SUPPORTING INFORMATION

Nanoporous WO3 Gasochromic Films for Gas Sensing

Shengqing Xue¹, Guohua Gao^{1*}, Zenghai, Zhang^{2*}, Xiaodi Jiang¹, Jun Shen¹,

Guangming Wu^{1*}, Hanyu Dai¹, Yuyang Xu¹, Yao Xiao¹

¹ Shanghai Key Laboratory of Special Artificial Microstructure Materials and

Technology, School of Physics Science and Engineering, Tongji University,

Shanghai, 200092, China.

² School of Materials Science and Engineering, Tongji University, Shanghai, 200092, China.

E-mail: gao@tongji.edu.cn; 1210590@tongji.edu.cn; wugm@tongji.edu.cn

Figure S1 SEM image in cross-section of the mWO₃-0 film.

Figure S2 N_2 absorption/desorption isotherms and pore size distributions of glass (a) and mWO₃-0 film (b).

Figure S3. The graph of the measurement and calculation diagram of mWO_3 -0 film (a), mWO_3 -

200 film (b) and mWO_3 -300 film (c).

Figure S4. Transmittance spectra of mWO₃-0 film and mWO₃-200 film at colored state and

bleached state.

Figure S5. Diagrammatic drawings of gasochromic window (a) and double glazing window (b).

of pure glass.	
Sample	Surface Area(m²/g)
P123: PTA = 1:10	9.75
P123: PTA = 1:20	13.62
P123: PTA = 1:30	13.01
P123: PTA = 1:40	9.80
Glass substrate	8.90

Table.S1 The specific surface area of different P123 doping amount and the specific surface area