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1.1. General information

All components as well as reagents and solvents were used as received without further
purification, unless stated otherwise. Reagents and solvents were bought from Sigma Aldrich and
TCI and if applicable, kept under argon atmosphere. Technical solvents were bought from VWR
International and Biosolve, and are used as received. Product isolation was performed using silica
(60, F254, Merck™), and TLC analysis was performed using Silica on aluminum foils TLC plates
(F254, Supelco Sigma-Aldrich™) with visualization under ultraviolet light (254 nm and 365 nm)
or appropriate TLC staining. 'H (400MHz or 500 MHz), 13C (100MHz) and '°F (376 MHz) NMR
spectra were recorded at ambient temperature using a Bruker-Avance 400 or Mercury 400. 'H
NMR spectra are reported in parts per million (ppm) downfield relative to CDCl; (7.26 ppm), '°F
NMR spectra are reported without internal standard with C-F/C-H decoupling and all >*C NMR
spectra are reported in ppm relative to CDCl; (77.2 ppm). NMR spectra uses the following
abbreviations to describe the multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet,
h = hextet, hept = heptet, m = multiplet, dd = double doublet, td = triple doublet. Known products
were characterized by comparing to the corresponding 'H NMR and 3C NMR from literature.
GC/MS analyses were performed using the gas chromatographer (Thermo Finnigan Trace GC
Ultra 2.2) equipped with a GC capillary column (Restek Rxi-5ms 30m, 0.25mm ID, 0.25um df)
and coupled to a mass spectrometer (Thermo Fisher ITQ 900 2.2, with electron ionization (EI) and
ion trap mass analyzer) using an auto sampler unit (Thermo Quest AS 2000). The system was set
at an oven temperature of 300 °C and a ramp rate of 20 °C/min; split/splitless inlet (SSL) injector
temperature of 250 °C, split flow 60 ml/min and split ratio 50; MS transfer line at 300 °C. High
resolution mass spectra were acquire on a quadrupole orthogonal acceleration time-of-flight mass
spectrometer (Synapt G2 HDMS, Waters, Milford, MA). Samples were infused at pul/min and
spectra were obtained in positive ionization mode with a resolution of 15000 (FWHM) using
leucine enkephalin as lock mass. Melting points were determined with a Buchi B-540 capillary

melting point apparatus in open capillaries and are uncorrected.

Chemicals: DMF (99.8%, extra dry), DMA (99.8%, extra dry) and DMSO (99.8%, extra dry)
were purchased from Acros Organics and used as purchased. HMPA, NMP, DMPU and Et;N were
also wused as purchased. The transition metal photocatalysts Ru(bpy);(PFs), and
[Ir{dFCF;ppy}.(bpy)]PF¢ were purchased from commercial sources. The organic photocatalyst
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4CzIPN was prepared in lab by the procedure outlined in previous publications.!
Perfluoroalkylsubstituted alkenes were prepared in lab by reported procedures outlined here.
Deuterated solvents were used as purchased (DMSO-dgs, DMF-d5).

Photochemical experiments were performed magnetically stirred in 10 mL glass test-tubes
with screw cap equipped with silicon septa. The tubes were irradiated with blue light (450 nm)
using a coiled commercial LED strip fixed in 3D-printed reactor (1 m, from LEDXON, PN:
9009083) with a total power output of 14.0 W. To maintain a constant reaction temperature of
30°C, the setup was cooled by a constant air flow (Figure S1, A, B). Flow experiments were

performed using a Vapourtec E-Series photoreactor (UV-150) (Figure S1, C).

Compressed air

Figure S1: Reaction setup (in-house 3D printed reactor and flow reactor).

