Supporting Information

Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions: A Combined EPR and DFT Study

Kristy L. Mardis,^{†,*} Jeremy N. Webb,[†] Tarita Holloway,[†] Jens Niklas,[‡] Oleg G. Poluektov^{‡,*}

[†] Department of Chemistry and Physics, Chicago State University, Chicago, Illinois 60628, USA

[‡] Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

	Contents	Page
Table S1.	Comparison of calculated EPR g-values for fullerene radical anions geometry optimized using different basis sets	S2
Table S2.	Comparison of calculated EPR g-values for fullerene radical anions using the EPRII and def2-TZVPP basis sets	S2
Table S3.	Comparison of calculated EPR g-values and spin density plots for α -PC ₇₁ BM radical anion for a variety of functionals.	S2
Figure S1.	Numbering scheme used for $PC_{61}BM$ and α - $PC_{71}BM$	S 3
Table S4.	Selected bond lengths for $PC_{61}BM$ radical anion calculated using the B3LYP functional and a variety of basis sets	S3
Table S5.	Selected bond lengths for α -PC ₇₁ BM radical anion calculated using the B3LYP functional and a variety of basis sets	S4
Table S6.	Atomic number, type, coordinates of $PC_{61}BM$ radical anion structure optimized using B3LYPI6-31G+(d); Mulliken spin populations, and hyperfine coupling constants (B3LYPIEPRII)	S5
Table S7.	Atomic number, type, coordinates of α -PC ₇₁ BM radical anion structure optimized using B3LYPl6-31G+(d); Mulliken spin populations, and hyperfine coupling constants (B3LYPlEPRII)	S7
Table S8.	Atomic number, type, coordinates of β_1 -PC ₇₁ BM radical anion structure optimized using B3LYPl6-31G+(d); Mulliken spin populations, and hyperfine coupling constants (B3LYPlEPRII)	S10
Table S9.	Atomic number, type, coordinates of β_2 -PC ₇₁ BM radical anion structure optimized using B3LYPI6-31G+(d); Mulliken spin populations, and hyperfine coupling constants (B3LYPIEPRII)	S13
Figure S2.	Mulliken spin populations for all fullerene cage carbons in $PC_{61}BM$ and α - $PC_{71}BM$ radical anions	S15
	References	S16

All geometry optimizations were carried out using density functional theory (DFT) and the B3LYP functional¹⁻⁴ using the 3-21G, 6-31G, and the 6-31G+(d) basis set, as implemented in PQSMol.⁵ The spectroscopic parameters were obtained via single point DFT calculations, using functionals and basis sets as implemented in the program package ORCA (v 2.9.1).⁶ For details, see *Density Functional Theory* (*DFT*) *Calculations* part in the main text.

Table S1. Comparison of calculated EPR g-values for fullerene radical anions geometry optimized using different basis sets. All geometry optimizations were performed using the B3LYP functional and all EPR parameter calculations used the EPRII basis set⁷⁻⁸ and the B3LYP functional.

Molecule	3-21G	6-31G	6-31G+(d)	Experimental
PC ₆₁ BM	1.9996, 2.0009, 2.0009	1.9994, 2.0008, 2.0009	1.9995, 2.0008, 2.0009	1.9985, 2.0005, 2.0006
α-PC ₇₁ BM	2.0027, 2.0036, 2.0054	2.0028, 2.0036, 2.0054	2.0026, 2.0035, 2.0054	
β ₁ -PC ₇₁ BM	2.0028, 2.0031, 2.0055	2.0027, 2.0030, 2.0056	2.0019, 2.0029, 2.0048	2.0021, 2.0028, 2.0060
β_2 -PC ₇₁ BM	2.0027, 2.0030, 2.0054	2.0026, 2.0029, 2.0055	2.0017, 2.0029, 2.0047	

Table S2. Comparison of calculated EPR g-values for fullerene radical anions using the EPRII and def2-TZVPP basis sets⁹. All geometry optimizations were performed using the B3LYP functional and the 6-31G+(d) basis set.

Molecule	EPRII	def2-TZVPP	Experimental
PC ₆₁ BM	1.9995, 2.0008, 2.0009	1.9994, 2.0008, 2.0011	1.9985, 2.0005, 2.0006
α-PC ₇₁ BM	2.0026, 2.0035, 2.0054	2.0027, 2.0034, 2.0052	
β ₁ -PC ₇₁ BM	2.0019, 2.0029, 2.0048	2.0020, 2.0029, 2.0045	2.0021, 2.0028, 2.0060
β ₂ -PC ₇₁ BM	2.0017, 2.0029, 2.0047	2.0018, 2.0029, 2.0045	

Table S3. Comparison of calculated EPR g-values and spin density plots for α -PC₇₁BM radical anion using a variety of functionals. All the geometry optimizations used the B3LYP functional and the 6-31G+(d) basis set and all the EPR parameters were calculated using the EPRII basis set. The experimental values are 2.0021, 2.0028, and 2.0060. The spin density contours are shown at the level of 0.001 e/a₀³.

	B3LYP	BP86	B3PW91	BHandHLYP	PBE0
\mathbf{g}_1	2.0026	2.0024	2.0026	2.0026	2.0026
\mathbf{g}_2	2.0035	2.0034	2.0034	2.0033	2.0034
g ₃	2.0054	2.0055	2.0053	2.0051	2.0053
Spin Density Plot					

Figure S1. Numbering scheme used for $PC_{61}BM$ and α - $PC_{71}BM$ in Tables S4-S5. Bond 1-2 is where the PCBM side chain is bonded.¹⁰

Basis set/	3-21G	6-31G	6-31G+(d)	
C-C bond	(Å)	(Å)	(Å)	
1-2	1.6146	1.6184	1.6075	
2-3	1.4986	1.5015	1.4989	
3-4	1.3849	1.3934	1.3913	
4-5	1.4767	1.4763	1.4710	
5-6	1.3845	1.3931	1.3907	
6-1	1.4952	1.4988	1.4970	
6-7	1.4456	1.4459	1.4407	
7-8	1.4513	1.4510	1.4458	
8-9	1.4495	1.4490	1.4433	
9-1	1.4954	1.4986	1.4960	
9-10	1.3812	1.3895	1.3874	
10-11	1.4788	1.4780	1.4725	
11-12	1.3815	1.3898	1.3874	
12-2	1.4965	1.4996	1.4969	
12-13	1.4485	1.4482	1.4426	
13-14	1.4514	1.4511	1.4458	
14-3	1.4464	1.4465	1.4413	
14-15	1.4038	1.4101	1.4095	
15-16	1.4434	1.4437	1.4385	
16-17	1.3973	1.4041	1.4030	
17-4	1.4620	1.4617	1.4563	
17-18	1.4513	1.4516	1.4466	
18-19	1.4506	1.4512	1.4461	
19-5	1.4621	1.4614	1.4559	

Table S4. Selected bond lengths (Å) for $PC_{61}BM$ radical anion calculated using the B3LYP functionaland a variety of basis sets. The bond numbering corresponds to that shown in Figure S1.

