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1. DLS results 

 

The intensity correlation function 𝐺2(𝜏) is provided as the directly measured quantity. Then, a field 

correlation function 𝑔1(𝜏) could be obtained 

𝑔1(𝜏) = ∫ 𝐺(Γ)𝑒−Γ𝜏dΓ
+∞

0

 

 

CONTIN method (installed in the instrument software) is used to perform the numerical inverse 

Laplace transformation on 𝑔1(𝜏) to get 𝐺(Γ). Then, momentums of Γ in order 𝑛 

〈Γ𝑛〉 ≡ ∫ Γ𝑛𝐺(Γ)dΓ
+∞

0

 

 

Then, the measured averaged diameter is calculated by 

〈𝑑H〉 ≡
𝑞2𝑘B𝑇

3𝜋𝜂〈Γ〉
=

𝛼𝑞

〈Γ〉
 

 

Polydispersity index 

Ð ≡
〈Γ2〉 − 〈Γ〉2

〈Γ〉2
=

〈Γ2〉

〈Γ〉2
− 1 

 

A diameter variable based on a logarithmic scale 

𝑥 ≡ log 𝑑H 

 

Supposing a Gaussian distribution for diameter variable 𝑥 

𝑓(𝑥) =
1

√𝜋√2𝜎2
exp (−

(𝑥 − 𝑥̅)2

2𝜎2
) 

 

𝐺(Γ) = 𝑓(𝑥)
d𝑥

dΓ
 

 

As a result, the momentum of Γ could be expressed with 𝑥̅ and 𝜎2 

〈Γ𝑛〉 = ∫ Γ𝑛𝑓(𝑥)
d𝑥

dΓ
dΓ

+∞

0

= ∫ Γ𝑛𝑓(𝑥)d𝑥
+∞

−∞

= 𝛼𝑞
𝑛 ∫ 10−𝑛𝑥𝑓(𝑥)d𝑥

+∞

−∞

= 𝛼𝑞
𝑛 ∙ 10

𝑛2𝜎2 ln 10
2

−𝑛𝑥̅
 

 

Combining with the definition of 〈𝑑H〉 and Ð, the gaussian distribution of size could be 

reconstructed with 

𝑥̅ = log〈𝑑H〉 +
1

2
log(Ð + 1)         (S1) 

 

𝜎2 =
1

ln 10
log(Ð + 1)            (S2) 
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Figure S1. The size distribution 𝑓(𝑥) of the microemulsion product in water, to determine 𝐷latex. 

The solid curves were reconstructed with eq. (S1) and (S2) 
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Figure S2. The size distribution 𝑓(𝑥) of the purified SNP in THF, to determine 𝐷swo. The solid 

curves were reconstructed with eq. (S1) and (S2) 
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Figure S3. The upper graph is the intensity correlation function of three selected samples of which 

the difference of measured averaged-diameters is within 1nm. The lower graph is a zoom-in 

window of the upper graph. There would be observable diversity between these samples. 
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Figure S4. The upper graph is the intensity correlation function of another two selected samples of 

which the difference of measured averaged-diameters is about 1nm. The lower graph is a zoom-in 

window of the upper graph. There would be observable diversity between these samples. 

 

  



2. Flory-Rehner swelling model 

The swelling behavior was widely described by the Flory-Rehner model, which put forward a 

relation of the swelling ratio and the crosslinking degree 𝑁c as 

𝜑0

𝑁c
(

𝜑

2𝜑0
− (

𝜑

𝜑0
)

1/3

) = 𝜑 + ln(1 − 𝜑) + 𝜒𝜑2  . 

 

In there, 𝜑0 is the polymer volume fraction of an initial state which is the bulk state in our 

discussion, and then 

𝜑0 = 1  , 

 

and the polymer volume fraction of the swollen state could be expressed with the swelling ratio 

𝜑 ≈
1

𝑄
  . 

 

Thus, 

𝑁c =
(

1
2𝑄

− 𝑄−1/3)

𝑄−1 + ln(1 − 𝑄−1) + 𝜒𝑄−2
 

 

The interaction parameter 𝜒 would be the only adjusted fitting parameter. However, this apparent 

interaction parameter for microgel was found rarely to match the widely studied Flory-Huggins 

parameter in linear polymer solutions (Soft Matt. – 13(2017), 8271 and the references inside). 