1.2. Synthesis and characterization of starting materials

Alkene acceptors A12, A2-A43, A5-A6*, A7, A8°, A97, A10%, A11°, A12-15!9, A16-17!' and A
18'2 were synthesized according to previous literature. A5-A6 were synthesized by modified

procedure.
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Compound A2-A4

X /I
| pZ 2 Cl

N
In a flame dried 20 mL screw cap vial with silicon septa, N-tosylhydrazone (1.5 mmol, 1.5 equiv),
PdCI,(MeCN), (0.05 mmol, 5 mol%) and 1,1'-bis(diphenylphosphino)ferrocene (DPPF) (0.1
mmol, 10 mol%) were added. The reaction vial was degassed and purged with Ar (repeated 2
times). Dry 1,4-dioxane (3 mL) was added into the reaction mixture and stirred for 30 min..
Afterwards, LiO'Bu (2.2 mmol, 1.5 equiv) was added into the reaction vial and Ar was purged
again into the vial before adding 2-bromopyridine (1.0 mmol). The resulting reaction mixture was
placed in a preheated oil bath at 100 °C in a sealed tube for 3 h. After completion, the reaction
mixture was diluted with EtOAc and filtered through celite. The solvent was evaporated under

reduced pressure and the crude residue was purified by flash chromatography on silica gel.

TLC : 10% EtOAc in heptane
Column: gradient from 3% - 10% EtOAc in heptane

Compound A4
®
N
cl
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H NMR (400 MHz, CDCl;) 6 8.65 — 8.62 (m, 1H), 7.60 (td, J= 7.8, 1.8 Hz, 1H), 7.45 — 7.38 (m,
2H), 7.34 (m, 2H), 7.18 (ddd, J = 7.5, 4.8, 1.0 Hz, 1H), 7.08 (d, J = 7.9 Hz, 1H), 6.45 (d, J= 1.5
Hz, 1H), 5.51 (d, J= 1.5 Hz, 1H).

13C NMR (101 MHz, CDCLy) 6 156.73, 149.46, 147.12, 139.76, 136.50, 133.45, 131.71, 129.72,
129.19, 127.01, 122.44, 121.50, 119.92,

HRMS (ESI*): [M+H]*cal’d for C,3H,;CIN:216.05744 found: 216.0584

Compound A5-A6

\ .
| _ Bpin

N

In a flame dried 10 mL reaction vial, (hetero)aryl chloride (0.4 mmol, 1.0 equiv), Xphos (2-
dicyclohexylphosphino-2’,4°,6’-triisopropylbiphenyl) (10 mol%), Pd(OAc), (4.48 mg, 0.02
mmol, 5 mol%), bis(pinacolato)diboron (121 mg, 0.48 mmol, 1.2 equiv), and anhydrous KOAc
(78 mg, 0.8 mmol, 2.0 equiv) were added. The reaction vial was then purged with nitrogen
followed by dry dioxane (1.3 mL). The resulting reaction mixture was then placed in a preheated
oil bath at 80 °C and stirred for 12 h. Afterwards, the reaction mixture was cooled to room
temperature and diluted with ethyl acetate (10 mL) and washed with brine. The resulting aqueous
phase was extracted with ethyl acetate (20 mL x 3). The resultant organic phases were combined,
dried over anhydrous Na,SO, and concentrated under reduced pressure. The solvent was
evaporated under reduced pressure and the crude residue was purified by flash chromatography on
silica gel.

TLC : 20% EtOAc in heptane (Rf=0.4)

Column: gradient from 3% - 15% EtOAc in heptane

Compound AS
N BPin
|
N/

TH NMR (400 MHz, CDCLy) & 8.62 (ddd, J= 4.8, 1.8, 1.0 Hz, 1H), 7.82 — 7.78 (m, 2H), 7.59 (td,
J=17.8,1.8 Hz, 1H), 7.35 - 7.31 (m, 2H), 7.22 — 7.16 (m, 2H), 6.02 (d, J = 1.4 Hz, 1H), 5.61 (d, J
= 1.4 Hz, 1H), 1.33 (s, 12H).