Basis set/	3-21G	6-31G	6-31G+(d)	
C-C bond	(Å)	(Å)	(Å)	
1-2	1.6201	1.6253	1.6147	
2-3	1.4959	1.4984	1.4961	
3-4	1.3874	1.3954	1.3959	
4-5	1.4668	1.4654	1.4582	
5-6	1.3905	1.3973	1.3945	
6-1	1.4915	1.4939	1.4913	
6-7	1.4279	1.4274	1.4234	
7-8	1.4625	1.4610	1.4551	
8-9	1.4259	1.4275	1.4238	
9-1	1.4930	1.4957	1.4934	
9-10	1.3931	1.4003	1.3974	
10-11	1.4679	1.4668	1.4593	
11-12	1.3880	1.3964	1.3971	
12-2	1.4950	1.4982	1.4965	
12-13	1.4426	1.4427	1.4350	
13-14	1.4567	1.4558	1.4519	
14-3	1.4436	1.4434	1.4352	
14-15	1.3989	1.4055	1.4063	
15-16	1.4412	1.4406	1.4350	
16-17	1.3907	1.3969	1.3949	
17-4	1.4573	1.4567	1.4502	
17-18	1.4465	1.4466	1.4446	
18-19	1.4469	1.4481	1.4409	
19-5	1.4463	1.4465	1.4442	

Table S5. Selected bond lengths (Å) for α -PC₇₁BM radical anion calculated using the B3LYP functional and a variety of basis sets. The bond numbering corresponds to that shown in Figure S1.

Table S6. Atomic number, type, and coordinates of $PC_{61}BM$ radical anion structure optimized using B3LYPl6-31G+(d); Mulliken spin populations, and hyperfine coupling constants (B3LYPlEPRII). Mulliken spin populations are unitless and sum to 1. The principal axes of the hyperfine coupling tensors for ¹³C and ¹H are aligned with the principal axes of the g-tensor.

Atom	Atom	X coord	Y coord	Z coord	Spin	A_1	A ₂	A ₃
Number	Туре	(Å)	(Å)	(Å)	Population	(MHz)	(MHz)	(MHz)
0	С	1.509846	-1.123261	-1.49699	0.015644	-0.12	-0.19	3.98
1	С	1.1062	-2.413732	-2.032793	-0.000384	-3.69	-3.29	-0.65
2	С	0.83441	-3.482678	-1.164232	0.010323	-2.38	1.89	-2.2
3	С	0.27546	-2.193508	-3.195957	0.066546	-1.25	14.59	-1.46
4	С	-0.817371	-3.050386	-3.455066	0.069285	16	-0.98	-0.78
5	С	0.134285	-0.76585	-3.378455	0.000553	-0.53	-3.67	-3.28
6	С	-1.085823	-0.229333	-3.81983	0.010834	1.89	-2.25	-2.43
7	С	0.898982	-0.085438	-2.344357	0.015278	3.94	-0.19	-0.12
8	С	0.42549	1.097534	-1.795473	-0.010754	-3.92	-1.54	-1.77
9	С	1.63198	-0.948101	-0.126167	-0.01125	-1.76	-1.54	-3.9
10	С	1.301563	-2.032901	0.765526	0.009254	-2.2	-2.74	0.96
11	С	0.625387	-1.490894	1.922845	0.022389	-2.08	-2.46	3.7
12	С	0.934727	-3.292384	0.257305	0.057128	1.05	1.32	14.73
13	С	-0.144091	-4.043179	0.887885	-0.011368	-3.48	-5.24	-2.86
14	С	-0.300294	-4.362814	-1.424585	0.00778	-2.56	1.23	-2.4
15	С	-0.897665	-4.718454	-0.153936	0.059706	0.41	14.51	0.2
16	С	-1.106803	-4.141974	-2.547962	-0.001132	-0.91	-4	-3.45
17	С	-2.553855	-4.270582	-2.431883	0.020519	4.87	-0.4	-0.28
18	С	-2.080227	-2.493108	-3.893677	-0.000765	-3.46	-4.02	-0.93
19	С	-3.157473	-3.248123	-3.266229	0.021011	-0.39	-0.27	4.9
20	С	-2.219383	-1.111786	-4.077766	0.00784	-2.4	1.23	-2.56
21	С	-3.426347	-0.435081	-3.649707	0.059508	0.16	0.38	14.5
22	С	-1.588655	0.982718	-3.232116	0.057834	14.91	1.33	1.06
23	С	-3.036104	0.855503	-3.110149	-0.011477	-2.87	-3.49	-5.26
24	С	-0.853423	1.618518	-2.214976	0.008718	1.01	-2.23	-2.77
25	С	-1.532733	2.162426	-1.060379	0.024035	3.9	-2.06	-2.44
26	С	0.64117	1.472575	-0.363359	0.001224	-0.69	-0.82	-0.63
27	С	-0.688944	1.985187	0.093848	-0.010922	-4.07	-2.12	-2.51
28	С	1.314891	0.343313	0.561198	0.001859	-0.66	-0.85	-0.76
29	С	0.524533	-0.061435	1.768767	-0.010083	-2.49	-2.11	-3.96
30	С	-4.09488	-0.446099	2.107335	0.065021	-1.28	14.69	-1.52
31	С	-4.932285	-0.226319	0.946842	-0.00041	-3.42	-4.06	-0.88
32	С	-4.660945	0.828924	0.065381	0.019042	-1.79	4.07	-1.49
33	С	-5.325621	-1.523562	0.413912	0.011589	-0.34	-0.33	2.63
34	С	-5.426005	-1.714799	-0.967442	-0.009955	-1.61	-1.42	-3.41
35	С	-4.721254	-2.547239	1.249393	0.011506	2.6	-0.33	-0.34
36	С	-4.238175	-3.726553	0.674459	-0.009906	-3.39	-1.4	-1.59
37	С	-3.958566	-1.875527	2.292762	-0.000423	-0.89	-4.06	-3.42
38	С	-2.740906	-2.422615	2.719189	0.019401	-1.47	4.1	-1.78
39	С	-2.987144	0.399787	2.34262	0.075676	17.47	-0.83	-0.63
40	С	-2.699375	1.484552	1.430601	-0.000918	-1.02	-4.1	-3.72
41	С	-1.255179	1.625086	1.31194	0.027577	6.7	-0.39	-0.27
42	С	-3.521505	1.706036	0.315137	0.001353	-3.5	-0.35	-3.19

