7	1.89, br d (16.2)	1.66, d (15.9)	
	2.72, dd (16.2, 6.7)	2.53, dd (15.9, 6.9)	
6	2.60, m	2.39, m	
11	5.54, dd (6.1, 4.4)	5.38, dd (6.0, 5.0)	ł
12	5.24, dd (6.1, 2.4)	5.09, dd (6.0, 2.3)	HO,,, 3 19
13	3.30, m	3.22, m	
14	3.05, m	2.95, m	
15	2.23, ddd (18.6, 2.1, 2.1)	2.12, brd (18.5)	
	2.88, br d (18.6)	2.75, br d (18.5)	
17	4.96, m	4.92, m	¹⁷ 3CO
	5.13, m	5.08, m	, OH
18	1.02, s	0.81, s	
19	3.74, m	3.44, m	
	4.52, m	4.04, m	
20	5.12, m	4.76, d (6.7)	
N-CH ₃	3.29, s	2.99, d (4.6)	
H-N-CH ₃		7.26, br s	
3	6.77, br q (6.7)	6.66, br q (6.8)	
4	1.76, d (6.7)	1.74, br d (6.8)	
5'	1.75, s	1.67, s	
3"	7.26, br q (7.0)	7.15, br q (7.0)	
4"	1.83, d (7.0)	1.82, br d (7.0)	
5"	1.90, s	1.85, s	
2"'	2.29, s	2.25, s	

^{*a*} Spectrum recorded at 600 MHz in acetone- d_6 at 30 °C.

^b Spectrum recorded at 600 MHz in DMSO- d_6 at 30 °C.

S9. ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 4'-Hydroxy-6 α -acetoxyanopterine (2)

S10. COSY (Acetone- d_6) Spectrum of 4'-Hydroxy-6 α -acetoxyanopterine (2)

S11. HSQC (Acetone- d_6) Spectrum of 4'-Hydroxy-6 α -acetoxyanopterine (2)

S12. HMBC (Acetone- d_6) Spectrum of 4'-Hydroxy-6 α -acetoxyanopterine (2)

S13. ROESY (Acetone- d_6) Spectrum of 4'-Hydroxy- 6α -acetoxyanopterine (2)

S14. ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 4'-Hydroxyanopterine (**3**)

S15. COSY (Acetone- d_6) Spectrum of 4'-Hydroxyanopterine (3)

^{*13}C decoupler out of order at time of acquisition, resulting in signals being split by ${}^{1}J_{CH}$

S17. HMBC (Acetone- d_6) Spectrum of 4'-Hydroxyanopterine (**3**)

S18. ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 4'-Hydroxyanopterine (**3**)^a

Acetone- d_6

^aSample 2

S19. ROESY (Acetone- d_6) Spectrum of 4'-Hydroxyanopterine (3)

S20. ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 11 α -Benzoylanopterine (4)

f1 (ppm)

S21. COSY (Acetone- d_6) Spectrum of 11 α -Benzoylanopterine (4)

S22. HSQC (Acetone- d_6) Spectrum of 11 α -Benzoylanopterine (4)

S23. HMBC (Acetone- d_6) Spectrum of 11 α -Benzoylanopterine (4)

S24. ROESY Spectrum of 11α -Benzoylanopterine (4)

S25. ¹H NMR (600 MHz, Acetone- d_6) Spectrum of Anopterine (5)

S26. COSY (Acetone- d_6) Spectrum of Anopterine (5)

S27. HSQC* (Acetone- d_6) Spectrum of Anopterine (5)

^{*13}C decoupler out of order at time of acquisition, resulting in signals being split by ${}^{1}J_{CH}$

S28. HMBC (Acetone- d_6) Spectrum of Anopterine (5)

S29. ROESY (Acetone- d_6) Spectrum of Anopterine (5)