 

The fitting in Figure 2 yields an apparent interaction parameter 𝜒 = -3.2. 

  



3. Glass transition temperature 
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Figure S5. The upper graph is the results of DSC. The lower graph is the summarized Tg evaluated 

by DSC, tan δ peak and crossover of G’ and G’’ of temperature ramp test. 

  



4. WLF analysis 

 

Figure S6. Fitting of horizontal shifting factor aT according to WLF equation, plotted by (a) aT-T 

and (b) normalized aT and T. (c) Summary of C1 and C2. (d) aT replotted against temperature 

normalized by iso-friction temperature after applying WLF analysis (Macromolecules – 41(2008), 

8694).  

  



5. Discussion of modulus 
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Figure S7. The storage modulus G’ and tan δ of SNP 

  



Table S1. The modulus G’ of SNP evaluated at the value of 1 and the minimum of tan δ as shown 

in Figure S6 

 G' /Pa 

tanδ 1 (low freq.) minimum 1 (high freq.) 

D20N60  90000 520000 

D18N60 6500 120000 590000 

D17N60 12000 110000 550000 

D15N60 19000 110000 520000 

D16N05  500000  

D17N20  90000 670000 

D17N40 8000 120000 730000 

D17N60 12000 110000 550000 

D17N80 9500 120000 600000 

D17N100 9000 120000 660000 

LinearPS 50000 220000 600000 

 

(1) The storage modulus G’ of SNP except for D16N05 at the minimum of tan δ and the high-

frequency crossover point of the moduli shows no typical feature. 

 

(2) The storage modulus G’ of SNP at the low-frequency crossover point of the moduli shows a 

𝐷bulk-dependence. However, it lacks a clear dependence of 𝑁c. 

 

(3) The corresponding modulus of linear polystyrene (~ 1 M) would be higher than the SNP 

except for D16N05. 
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Figure S8. The master curves are based on a superposition of the low-frequency crossover point of 

the moduli. The inset plot is the corresponding shift factor. 

 

(1) As mentioned above, a 𝐷bulk-dependence could be seen according to bD. The vertical shift 

factor bD is the inverse reduced modulus. 

𝑏𝐷~
1

𝐺co,LF
~𝐷bulk

5.9  

 

(2) Although D20N60 seems to be superposed and a corresponding aD could be obtained, it 

doesn’t mean D20N60 is relaxable at the corresponding time scale of aD, because the validity of 

superposition is only assumed. Besides, the result of the creep test of D20N60 has confirmed 

there’s no relaxation within 10000s at 200 °C. 

 

(3) The spectra of SNPs with similar 𝐷bulk and different 𝑁c show poor self-similarity to achieve 

superposition. 

 

  



6. Creep data and converting into dynamic moduli 
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Figure S9. The slopes of creep compliance curves in log-log scale (
d log 𝐽

d log 𝑡
−  log 𝑡) 

 

To converting the creep result into dynamic moduli, two numerical methods are commonly 

applied (a comprehensive introduction was presented in Cho’s paper J. Rheol. – 60(2016), 1181):  

 

(1) Mason’s method (Rheol. Acta. – 39(2000), 371): An approximation based on the first-order 

Taylor expansion of the compliance J(t) in log-log scale 

𝛼(𝑡) ≡
d log 𝐽

d log 𝑡
 

 

𝐺′(𝜔) + i𝐺′′(𝜔) =
1

𝐽(𝑡)Γ[𝛼 + 1]
(cos

𝜋𝛼

2
+ i sin

𝜋𝛼

2
) |

𝑡=
1
𝜔

 

in which Γ[𝑥] is the Gamma function. 

 

(2) Evan’s method (also known as i-Rheo, Phys. Rev. E – 80(2009), 012501 & Phys. Chem. 