43	С	-2.933988	2.053465	-0.951292	0.070852	1.69	18.33	1.51
44	С	-4.770232	0.632669	-1.364647	0.049385	-0.11	0.19	12.03
45	С	-3.691376	1.379083	-1.994556	-0.012919	-3.66	-5.65	-3.03
46	С	-5.145567	-0.62011	-1.88148	0.017516	-2.25	-2.71	2.85
47	С	-4.466556	-1.1622	-3.038699	0.028593	-2.01	-2.36	5.52
48	С	-4.920206	-2.940185	-1.566184	-0.000907	0.22	0.05	-0.37
49	С	-4.320773	-2.593259	-2.845921	-0.010135	-2.25	-1.89	-3.91
50	С	-4.339222	-3.924052	-0.763151	-0.000895	-0.41	0.04	0.21
51	С	-3.131793	-4.607096	-1.202385	-0.010287	-3.87	-2.23	-1.87
52	С	-2.975907	-4.29457	1.117582	0.017274	2.85	-2.23	-2.69
53	С	-2.296185	-4.838356	-0.038537	0.02855	5.42	-2	-2.35
54	С	-2.243341	-3.646528	2.127881	0.048865	11.92	0.18	-0.1
55	С	-0.799029	-3.51903	2.003189	-0.012754	-3.01	-3.62	-5.57
56	С	-1.60094	-1.545947	2.969221	0.00166	-3.14	-0.31	-3.43
57	С	-0.407398	-2.22482	2.540454	0.069616	1.44	1.61	18.02
58	С	-1.726125	-0.162166	2.774567	-0.001356	-3.73	-4.13	-1.13
59	С	-0.641969	0.589443	2.157727	0.02672	-0.43	-0.31	6.6
60	С	1.981757	1.686532	0.323007	-0.000374	1.92	1.39	0.95
61	С	1.999247	2.689572	1.487118	0.000547	0.98	0.66	0.68
64	С	3.102403	2.47241	2.550055	0.000085	0.04	0.05	0.17
67	С	4.398174	3.281037	2.292688	-0.000011	0.09	0.09	0.17
70	С	5.397919	3.096827	3.42125	0.000029	0.01	0.01	0.07
73	С	4.485932	5.082004	4.52735	0.000003	-0.02	-0.01	0.03
78	С	3.213599	1.749788	-0.550981	0.000607	0.47	0.5	0.65
79	С	3.323759	2.758558	-1.520387	0.000419	0.15	0.03	-0.03
80	С	4.485881	2.897107	-2.281761	-0.000032	0.05	-0.03	-0.07
81	С	5.560579	2.023755	-2.085649	0.000217	0.02	-0.02	0.12
82	С	5.459887	1.012667	-1.126888	0.000102	-0.06	-0.02	0.07
83	С	4.2938	0.876187	-0.368046	0.000047	-0.01	-0.09	0.11
62	Н	1.030086	2.658274	1.988955	-0.000084	0.76	-0.21	-0.35
63	Н	2.085592	3.699	1.060402	0.00012	0.47	-0.05	0.01
65	Н	3.353852	1.408421	2.627186	-0.000017	-0.19	-0.11	0.35
66	Н	2.694933	2.755306	3.529426	-0.000013	-0.2	-0.18	0.27
68	Н	4.146205	4.336632	2.144749	0.000005	-0.1	-0.09	0.18
69	Н	4.886523	2.925688	1.38331	-0.000014	-0.09	-0.08	0.2
74	Н	4.624639	5.519253	5.518107	0	-0.05	-0.05	0.1
75	Н	3.439054	4.785292	4.409474	0	-0.08	-0.08	0.16
76	Н	4.751502	5.824837	3.766608	0	-0.06	-0.06	0.11
77	Н	6.287265	0.325902	-0.966643	0.000007	-0.11	-0.09	0.22
84	Н	4.224388	0.082574	0.370184	-0.00003	-0.25	-0.17	0.27
85	Н	2.485522	3.431445	-1.686358	-0.000074	-0.24	-0.17	0.27
86	Н	4.548018	3.680418	-3.033727	0.000011	0.21	-0.08	-0.1
87	Н	6.465411	2.126597	-2.679955	-0.000021	-0.1	-0.12	0.15
71	0	6.207054	2.196502	3.448205	0.000008			
72	0	5.369732	3.956631	4.485097	0.000002			