S30. Comparison of NMR Data of TFA Salt and Free Base of Anopterine

5' 1' 0 0 1" 0,, 11 13

Position	TFA Salt of Anopt	erine"	Free Base of Anopte	rine″
	$\delta_{\rm H}$ (mult. J in Hz)	δ_{C}	$\delta_{\rm H}$ (mult. <i>J</i> in Hz)	δ_{C}
1	2.18, dd (14.9, 5.0)	36.3	2.04 (15.5, 5.0)	36.8
	2.68, br d (14.9)		2.49 (15.5, 2.5, 2.0)	
2	4.18, m	66.4	4.14 (5.0, 5.0, 2.0, 2.0)	66.5
\mathfrak{c}	1.57, br d (14.3)	42.9	1.46(14.5,2.5,2.0)	42.7
	2.09, m		$1.92\ (14.5, 5.0)$	
4		36.4		36.4
S		76.1		78.8
9	4.16, d (5.0)	70.3	3.57 (5.5)	71.9
L	2.08, m	44.2	1.88 (14.5)	46.2
	2.56, dd (14.9, 5.4)		2.47 (14.5, 5.5)	
8		49.6		49.1
6	2.51, m	54.6	2.40 (4.0)	54.4
10		52.1		51.5
11	5.52, dd (6.0, 4.4)	70.0	5.52~(6.0, 4.0)	70.3
12	5.23, dd (6.0, 2.3)	73.2	5.16(6.0, 2.5)	73.1
13	3.22, m	53.6	2.96 (4.5, 2.5)	53.3 CI
14	2.87, m	55.0	2.35 (4.5)	57.0 6 × 1 ×
15	2.23, br d (18.7)	39.5	2.17 (18.5, 2.5, 2.5)	39.8
	2.84, br d (18.7)		2.75 (18.5, 2.5, 2.5)	
16		148.9		148.7
17	4.95, m	108.8	4.90 (2.5, 2.5)	108.5 [°]
	5.11, m		5.06 (2.5, 2.5)	
18	1.22, s	24.0	1.21	24.2
19	3.41, m	63.3	2.72 (11.0)	61.9
	4.44, m		3.71 (11.0)	
20	4.90, s	68.9	4.04	65.8
N-CH ₃	3.01, s	44.7	2.34	43.1
1,		166.2		166.7#
5		128.7		$128.6^{\#}$
3	6.77, br q (6.5)	138.1	6.75 (7.0)	$137.8^{#}$
4	1.76, d (6.5)	13.9	1.74 (7.0)	14.5*
5'	1.75, s	11.5	1.75	$12.0^{#}$
-		167.0		$167.4^{#}$
2"		128.1		$128.4^{#}$
3"	7.25, br q (7.0)	139.5	7.08 (7.0)	$138.4^{#}$
4"	1.83, d (7.0)	14.1	1.84 (7.0)	14.5*
5"	1.90, s	12.0	1.90	12.5#

^{*a* 1}H and ¹³C spectra recorded at 600 MHz and 150 MHz respectively in acetone- d_6 at 30 °C.

^{*b*} ¹H and ¹³C spectra recorded at 250 MHz and 62.9 MHz respectively in CDCl₃ from Johns, S. R.; Lamberton, J. A.; Suares, H.; Willing, R. I. *Aust. J. Chem.* **1985**, *38*, 1091-1106.

^{#13}C spectra recorded at 22.6 MHz in CDCl₃, From Hart, N. K.; Johns, S. R.; Lamberton, J. A.; Suares, H.; Willing, R. I. Aust. J. Chem. **1976**, 29, 1295-1318.

S31. ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 7 β -Hydroxyanopterine (6)

S32. COSY (Acetone- d_6) Spectrum of 7 β -Hydroxyanopterine (6)

S33. HSQC* (Acetone- d_6) Spectrum of 7 β -Hydroxyanopterine (6)

^{*13}C decoupler out of order at time of acquisition, resulting in signals being split by ${}^{1}J_{CH}$

S34. HMBC (Acetone- d_6) Spectrum of 7β -Hydroxyanopterine (6)

S35. Comparison of NMR Data of TFA Salt and Free Base of 7β -Hydroxyanopterine

			1																	H 8 H	он 1	5																
se of 7 <i>β</i> -Hydroxy-	nopterine ^{<i>b</i>}	$J ext{ in Hz}$ $\delta_{ ext{C}}$	36.2		66.5	41.8		36.2	77.9	82.6*	76.0*	52.3	54.2*	47.0*	70.3	73.4	53.2	56.1	38.8		148.2	108.7		24.5	61.6		64.9	42.8	N.R	N.R	N.R	N.R	N.R	N.R	N.R	N.R	N.R	N.R
Free Ba	8	$\delta_{ m H}$ (mult.	2.13	2.47	4.15	1.42	1.97			3.62^{*}	3.92*		2.78		5.49	5.20	2.98	2.43	2.29	3.03		4.91	5.09	1.21	2.66	3.75	4.11	2.31			6.76	1.76	1.75			7.09	1.84	1.92
/droxy-	r	δ_{C}	36.4		65.8	42.7		36.7	75.5	75.6	81.1	52.2	47.4	54.7	70.1	73.5	53.9	54.3	39.1		148.8	109.0		23.9	63.6		68.8	44.8	166.4	128.8	138.1	14.4	11.6	167.1	128.4	139.6	14.7	12.8
TFA Salt of 7β-Hy	anopterine	$\delta_{ m H}$ (mult. J in Hz)	2.21, dd (14.7, 4.9)	2.69, br d (14.7)	4.18, m	1.52, br d (14.0)	2.08, m			4.14, s	3.98, br s		3.09, m		5.53, dd (6.0, 4.4)	5.23, dd (6.0, 2.4)	3.24, m	2.84, m	2.33, br d (18.7)	3.02, br d (18.7)		4.97, m	5.12, m	1.20, s	3.38, d (12.0)	4.41, d (12.0)	4.91, s	3.00, s			6.77, br q (6.5)	1.76, d (6.5)	1.75, s			7.26, br q (7.0)	1.83, d (7.0)	1.91, s
Position			1		2	б		4	5	9	L	8	6	10	11	12	13	14	15		16	17		18	19		20	$N-CH_3$	1'	5	ā	4	5'	1"	2"	3"	.4	5"