S6



I3C NMR (101 MHz, CDCl;) 6 158.21, 149.36, 148.91, 143.20, 136.44, 134.84, 127.78, 122.98,
122.58, 118.43, 83.85, 24.87.

HB NMR (128 MHz, CDCls) 6 31.37.

HRMS: We could not observe the exact mass in HRMS in ESI (positive and negative mode) and
APCI positive mode.

To further confirm the structure, we performed halodeboronation following the reported

procedure:!3

N BPin N ol
| * cucl, MeOH (1mL), H0 (1mb) ||

N 80 °C, 24 h N

0.1 mmol 0.3 mmol

In a flame dried 10 mL reaction vial, compound AS, CuCl,, MeOH and H,O were added. The
resulting reaction mixture was then placed in a preheated oil bath at 80 °C and stirred for 24 h.
Afterwards, the reaction mixture was cooled to room temperature, diluted with ethyl acetate (10
mL) and washed with H,O, aqueous HCI (1.0 M, 10 mL) and brine (10 mL). The organic phases
was dried over anhydrous Na,SO, and concentrated under reduced pressure. The solvent was
evaporated under reduced pressure and the crude residue was purified by flash chromatography on
silica gel.

Column: gradient from 3% - 10% EtOAc in heptane

Spectroscopic data were consistent with literature values.?
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\

N Bpin

'TH NMR (400 MHz, CDCl3) ¢ 8.65 — 8.61 (m, 1H), 7.83 (s, 1H), 7.81 — 7.77 (m, 1H), 7.61 (td, J
=7.7, 1.8 Hz, 1H),ii 7.42 — 7.33 (m, 2H), 7.23 (d, J= 7.9 Hz, 1H), 7.19 (ddd, /= 7.5, 4.8, 1.0 Hz,
1H), 6.02 (d, J= 1.4 Hz, 1H), 5.60 (d, /= 1.4 Hz, 1H), 1.33 (s, 12H).

13C NMR (101 MHz, CDCl3) ¢ 158.60, 149.49, 139.99, 136.37, 134.75, 134.41, 131.59, 127.74,
122.87, 122.49, 118.09, 83.94, 24.98.

ITB NMR (128 MHz, CDCls) 6 31.56.

HRMS: We could not observed the exact mass in HRMS in ESI (positive and negative mode) and
APCI positive mode.

To further confirm the structure we performed halodeboronation following the reported procedure

(same procedure as compound A5):13

X

| * cucl, MeOH (1mL), H0 (1ml) |
N BPin 80°C. 24 h N cl
0.1 mmol 0.3 mmol

Column: gradient from 3% - 10% EtOAc in heptane

Spectroscopic data were consistent with literature values.?

General Procedure for the preparation of alkyl boronic acid from

alkyltrifluoroborates

silica
R-BF3K > R-B(OH),
H,O

A 10 mL glass vial equipped with a magnetic stirring bar was charged with potassium
alkyltrifluoroborates (0.4 mmol, 1 equiv.) and water (1 mL), followed by addition of silica (100
mg). The mixture was stirred at room temperature for 1-2 h and the progress of the reaction was
monitored by '"B-NMR. After completion, the mixture was diluted with EtOAc/Et,O (10 mL) and
filtered through celite or syringe filter. The organic phase was separated and the aqueous phase

was extracted with EtOAc/Et,0. The combined organic layers were dried over Na,SO,. The
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solvent was removed in vacuum and the crude residue was used in the subsequent step without
further purifications.'*
Note: the hydrolysis of tertbutyl potassium trifluoroborate salt and a-heteroatom containing

trifluoroborate salts was conducted under Ar atmosphere.