Atom	Atom	X coord	Y coord	Z coord	Spin	A ₁	A_2	A ₃
Number	Туре	(Å)	(Å)	(Å)	Population	(MHz)	(MHz)	(MHz)
0	С	-0.830036	-2.383096	-0.651209	0.051068	-0.17	0.09	12.38
1	С	-0.366285	-1.457972	-1.731694	-0.008945	-3.35	-2.99	-4.97
2	С	-1.469914	-0.457511	-1.875021	0.050723	12.19	-0.03	-0.3
3	С	-2.60334	-0.923575	-1.128491	0.013214	2.87	-2.21	-2.19
4	С	-2.211101	-2.103379	-0.37864	0.010942	2.49	-2.21	-2.25
5	С	1.107661	-0.835016	-1.515392	-0.004683	-1.29	-0.6	-0.52
6	С	1.18978	0.655966	-1.496617	0.022051	2.99	-4.32	-4.5
7	С	0.100433	1.480343	-1.790703	0.068895	16.69	0.21	-0.11
8	С	-1.234169	0.9166	-1.965499	0.003875	-0.59	-4.25	-3.59
9	С	-2.167989	1.851903	-1.368639	-0.013241	-2.85	-5.25	-3.55
10	С	-3.30145	1.390933	-0.698688	0.009943	0.12	2.83	0.29
11	С	-3.52845	-0.020584	-0.57408	0.002963	0.13	-1.07	-0.89
12	С	-4.067433	-0.253588	0.750377	-0.00273	-0.62	-0.22	-0.38
13	С	-3.692164	-1.38384	1.467932	-0.002886	-0.2	-0.32	-0.59
14	С	-2.761294	-2.334823	0.894756	0.00207	-0.87	-1.04	-0.08
15	С	-1.914034	-2.794711	1.957791	0.009383	0.31	2.68	0.15
16	С	-0.557191	-3.009391	1.715451	-0.012251	-3.4	-2.76	-5.06
17	С	-0.001924	-2.800611	0.392081	0.003712	-4.42	-3.72	-0.98
18	С	1.335265	-2.249566	0.5779	0.070979	0.38	0.7	17.87
19	С	1.819291	-1.258108	-0.274959	0.012441	-4.81	-4.95	0.68
20	С	0.421373	-2.623752	2.705641	0.086187	3.21	2.98	23.46
21	С	1.575167	-2.13086	1.997051	-0.022914	-5.49	-4.9	-10.26
22	С	2.120654	1.047308	-0.492872	0.066502	-1.72	15.37	-2
23	С	2.51122	-0.135109	0.25987	0.074863	-1.33	17.67	-1.08
24	С	-2.326528	-2.147701	3.192012	-0.004437	-0.48	-1.38	-0.37
25	С	-3.430249	-1.28089	2.890168	0.004364	0.26	1.34	0.21
26	С	-4.193764	1.02175	1.428524	0.005151	0.26	1.59	0.2
27	С	-3.714279	2.037912	0.535364	-0.004159	-0.41	-1.38	-0.53
28	С	-1.437839	2.986974	-0.855878	0.088178	2.96	23.93	3.18
29	С	-0.038259	2.738439	-1.094134	-0.020925	-5.41	-9.89	-4.76
30	С	0.9526	3.210905	-0.185609	0.006438	1.83	2.96	1.57
31	С	2.074321	2.326317	0.134572	-0.035769	-4.47	-10.77	-5.37
32	С	2.859513	-0.04133	1.638132	-0.039119	-11.94	-5.96	-5.03
33	С	2.376761	-1.086383	2.542455	0.00849	2.02	1.79	3.45
34	С	0.039854	-2.072643	3.960872	-0.037938	-5.56	-6.21	-12.15
35	С	-1.390314	-1.824027	4.211947	0.003258	0.98	1.33	0.94
36	С	-4.022442	1.136599	2.837161	-0.004433	-0.96	-0.32	-0.28
37	С	-3.625399	-0.060671	3.597034	-0.004288	-0.24	-0.91	-0.28
38	С	-1.871902	3.695883	0.299608	-0.03825	-5.62	-6.28	-12.23
39	С	-3.055564	3.199882	1.023123	0.003227	0.99	0.95	1.34
40	С	0.5245	4.149733	0.796094	-0.025524	-4.72	-10.5	-5.56
41	С	-0.876344	4.399765	1.03032	0.088933	3.17	2.93	23.95
42	С	3.101507	1.260308	2.154548	0.076945	-0.49	18.69	-0.77

Table S7. Atomic number, type, coordinates of α -PC₇₁BM radical anion structure optimized using B3LYPl6-31G+(d); Mulliken spin populations, and hyperfine coupling constants B3LYPlEPRII). Mulliken spin populations are unitless and sum to 1. The principal axes of the hyperfine coupling tensors for ¹³C and ¹H are aligned with the principal axes of the g-tensor.

43	С	2.706963	2.446313	1.401258	0.066863	-1.5	15.59	-1.26
44	С	2.148823	-0.752164	3.907702	-0.027503	-5.67	-11.13	-4.88
45	С	0.996449	-1.249481	4.616127	0.089322	3.01	24.17	3.25
46	С	-3.142109	3.427697	2.425142	-0.003971	-0.38	-0.25	-1.15
47	С	-3.61941	2.411268	3.318975	0.004819	1.44	0.12	0.19
48	С	-2.85616	0.110001	4.779683	0.004456	0.2	1.41	0.13
49	С	-1.754216	-0.75826	5.082025	-0.003287	-1	-0.18	-0.33
50	С	-0.753692	0.018494	5.792982	0.005375	-0.08	1.57	0.1
51	С	0.596231	-0.221365	5.553072	-0.011314	-4.77	-3.39	-2.61
52	С	2.479453	0.555379	4.428583	0.074645	0.44	18.54	0.07
53	С	2.938908	1.548547	3.547636	0.021539	2.3	-4.89	-5.22
54	С	2.307525	3.452439	2.338791	0.026018	-4.77	-4.43	3.54
55	С	1.234603	4.310517	2.044045	0.072702	-0.1	17.89	0.24
56	С	-1.028706	4.679788	2.441855	-0.010418	-2.56	-3.39	-4.77
57	С	-2.144442	4.21264	3.131039	0.006791	0.14	-0.04	1.9
58	С	-2.533751	1.429574	5.294778	-0.00191	-0.63	-0.22	-0.46
59	С	-2.908887	2.560213	4.577442	-0.00132	-0.42	-0.09	-0.53
60	С	0.279976	4.64377	3.070971	0.000498	-4.1	-4.75	-1.49
61	С	-2.005281	3.686352	4.469758	0.004318	-0.95	-1.13	0.49
62	С	-1.237854	1.372711	5.938108	0.005415	0.81	-0.79	-0.97
63	С	1.524216	0.891586	5.453369	0.001016	-1.35	-4.85	-4.22
64	С	2.45205	2.911565	3.679453	-0.002781	-0.34	-1.51	-0.89
65	С	1.054991	2.210232	5.589739	0.062152	15.82	0.6	0.99
66	С	1.529742	3.237636	4.674944	-0.025298	-4.22	-3.72	-9.34
67	С	0.418495	4.128075	4.371468	0.058573	0.86	0.48	14.82
68	С	-0.348914	2.454296	5.831662	0.011374	2.12	-2.67	-2.62
69	С	-0.741556	3.638331	5.080405	0.014182	-2.39	-2.36	2.95
72	С	0.763433	-1.706678	-2.711068	-0.00383	-1.63	-1	-1.06
73	С	1.335595	-3.105047	-2.787237	-0.000071	-0.01	-0.21	-0.3
74	С	0.503161	-4.175928	-3.144192	-0.000239	0.05	-0.01	0.2
75	С	1.019336	-5.463731	-3.299968	0.000012	-0.06	-0.04	0.07
76	С	2.382348	-5.701762	-3.099817	-0.000048	-0.02	-0.01	0.1
77	С	3.220751	-4.642544	-2.743861	0.000072	-0.01	-0.03	0.16
78	С	2.699948	-3.354749	-2.589326	-0.000024	-0.04	0.04	0.19
83	С	0.666484	-1.022784	-4.083335	-0.00044	-0.27	-0.37	-0.07
86	С	2.029923	-0.71561	-4.722366	0.000275	0.17	0	-0.04
89	С	1.911751	0.158134	-5.979746	-0.000077	0.12	-0.02	-0.02
92	С	1.248311	-0.535441	-7.15276	0.000029	0.09	0	-0.01
95	С	-0.030785	-0.19931	-9.118664	0.000002	0.03	-0.02	-0.02
70	Н	4.281509	-4.816587	-2.578816	0.000008	-0.15	-0.14	0.33
71	Н	0.085249	-1.67837	-4.744931	-0.000027	0.38	-0.29	-0.34
79	Н	3.357056	-2.539729	-2.29906	-0.000029	-0.54	-0.39	0.67
80	Н	-0.559684	-3.99863	-3.290663	-0.000021	-0.25	-0.21	0.65
81	Н	0.355436	-6.28137	-3.570833	-0.000008	-0.16	-0.14	0.24
82	Н	2.785751	-6.705127	-3.214602	0.000011	-0.08	-0.08	0.24
84	H	0.101809	-0.090674	-3.987202	-0.000141	0.8	-0.2	-0.47
85	Н	2.915594	0.447883	-6.324114	0.000001	0.29	-0.14	-0.15
87	Н	2.65236	-0.174893	-3.998389	-0.000058	0.81	-0.26	-0.37
88	Н	2.552576	-1.64473	-4.972814	0.000033	-0.13	-0.11	0.44
91	Н	1.377979	1.090996	-5.768413	0.000011	0.44	-0.19	-0.22