^{*a* 1}H and ¹³C spectra recorded at 600 MHz and 150 MHz respectively in acetone- d_6 at 30 °C.

^{*b*}¹H and ¹³C spectra recorded at 250 MHz and 62.9 MHz respectively in CDCl₃ from Johns, S. R.; Lamberton, J. A.; Suares, H.; Willing, R. I. *Aust. J. Chem.* **1985**, *38*, 1091-1106.

*Initially misassigned by Johns et al. C-6, C-7, C-9 and C-10 have been reassigned based on our data N.R: Not reported

S36. ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 7 β ,4'-Dihydroxyanopterine (7)

S37. COSY (Acetone- d_6) Spectrum of 7 β ,4'-Dihydroxyanopterine (7)

^{*13}C decoupler out of order at time of acquisition, resulting in signals being split by ${}^{1}J_{CH}$

S39. HMBC (Acetone- d_6) Spectrum of 7β ,4'-Dihydroxyanopterine (7)

S40. Comparison of NMR Data of TFA Salt and Free Base of 7β ,4'-Dihydroxyanopterine

OH ₄' [

Docitio	TFA Salt of 7/	,4'-	Free Base of '	7β,4'-	
Unico I	Dihydroxy-anopt	erine ^a	Dihydroxy-anol	oterine ^b	
. 1	$\delta_{\rm H}$ (mult. J in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (mult. J in Hz)	$\delta_{\rm C}$	
1	2.21, dd (14.8, 4.9)	36.4	2.15	37.4	1
	2.69, br d (14.8)		2.42		
7	4.17, m	65.8	4.10	65.4	
ю	1.51, br d (14.2)	42.7	1.42	41.7	
	2.07, m		1.96		
4		37.0		36.6	
2		76.2		78.2	
9	4.10, s	75.6	3.54*	82.7*	
7	3.97, s	81.4	3.75*	75.7*	
8		52.3		52.6	
6	3.08, m	47.5	2.78	54.3*	
10		54.7		47.2*	
11	5.53, dd (5.9, 4.3)	70.4	5.50	70.8	
12	5.24, dd (5.9, 2.1)	73.5	5.20	73.3	
13	3.23, m	53.9	2.98	53.5	
.14	2.80, m	54.6	2.39	55.8	
. 15	2.32, br d (18.8)	38.9	2.28	38.9	3 19
	3.00, br d (18.8)		3.02		
16		148.5		148.5	● H≟ OH
17	4.97, m	108.9	4.93	108.9	O
•	5.12, m		5.10		-15 -1
18	1.20, s	23.9	1.19	24.4	
19	3.31, br d (11.9)	63.5	2.56	61.5	
	4.37, br d (11.9)		3.81		
20	4.86, s	68.7	4.10	65.4	
N-CH ₃	2.97, s	44.6	2.32	42.8	
1,		166.7		N.R	
5		127.5		N.R	
3	6.76, ddq (5.6, 5.6,	144.1	6.70	N.R	
	1.5)				
4	4.23, dd (15.4, 5.6)	59.2	4.26	N.R	
	4.27, dd (15.4, 5.6)				
5,	1.74, s	12.5	1.76	N.R	
1"		167.6		N.R	
2"		128.7		N.R	
3"	7.26, br q (7.0)	140.1	7.16	N.R	
4"	1.83, d (7.0)	14.8	1.85	N.R	
5"	1.91, s	12.6	1.92	N.R	

^{*a* 1}H and ¹³C spectra recorded at 600 MHz and 150 MHz respectively in acetone- d_6 at 30 °C.

^{*b*}¹H and ¹³C spectra recorded at 250 MHz and 62.9 MHz respectively in CDCl₃ from Johns, S. R.; Lamberton, J. A.; Suares, H.; Willing, R. I. *Aust. J. Chem.* **1985**, *38*, 1091-1106.