Chem. Phys. – 22(2020), 3839): for a data set of creep (tk, Jk) and k = 1, …, N, over-sampled by 

interpolating with cubic spline in log-log scale, 

i𝜔

𝐺′(𝜔) + i𝐺′′(𝜔)
= i𝜔𝐽0 + ∑

𝐽𝑘 − 𝐽𝑘−1

𝑡𝑘 − 𝑡𝑘−1
(𝑒−i𝜔𝑡𝑘−1 − 𝑒−i𝜔𝑡𝑘)

𝑁

𝑘=1

+
𝑒−i𝜔𝑡𝑁

𝜂
 

in which t0 = 0, J0 is an extrapolating parameter at t0 = 0, and 𝜂 is another extrapolating 

parameter representing the steady-state viscosity. In this work, J0 = 0, and 𝜂 = 1,000,000,000. 
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Figure S10. Moduli of D17N20 and D20N60 converted from creep compliance in Figure 4(d). 

Solid line: storage modulus; dashed line: loss modulus. Mason’s method and Evan’s method were 

applied respectively to get the black lines and blue lines (introduced above), comparing to the 

measured results of SAOS in red. 

  



7. Degradation concerns 
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Figure S11. Comparison of the viscoelasticity of SNP (D17N40 as an example) during heating at 

220 °C for more than 2 hours. There’s no remarkable change of the spectrum, at least for the terminal 

relaxation. 

 

Procedure 

Test (~11min)–Wait (~37min) – Test(~11min) –Wait (~37min) – Test(~11min) – Wait (~37min) – 

Test (~11min) 

  



8. Fitting of equation 12 in the lin-log scale of Figure 6 
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Figure S12. 𝐷ct vs. 𝑁c. in lin-log scale. Circles are the fitting results of parameter 𝐷ct by eq. (4). 

Triangles are measured data points. Upper triangles represent the upper limit of 𝐷ct while lower 

triangles are the lower limit of 𝐷ct. Symbols with a cross are literature data9, 14. The cyan dashed 

line is fitted with six points (cyan upper triangle with a cross, green upper triangle, purple, blue, red, 

and gray circles) in the lin-log scale according to eq. (12). 
 

 

 

  



9. Alternative fitting of Figure 5a against the effective volume and in 

log-lin scale 

 

 

 
Figure S13. Four points with 𝑁c = 60 cannot be simply fitted into the form of 𝜏(𝐷bulk , 𝐷ct) ∝

1/[1 − (𝐷bulk 𝐷ct⁄ )3]. The 𝜏 of D20N60 is estimated by a lower limit. 
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Figure S14. (a) Relaxation time v.s. 𝐷bulk in log-lin scale. A fitting according to 𝜏(𝐷bulk , 𝑁c) =

𝐴̃ ∙ 10𝛼̃𝐷bulk ∙ ℎ(𝐷bulk , 𝑁c) has been performed, while ℎ(𝐷bulk , 𝑁c) is also assumed as eq. (4). 

Following the same procedure of Figure 5a: (1) Assuming 𝐷̃ct= 20.6 nm (𝐷bulk of D20N60) for 

the series 𝑁c = 60 to get the universal parameters 𝛼̃ = 0.778 and 𝐴̃ = 10-12.7 by fitting series 𝑁c 

60; (2) to determine 𝐷ct for each 𝑁c by fitting each series with the same 𝛼̃ and 𝐴̃. As a result, 

𝐷̃ct = 15.2 , 17.2, 18.8, and 20.7 for 𝑁c of 20, 40, 50, and 80 respectively. (b) Reduced relaxation 

time 𝜏 ∙ (1 − (𝐷bulk/𝐷̃ct)
3

) v.s. 𝐷bulk to further confirm the fitting results. 
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Figure S15. 𝐷̃ct vs. 𝑁c. in log-log scale. Four circles are the fitted 𝐷̃ct from Figure S13. Symbols 

with a cross are literature data11, 16. The black line is fitted to 5 points (green upper triangle, all four 

circles in purple, blue, red, and gray) in log-log scale to obtain 𝑑̃0 = 5.1 nm according to eq. (9). It 

is shown that the evaluation of the critical diameter 𝐷̃ct and 𝑑̃0 is not sensitive to the details of 

the fitting approach. 