94	Н	-0.782187	-0.941597	-8.835472	0	0.14	-0.07	-0.07
96	Н	-0.49821	0.648427	-9.621357	0	0.12	-0.06	-0.06
97	Н	0.713061	-0.671234	-9.767216	0	0.11	-0.06	-0.06
90	0	0.597306	0.350509	-7.948269	0			
93	0	1.300449	-1.723958	-7.399182	-0.000004			

Xcoord Atom Ycoord Zcoord Spin Atom A_1 A₂ A₃ Number (Å) (Å) (Å) **Population** (MHz) (MHz) (MHz) Type -4.218477 0 С -1.620488 -3.340284 -0.025424 -10.27 -4.97 -5.69 1 С -0.786577 -2.236768 -4.675141 0.081173 20.5 0.68 0.29 С -4.964094 0.027088 5.72 -3.19 2 -1.656564 -1.125328 -3.09 3 С -3.032112 -1.545079 -4.705518 0.010351 1.27 -3.99 -4.15 4 С -3.010428 -2.918138 -4.260671 0.089896 0.97 1.3 23.2 0.79 5 С 0.458518 -2.007947-4.053034 0.013593 -4.56 -3.92 6 С 0.857444 -0.658187 -3.707165 -0.008246-3.6 -2.61-2.08С -2.89 7 0.019191 0.411399 -3.99318 -0.008174 -1.45 -1.06 С 8 -1.258341 0.182095 -4.63633 0.010799 1.73 -1.77 -1.35 9 С -2.198866 -4.043612 0.016309 3.8 -0.66 -0.71 1.102378 10 С -3.512381 0.702549 -3.797447 0.016277 3.84 -0.46 -0.52 11 С -3.937479 -0.637563 -4.136306 0.005565 -0.85 -1.25 0.86 12 С -1.03 -3.54 -4.840771 -1.072712-3.089624-0.011161 -1.37 13 С -4.819044 -2.393174 -2.653163 -0.003905 -2.09 -1.17 -2.5114 С -3.892197 -3.336881 -3.241388 0.016102 -4.7 -4.09 1.26 15 С -3.427676 -4.188848-2.177513 0.04708 -0.55 -0.2 11.55 16 С -2.089758 -4.595638 -2.140874 0.011022 -3.58 -3.44 0.72 17 -0.58 С -1.174589-4.167422 -3.183762 -0.001887 -0.94 -0.1818 С 3.18 -2.98-3.27 0.109878 -3.927423 -2.55467 0.020595 19 С 12.68 -0.25 -0.57 0.911236 -2.864505 -2.990235 0.051509 С 20 -1.374176 -4.642198 -0.892474 0.05515 -0.02 13.46 0.16 -0.95 21 С -0.010092 -4.221385 -1.151024 0.043948 9.87 -1.15 22 С 2.73 18.22 1.584619 -0.683357 -2.451114 0.06607 2.52 23 С 1.599396 -2.050755 -2.005217 -0.023532 -4.19 -8.85 -3.73 С 24 -4.072361 -3.781695 -0.941824 -0.019129 -3.45 -3.09 -7.15 25 С -4.945621 -2.680505 -1.2343580.0512 1.67 1.47 13.7 26 С -4.995302 0.003317 -2.128671 0.028865 1.48 1.44 8.14 27 С -4.166005 1.094479 -2.564714 -0.009317 -1.3 -3.33 -1.51-0.010383 28 С -1.497698 -3.058463 -1.64 -3.63 -1.44 1.905755 29 С -0.123423 1.486362 -3.027721 0.030385 1.54 1.5 8.75 30 С -1.55 -3.69 0.647817 1.541535 -1.832644 -0.009499 -1.75 31 С 1.546003 0.399379 -1.528935 -0.027125 -4.46 -4.87-9.57 32 С 1.554947 -2.364602 -0.626616 0.008376 1.63 2.87 1.49 С 33 0.72503 -3.492009 -0.176321 -0.025298 -3.07 -7.59 -3.66 34 С -2.01061 -4.334815 0.341796 -0.029132 -3.78 -4.43 -9.04 35 С -3.414009 -3.890434 0.315926 0.007376 1.37 1.23 2.3 С -1.51 36 -5.201611 -0.254642 -0.745872 -0.010641 -3.88 -1.74 37 С -3.16 -5.174516 -1.650911 -0.280223-0.02055 -3.5 -6.77 38 С -2.142246 2.365594 -1.887115 0.001102 0.41 0.44 0.34 39 С -3.529549 1.953686 -1.628335 0.000324 0.37 0.25 0.28 40 С 0.084181 2.280365 -0.761212 0.032773 1.07 1.05 8.91 41 С -1.2909012.642872 -0.777023-0.012018 -1.83 -1.68-4.1242 С 1.775336 -1.273127 0.266509 -0.027721 -4.35 -3.97 -9.46