General Procedure for preparation of alkyltrifluoroborates from alkyl boronic

acid pinacol esters

_ 4.5 M ag. KHF5/MeOH
R-BPin R-BF;

1h

A 10 mL glass vial equipped with a magnetic stirring bar was charged with boronic ester (2 mmol,
1 equiv) and MeOH (10 mL), followed by dropwise addition of KHF, (2 mL of 4.5 M saturated
aqueous solution, 9 mmol, 2.25 equiv). The mixture was stirred at room temperature for 1 h.
Afterwards, all volatile compounds were removed in vacuum and the organic residue was re-
dissolved in methanol (6 mL) followed by water (6-10 mL). All the volatile compounds were
evaporated again (3 times this procedure). Then, the solid residue was triturated with dry acetone
(8 mL), the liquid phase was carefully decanted, and the residual inorganic salts were washed with
more acetone (3x2 mL). The filtrate was collected and concentrated in vacuo to give the desired

trifluoroborate as a white solid.!®

1.3. Optimization studies

General procedure for optimization: An oven-dried 10 mL glass vial equipped with a
magnetic stirring bar was charged with cyclopentyl boronic acid, photocatalyst and solvent (dry
solvent). The vial was closed with a silicon septum and purged with argon three times. Afterwards,
the vial was charged with 2-vinyl pyridine (0.66 mmol, 1.5 equiv) and irradiated with a commercial
blue LED strip (14.0 W, 450 nm) for 20 h in the aforementioned photoreactor. Progress of the
reaction was monitored by TLC and GC/MS. After completion, the solution was diluted with Et,O
and transferred in a separatory funnel containing deionized water. The organic layer was separated,
and aqueous layer was extracted with Et,O. The combined organic layers were dried over Na,SO,.
The solvent was removed in vacuum and the yield was determined by 'H-NMR using 3.4,5-

trimethoxybenzaldehyde as internal standard.
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*Note: Water bath temperature of the rotavapor was set at 28-35 °C. Unless otherwise noted, all

the solvents used were dry.

Preliminary optimization

AN HO\B,OH
().

N

1 2

4CzIPN (5 mol %),
quinuclidine 3-ol (20 mol%)

Acetone:Methanol 1:1

30°C,20h

-
v

AN

=
N

3

Scheme S1: preliminary optimization reaction

In view of literature!® and our previous results obtained employing a mixture of acetone and

methanol (1:1) with the addition of a Lewis base to activate boronic acids towards single electron

oxidation, we performed preliminary optimization studies on the concentration of the reagents in

the reaction mixture and we also determined the most suitable ratio of the starting materials,

considering the possible oligomerization of 2-vinyl pyridine. We next turned our attention in

finding the best conditions to perform our target reaction with the aim to avoid the use of an

external Lewis base to achieve the activation.

Table S1: Preliminary optimization reactions.?

Entry Lewis base Concentration 1:2 Yield (%)?
1 Quinuclidine 3-ol 0.1 1.5:1 72
2 Quinuclidine 3-ol 0.05 1.5:1 70
3 Quinuclidine 3-ol 0.2 1.5:1 40
4 Quinuclidine 3-ol 0.1 3:1 67
5 Quinuclidine 3-ol 0.1 1:1.5 50
6 - 0.1 1.5:1 25

2 Yields were determined by 'H-NMRyield using 3,4,5-trimethoxybenzaldehyde as internal standard.

S10



Solvent optimization

4CzIPN (5 mol %),

N Solvent (0.1 M), 30 °C, 20 h N
14 W blue LEDs, Ar

1
(1.5 equiv) 2 3

N\

Table S2: Screening of solvents based on hydrogen-bond acceptor basicity (B) and hydrogen-

bond donor(a) ability.?
Entry Solvent B al’ Yield (%)
1 DMF 0.69 0.00 70
2 DMA 0.76 0.00 80
3 DMSO 0.76 0.00 68
4 HMPA 1.05 0.00 77
5 NMP 0.77 0.00 82
6 2-pyrrolidone N.A N.A 55
7 DMPU N.A N.A 40

aReaction conditions: 1 equiv (0.22 mmol) of 2, 1.5 equiv of 1, 5 mol % of the photocatalyst. ® Yields were determined by 'H-NMR
using 3,4,5-trimethoxybenzaldehyde as internal standard.