*Initially misassigned by Johns et al. C-6, C-7, C-9 and C-10 have been reassigned based on our data

N.R: Not reported

S41. ¹H NMR (600 MHz, Acetone- d_6) Spectrum of 7 β -Hydroxy-11 α -benzoylanopterine (**8**)

S42. COSY (Acetone- d_6) Spectrum of 7 β -Hydroxy-11 α -benzoylanopterine (**8**)

f1 (ppm)

S43. HSQC (Acetone- d_6) Spectrum of 7β -Hydroxy-11 α -benzoylanopterine (**8**)

S44. HMBC (Acetone- d_6) Spectrum of 7β -Hydroxy-11 α -benzoylanopterine (**8**)

a 1 F	Position	TFA Salt of 7β -Hydrox	y-11a-	Free Base of 7β -Hy	/droxy-	
Hai		benzoyl-anopterin	eª	11a-benzoyl-anop	terine ^b	
nd 1		$\delta_{\rm H}$ (mult. <i>J</i> in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (mult. J in Hz)	δ_{C}	
^{3}Cs	1	2.30, dd (14.6, 5.0)	36.7	2.22	N.R	
spec		2.81, br d (14.6)		2.60		
tra	5	4.19, m	65.9	4.17	N.R	
reco	3	1.56, br d (14.2)	42.8	1.42	N.R	
orde		2.05, m		1.92		
d at	4		36.6		N.R	
t 60	5		76.4		N.R	
0 M	6	3.98, s	75.9*	3.60*	N.R	
Hz	7	3.95, s	81.7*	3.93*	N.R	
and	8		52.6		N.R	
d 15	6	3.15, m	47.5	2.90	N.R	
50 N	10		54.8		N.R	
4Hz	11	5.71, dd (6.0, 5.0)	71.2	5.67	N.R	
res	12	5.35, dd (6.0, 2.5)	73.4	5.31	N.R	
peci	13	3.23, m	53.9	3.03	N.R	
tive	14	2.73, m	55.0	2.46	N.R	H
lv ii	15	2.36, ddd (18.8, 2.0, 2.0)	39.3	2.30	N.R	7' 7' 19
n ac		3.07, br d (18.8)		3.03		
eto	16		149.4		N.R	
ne-a	17	4.99, m	108.9	4.95	N.R	
l_ at		5.14, m		5.13		
30	18	1.20, s	24.0	1.21	N.R	
°C.	19	3.14, m	63.4	2.64	N.R	17
		4.27, br d (11.8)		3.75		
	20	4.75, br s	68.0	4.13	N.R	
	N-CH ₃	2.83, s	44.3	2.30	N.R	
	1'		165.4		N.R	
	2,		130.1		N.R	
	3'	7.95, m	130.1	7.92	N.R	
	4	7.48, m	128.2	7.41	N.R	
	5'	7.61, m	133.8	7.55	N.R	
	6'	7.48, m	128.2	7.41	N.R	
	٦.	7.95, m	130.1	7.92	N.R	
	1"		167.3		N.R	
	2"		128.4		N.R	
	3"	7.27, br q (7.1)	139.7	7.11	N.R	
	4"	1.82, d (7.1)	14.3	1.83	N.R	
	5"	1.86, s	12.3	1.89	N.R	

b ¹H spectrum recorded at 250 MHz in CDCl₃ from Johns, S. R.; Lamberton, J. A.; Suares, H.; Willing, R. I. *Aust. J. Chem.* **1985**, *38*, 1091-1106. *Initially misassigned by Johns et al. H-6, H-7 have been reassigned based on our data N.R: Not reported

S45. Comparison of NMR Data of TFA Salt and Free Base of 7β -Hydroxy-11 α -benzoylanopterine

S46. ¹H NMR (600 MHz, Acetone- d_6) Spectrum of Tiglic Acid

S47. ¹³C NMR (150 MHz, Acetone- d_6) Spectrum of Tiglic Acid

S48. Cytotoxicity Evaluation of Compounds 2–8 Using a Live-Cell Imaging Assay (Confluence)

Proliferation as a function of cell confluence. LNCaP cells were treated with control (DMSO), vinblastine (25 nM) or the indicated compound, and confluence was measured every 2 h for 72 h on an IncuCyte real-time live-cell imaging system.

S49. Cytotoxicity Evaluation of Compounds **2–8** Using a Live-Cell Imaging Assay (Cell Morphology)

Change in cell number and morphology after 72 h of treatment. LNCaP cells were treated with control (DMSO), vinblastine (25 nM) or the indicated compound, and a picture was taken every 2 h for 72 h on an IncuCyte real-time live-cell imaging system (scale bar 100 μ m).