Table S8. Atomic number, type, coordinates of β_1 -PC₇₁BM radical anion structure optimized using B3LYPl6-31G+(d); Mulliken spin populations, and hyperfine coupling constants B3LYPlEPRII). Mulliken spin populations are unitless and sum to 1. The principal axes of the hyperfine coupling tensors for ¹³C and ¹H are aligned with the principal axes of the g-tensor.

43	С	1.820577	0.078269	-0.175381	0.07132	2.12	1.97	18.91
44	С	0.184686	-3.454795	1.137975	0.044132	-1.06	9.63	-0.9
45	С	-1.173886	-3.878448	1.4001	0.057238	0.17	13.82	-0.03
46	С	-3.968294	1.854796	-0.279682	-0.009373	-1.34	-3.27	-1.16
47	С	-4.798681	0.769971	0.157601	0.030417	1.49	8.53	1.45
48	С	-4.743264	-1.913801	1.049794	0.050873	1.69	1.51	13.64
49	С	-3.870693	-3.014813	1.341738	-0.018166	-3.32	-2.98	-7.02
50	С	-3.018179	-2.63305	2.45405	0.042234	-0.16	10.65	-0.51
51	С	-1.687007	-3.056881	2.46666	0.007362	0.29	-3.47	-3.57
52	С	0.500962	-2.38598	2.050446	0.012507	-3.45	-3.32	1.46
53	С	1.290302	-1.30642	1.630727	0.058457	0.36	14.58	0.62
54	С	1.490147	0.954087	0.988141	-0.003996	-2.62	-1.81	-2.1
55	С	0.521115	2.175793	0.661204	-0.002204	-1.3	-0.77	-1.09
56	С	-1.794276	2.62601	0.581649	0.021326	-0.11	-0.07	5.5
57	С	-3.114441	2.242669	0.826496	0.009229	-0.86	2.07	-0.79
58	С	-4.409997	-0.84112	1.972068	-0.004622	-2.01	-2.47	-1.25
59	С	-4.441429	0.477414	1.533871	-0.011065	-1.29	-3.68	-1.61
60	С	-0.731617	2.25149	1.46877	0.000688	-1.82	-1.59	-0.6
61	С	-3.409762	1.405484	1.954942	0.009878	2.25	-0.45	-0.79
62	С	-3.352947	-1.290453	2.853209	0.017485	1.79	-4.04	-3.48
63	С	-0.642838	-2.137916	2.887267	-0.00107	0.34	-0.54	-0.26
64	С	1.012411	0.02812	2.059751	-0.004594	-4.53	-4.28	-2.01
65	С	-0.957684	-0.826385	3.266113	-0.024419	-9.66	-4.61	-5.14
66	С	-0.113446	0.28149	2.85002	0.070856	0.74	0.45	17.66
67	С	-1.000274	1.406187	2.543071	0.023263	-2.47	-2.44	4.75
68	С	-2.342215	-0.391436	3.257526	0.084914	21.71	0.98	1.29
69	С	-2.368686	0.973961	2.79552	0.00746	0.68	-3.96	-3.83
72	С	1.937153	2.395884	1.170395	-0.000667	-0.09	-0.3	0.03
73	С	2.940718	2.993529	0.209279	0.001683	-0.16	-0.12	0.12
74	С	4.13551	2.339888	-0.120066	-0.000403	0.23	0.28	0.48
75	С	5.083758	2.952197	-0.944805	0.000144	0.03	0	0.11
76	С	4.851375	4.232198	-1.453267	-0.000145	-0.04	-0.02	0.06
77	С	3.66267	4.894656	-1.131978	0.00012	-0.02	-0.03	0.06
78	С	2.718276	4.278676	-0.308694	-0.000881	-0.05	-0.02	0.12
83	С	2.070622	2.964529	2.59455	0.000391	0.06	-0.04	0.22
88	С	3.452031	2.830237	3.25912	0.000058	0.01	-0.01	0.13
91	С	3.865108	1.386972	3.566237	-0.000149	0.25	0.22	0.42
94	С	5.150252	1.29292	4.360656	0.000103	0.04	0.04	0.15
97	С	6.838946	-0.194122	5.105403	0.000006	-0.02	-0.02	0.04
70	Н	6.664096	0.028134	6.162185	0	-0.07	-0.07	0.14
71	Н	3.465337	5.887413	-1.529682	-0.000008	-0.1	-0.12	0.18
79	Н	1.789528	4.793579	-0.074417	0.000029	-0.11	-0.16	0.45
80	Н	4.320236	1.337762	0.256031	-0.000111	-0.19	-0.24	0.92
81	Н	6.00051	2.423002	-1.193866	-0.000005	-0.11	-0.15	0.24
82	Н	5.585388	4.706565	-2.100279	0.00001	-0.06	-0.06	0.18
84	Η	3.431242	3.395004	4.19855	0.000034	-0.09	-0.11	0.34
85	Н	7.075858	-1.250139	4.969151	0	-0.07	-0.08	0.15
86	Н	1.314743	2.514916	3.244901	-0.000057	-0.42	-0.63	0.86
87	Н	1.824635	4.033633	2.534435	0.000013	-0.17	-0.21	0.38
89	Н	3.086192	0.87707	4.150879	-0.000024	-0.17	-0.33	0.54

90	Н	4.220291	3.305482	2.638013	0.00001	-0.06	-0.09	0.35
92	Н	3.978948	0.787074	2.657595	-0.000068	-0.1	-0.21	0.71
93	Н	7.654315	0.435039	4.736917	0	-0.06	-0.07	0.13
95	0	5.689019	2.198294	4.967486	0			
96	0	5.644456	0.02993	4.339471	0.000004			