Photocatalyst optimization

HO___OH X
Ei/ B PC, dry DMA (0.1 M) |
+ ’ ~
s
N G 30°C, 20 h N
1 2

14 W blue LEDs, Ar

3
Table S3: Screening of photocatalysts.?
Entry Photocatalyst Solvent Yield (%)
1 Mes-Acr-4 DMA 0
2 4-CICzIPN DMA 77
3¢ [Ir(dtbpy)(py).]PFs DMA 40
4¢ [Ir{dF(CF;)ppy }.(dtbpy)]PF, DMA 70

aReaction conditions: 1 equiv (0.22 mmol) of 2, 1.5 equiv of 1, 5 mol% of photocatalyst. ®Yields were determined by '"H-NMR
using 3,4,5-trimethoxybenzaldehyde as internal standard. <2 mol% of photocatalyst.

Optimization for the defluorinative alkylation reaction
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HO\B,OH 4-CzIPN (5 mol %)

CF3 -
" dry DMA (0.1 M), 30 °C, 20 h |
14 W blue LEDs, Ar F O F

S-1 2 50

Table S4: Optimization of the reaction conditions for the defluorinative alkylation reaction.?

Entry Photocatalyst S-1:2 Additive Concentration (M) Yield (%)®
1 4CzIPN 1.5:1 - 0.1 55
2 4CzIPN I:1.5 - 0.1 75
3 4CzIPN 1:1.5 Mol. sieves 0.1 76

aReaction conditions: 5 mol % of photocatalyst. PYield were determined by '"H-NMR using dibromomethane.

1.4. Mechanistic investigations

Control experiments: To explain the mechanism of the alkylation reaction, control
experiments were performed. The results of the variation of the optimal reaction conditions are
presented in Table S5. In the absence of light and photocatalyst (Entry 2,3), the product was not
detected; in the absence of an oxygen free atmosphere (Entry 4), the yield was consistently
decreased. This result can be accounted for the involvement of oxygen in quenching the excited
state of the photocatalyst. These results confirm the photocatalyzed mechanism of the presented
method. The use of MIDA boronate did not result in any desired product formation. This result
highlights the necessity of both hydrogen bonding and Lewis acid-base interaction, both
impossible with a MIDA boronate (Entry 6). Moreover, the reaction was not found to be sensitive

to the presence of water, allowing to perform this reaction in biocompatible conditions (Entry 7).

(i/ HO\B/OH 4CzIPN (5 mol %) N

+ . =

NG Z é dry DMA (0.1 M), 30 °C, 20 h, N
2

14 W blue LEDs, Ar
1

Table S5: Control experiments.

Entry Deviation from standard conditions® Yield (%)
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1 none

2 No PC

3 No light

4 Under air

5 0.5 M DMA

6 Cyclohexylboronic acid MIDA
7° H,O0:DMA (9:1)

8 1 equiv of DMAP

80 (77)

30
37
0
68
40

aReaction conditions: 1 equiv (0.22 mmol) of 2, 1.5 equiv of 1, 5 mol% of photocatalyst in DMA (0.1 M). ®Yields were
determined by "H-NMR using 3,4,5-trimethoxybenzaldehyde as internal standard. Isolated yields are in parentheses. *Solubility

of 4CzIPN is poor and therefore may be the cause of the lower yield.

Radical inhibition experiment: Adding a radical quencher (TEMPO) to the reaction

mixture, an adduct between cyclohexane ring and TEMPO itself was detected by GC-MS.

Moreover, the adduct between TEMPO and phenylethyl radical (deriving from phenylethyl

boronic acid) was isolated (48% yield) and characterized by NMR. These results support the

radical based mechanism (Scheme S2).