Atom	Atom	X coord	Y coord	Z coord	Spin	A_1	A_2	A_3
Number	Туре	(Å)	(Å)	(Å)	Population	(MHz)	(MHz)	(MHz)
0	C	-1.782989	-3.361289	-4.087155	0.002091	-0.93	-4.75	-5.26
1	С	-0.930117	-2.25145	-4.508309	0.04119	9.24	-2.59	-2.82
2	С	-1.771581	-1.109138	-4.746757	0.077442	19.44	-0.01	-0.4
3	С	-3.145693	-1.505455	-4.460619	-0.021657	-9.51	-5.86	-4.89
4	С	-3.153233	-2.904805	-4.077897	0.099801	1.47	1.2	25.8
5	С	0.332235	-2.083116	-3.909155	0.014365	-1.93	2.16	-2.45
6	С	0.777008	-0.760854	-3.519194	-0.009677	-3.52	-1.95	-1.48
7	С	-0.035471	0.3429	-3.744569	-0.009007	-3.8	-2.66	-2.08
8	С	-1.331203	0.177611	-4.371357	0.015891	1.64	-4.28	-3.62
9	С	-2.229857	1.096081	-3.72533	0.046389	11.13	-0.62	-0.91
10	С	-3.550112	0.715658	-3.45497	0.025959	4.83	-2.19	-2.51
11	С	-4.011902	-0.605071	-3.832759	-0.002074	-0.91	-1.1	-0.24
12	С	-4.908775	-1.061005	-2.785595	0.004803	-3.19	-3.12	-0.23
13	С	-4.915446	-2.407003	-2.411543	0.034418	-0.68	-1.01	8.43
14	С	-4.027683	-3.339882	-3.056587	0.023481	-4.1	-4.7	2.74
15	С	-3.552502	-4.244708	-2.034316	0.003	-1.87	0.52	-1.95
16	С	-2.233203	-4.687191	-2.051132	-0.011098	-1.33	-1.86	-3.93
17	С	-1.330989	-4.244482	-3.097296	0.002861	-0.94	-1.35	0.42
18	С	-0.033473	-4.057185	-2.486303	0.023747	5.37	-0.65	-0.78
19	С	0.781151	-2.995799	-2.887458	0.025013	5.81	-0.84	-0.95
20	С	-1.490194	-4.800232	-0.812272	0.039054	1.66	10.59	1.59
21	С	-0.133707	-4.399489	-1.08357	-0.005889	-1.45	-3.04	-1.94
22	С	1.524546	-0.858989	-2.278032	0.042712	1.91	1.83	11.94
23	С	1.515349	-2.241984	-1.887286	-0.013633	-2.36	-4.98	-2.07
24	С	-4.167676	-3.886737	-0.765774	0.034042	0.73	0.56	8.96
25	С	-5.002083	-2.744469	-0.999889	-0.009911	-2.4	-2.03	-4.18
26	С	-5.016722	-0.02514	-1.788338	0.052645	0.56	13.34	0.71
27	С	-4.16672	1.071623	-2.202571	0.0282	-1.5	5.88	-1.64
28	С	-1.488304	1.835705	-2.720407	-0.021997	-3.92	-8.2	-3.47
29	С	-0.123424	1.384938	-2.737464	0.064129	2.61	2.43	17.67
30	С	0.668763	1.369086	-1.554905	-0.024737	-4.08	-4.48	-8.78
31	С	1.538314	0.188011	-1.312597	-0.014514	-2.36	-2.64	-5.3
32	С	1.494843	-2.609168	-0.521461	0.002066	0.61	0.8	0.53
33	С	0.645974	-3.733113	-0.09895	-0.001574	0.12	-0.32	-0.04
34	С	-2.094506	-4.536106	0.447399	-0.016154	-2.26	-5.47	-2.58
35	С	-3.487452	-4.060535	0.471416	-0.01225	-2.01	-2.26	-4.4
36	С	-5.19232	-0.332239	-0.410612	-0.025801	-3.56	-4.14	-8.43
37	С	-5.186995	-1.746508	-0.001686	0.004293	0.76	0.63	1.15
38	С	-2.096446	2.261648	-1.515787	0.006892	1.38	2.34	1.25
39	С	-3.488319	1.872971	-1.242649	-0.017332	-2.06	-5.3	-2.54
40	С	0.155094	2.087451	-0.445039	0.066732	2.03	1.9	17.52
41	С	-1.214136	2.477568	-0.415259	-0.024887	-3.98	-3.65	-8.68
42	С	1.76247	-1.562212	0.409418	-0.01518	-2.41	-2.23	-5.35

Table S9. Atomic number, type, coordinates of β_2 -PC₇₁BM radical anion structure optimized using B3LYPl6-31G+(d); Mulliken spin populations, and hyperfine coupling constants B3LYPlEPRII). Mulliken spin populations are unitless and sum to 1. The principal axes of the hyperfine coupling tensors for ¹³C and ¹H are aligned with the principal axes of the g-tensor.

43	С	1.834498	-0.193416	0.022331	0.04344	1.4	1.34	11.49
44	С	0.128643	-3.733209	1.225016	-0.005611	-1.56	-2.74	-1.23
45	С	-1.222722	-4.136008	1.499599	0.04014	1.73	10.94	1.65
46	С	-3.902027	1.736987	0.110147	0.027554	-1.29	5.62	-1.18
47	С	-4.753273	0.646422	0.525794	0.055393	0.9	13.92	0.72
48	С	-4.731831	-2.074873	1.306635	-0.009336	-2.24	-1.89	-4.1
49	С	-3.897836	-3.216755	1.540968	0.032748	0.77	0.62	8.63
50	С	-3.006041	-2.887341	2.641952	0.002839	-1.4	-1.53	0.73
51	С	-1.692285	-3.341302	2.618125	-0.013019	-1.64	-4.44	-2.09
52	С	0.496696	-2.709661	2.181431	0.010735	-1.14	2.04	-1.05
53	С	1.297127	-1.637193	1.778845	0.028951	0.13	7.47	0.17
54	С	1.547705	0.643008	1.226731	-0.002723	-1.55	-0.97	-1.38
55	С	0.612548	1.909014	0.964553	-0.003842	-2.24	-1.51	-1.89
56	С	-1.688267	2.421615	0.951693	0.0518	0.56	13.34	0.73
57	С	-3.015986	2.053935	1.20396	0.009808	-2.81	-2.72	1.06
58	С	-4.36713	-1.047801	2.269154	0.030441	-0.22	7.94	-0.52
59	С	-4.372829	0.288903	1.871478	-0.002593	-1.43	-3.73	-3.25
60	С	-0.622607	1.981426	1.798115	-0.007801	-2.66	-4.59	-4.01
61	С	-3.305179	1.174678	2.304144	0.001736	1.05	-0.07	-0.14
62	С	-3.305277	-1.550336	3.103931	0.018373	1.73	-3.92	-3.41
63	С	-0.617318	-2.469691	3.054829	0.00728	2.01	-0.2	-0.52
64	С	1.063555	-0.310508	2.266683	-0.003058	-1.45	-2.55	-2.28
65	С	-0.895952	-1.162764	3.488367	-0.001381	-1.45	-4.74	-4.26
66	С	-0.035317	-0.059021	3.084488	0.032629	7.32	-1.68	-1.77
67	С	-0.889496	1.106026	2.851815	0.062456	15.57	0.42	0.18
68	С	-2.26121	-0.696145	3.521657	0.090701	23.15	1.36	1.58
69	С	-2.260571	0.691872	3.104758	-0.021888	-8.73	-4.42	-5.08
72	С	2.040731	2.058716	1.462681	-0.000578	0.6	0.4	0.7
74	С	2.741706	3.550366	5.464517	0.000007	0.03	0	0.11
76	С	3.258312	2.309803	5.082725	0.000072	-0.06	-0.04	0.07
77	С	3.010158	1.808674	3.801722	-0.000061	-0.04	-0.02	0.11
78	С	2.243425	2.537799	2.883085	0.000556	-0.01	-0.02	0.16
79	С	1.975478	4.286793	4.555836	0.000053	-0.04	-0.06	0.06
80	С	1.730216	3.78274	3.276971	0.000012	0.03	-0.01	0.15
81	С	7.374799	3.071259	-2.408916	0.000004	-0.01	-0.02	0.03
83	С	3.07561	2.638513	0.488556	0.000215	0.07	0.14	0.24
88	С	4.513449	2.155205	0.734276	-0.000156	-0.13	-0.11	0
91	С	5.449409	2.638369	-0.378562	0.000007	-0.01	-0.01	0.09
94	С	6.908271	2.281072	-0.142611	-0.000002	-0.03	-0.03	0.03
70	Н	1.560086	5.249503	4.844714	0.00001	-0.09	-0.11	0.26
71	Н	2.928957	3.9378	6.463236	0.000003	-0.08	-0.09	0.2
73	Н	3.852652	1.726168	5.781626	0.000011	-0.09	-0.11	0.26
75	Η	3.408754	0.839016	3.51712	0.000013	-0.21	-0.31	0.33
82	Н	1.120963	4.352555	2.579283	-0.00006	-0.25	-0.35	0.4
84	Н	4.537232	1.059428	0.769239	-0.00004	-0.19	-0.23	0.48
85	Н	2.787717	2.398993	-0.538614	0.000318	-0.33	-0.13	0.6
86	Н	6.854468	4.028485	-2.295779	0	-0.06	-0.07	0.13
87	Η	3.0343	3.734351	0.571036	0.000011	-0.32	-0.36	0.29
89	Н	5.124392	2.229744	-1.344402	0.000003	-0.12	-0.15	0.27
90	Н	4.883526	2.50587	1.702435	-0.000009	-0.14	-0.16	0.24

92	Н	5.383571	3.732572	-0.483855	-0.000007	-0.1	-0.12	0.21
93	Н	8.292954	3.226298	-2.978419	0	-0.05	-0.05	0.1
96	Н	6.734186	2.362357	-2.944723	0	-0.07	-0.09	0.16
95	0	7.33625	1.800165	0.881168	0.000003			
97	0	7.798301	2.543623	-1.146933	-0.000001			

Figure S2. Mulliken spin populations for fullerene cage carbons for $PC_{61}BM$ (red) and α - $PC_{71}BM$ (blue) radical anions. Carbon numbers match those in Tables S6 and S7. Both molecules have approximately equal number of carbons with low spin density percentages (< 0.02 %), 60% for α - $PC_{71}BM$ and 66% for $PC_{61}BM$. The high spin density percentages (> .06 %) are also similar: 20% for $PC_{61}BM$ and 23% for α - $PC_{71}BM$.

REFERENCES

(1) Becke, A. D. Density-Functional Thermochemistry .3. The Role of Exact Exchange. *J. Chem. Phys* **1993**, *98*, 5648-5652.

(2) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab-Initio Calculation of Vibrational Absorption and Circular-Dichroism Spectra Using Density-Functional Force-Fields. *J. Phys. Chem.* **1994**, *98*, 11623-11627.

(3) Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. *Phys. Rev. B* **1988**, *37*, 785-789.

(4) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin-Density Calculations - a Critical Analysis. *Can. J. Phys.* **1980**, *58*, 1200-1211.

(5) Baker, J.; Wolinski, K.; Malagoli, M.; Kinghorn, D.; Wolinski, P.; Magyarfalvi, G.; Saebo, S.; Janowski, T.; Pulay, P. Quantum Chemistry in Parallel with PQS. *J. Comput. Chem.* **2009**, *30*, 317-335.

(6) Neese, F. The ORCA Program System. *WIREs Comput. Mol. Sci.* **2012**, *2*, 73-78.

(7) Rega, N.; Cossi, M.; Barone, V. Development and Validation of Reliable Quantum Mechanical Approaches for the Study of Free Radicals in Solution. *J. Chem. Phys* **1996**, *105*, 11060-11067.

(8) Barone, V. Structure, Magnetic Properties and Reactivities of Open-Shell Species from Density Functional and Self-Consistent Hybrid Methods. In *Recent Advances in Density Functional Methods (Part 1)*, Chong, D. P., Ed., World Scientific: Singapore, 1995; pp 287-334.

(9) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.

(10) Morvillo, P.; Bobeico, E. Bisadducts of C₇₀ as Electron Acceptors for Bulk Heterojunction Solar Cells: A Theoretical Study. *Fullerenes Nanotubes and Carbon Nanostructures* **2011**, *19*, 410-420.