14 W blue LEDs, 20 h

(1/ HO._OH >Ej< 4-CzIPN (5 mol %)
+ +

P N

\ = é c|) DMA (0.1 M), 30 °C

TEMPO
(1.5 equiv) (1 equiv) (1.5 equiv)

DMA (0.1 M), 30 °C
14 W blue LEDs, 20 h

@\/ HO\B/OH >Ej< 4-CzIPN (5 mol %)
+ +
_ N
N NP \ !
0.
Ph

TEMPO
(1.5 equiv) (1 equiv) (1.5 equiv)

Oy g

0%
X

Z
N

0%

Detected by GC/MS

+ q_ c)\_\Ph

isolated (confirmed by NMR)
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Scheme S2: Radical inhibition experiment: reaction conducted in the presence of a radical
scavenger.

Deuterium-labelling experiment: In the presence of D,O, deuterium incorporation is
obtained (25%), substantiating the hypothesis of a last protonation step in the redox-neutral
reaction mechanism (Scheme S3). The low deuterium incorporation in the final product could be
due to the presence of active hydrogens derived from DMA-BA intermediate. However, this low
amount of deuteration in the presence of D,0O also excludes the in-situ formation of hydroxide ion

(OH"), which could interact with BA and favour the boronate ion formation.'?

4-CzIPN (5 mol %) | N D,0 (10 equiv) = 25%
_ MeOD( 10 equiv) = 25%
DMA (0.1 M), N DMSO-dg = 12 %
30°°C, 20 h, Ar D

1 3'
Scheme S3: Deuterium labelhng experiment

Light-dark experiment: In the absence of light no product formation was detected. This result

suggests the fundamental role of light in the reaction mechanism, but it cannot completely exclude

a radical chain mechanism (Figure S2).
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Figure S2: Results of the light-dark experiment.

Stern-Volmer quenching experiment: The experiment was performed on a fluorescence
spectrophotometer (FLS 920, Edinburgh Instruments, Photonic division). In a typical experiment,
to a 0.1 mM solution of 4CzIPN in ACN, an appropriate amount of quencher was added in a 1.0
cm quartz cuvette. The solutions were irradiated at 400 nm and emission was measured at 540 nm.
The relative intensity Io/I was calculated as a function of quencher concentration, where I, is the
luminescence intensity in the absence of quencher, while I is the intensity in the presence of the
quencher. Before each measurement, the solutions were degassed and kept under nitrogen

atmosphere (Figure S3).

N, flushed

Figure S3: Preparation of the sample under inert atmosphere using an in-house made silicon cap.

The Stern-Volmer experiment demonstrates that only a mixture of boronic acid and DMA is able
to quench the excited state of 4CzIPN, substantiating the hypothesis that only the interaction

between boronic acids and DMA gives rise to a redox-active substrate (Figure S4). Indeed, neither
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boronic acid nor DMA independently are able to quench the excited state of the photocatalyst
(Figure S5 and S6).

Boronic acid and DMA Boronic acid and DMA

~1mM

¥ =0,0607x + 1,0129
R?=0,9299

0,00 1,00 2,00 3,00 4,00 5,00 6,00
Conc (mM)

Wavelength (nm)

Figure S4: Fluorescence quenching and Stern-Volmer plot of 4CzIPN in the presence of variable
concentrations of cyclohexyl boronic acid and DMA (3M).

DMA
1,00 DMA
2
0,80
# 15
A
.
£oso y 51 -
-]
£
040 05 y =0,0094x + 1,0441
R?=0,0638
0,20 °
y 0 05 1 15 2 25 3
e Conc (M)
0,00
450 500 550 600 650 700 750 800

‘Wavelength (nm)

Figure S5: Fluorescence quenching and Stern-Volmer plot of 4CzIPN in the presence of variable
concentrations of DMA.
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Figure S6: Fluorescence quenching and Stern-Volmer plot in the presence of cyclohexyl boronic
acid.
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NMR experiment: To demonstrate the interaction between boronic acids and DMA, '"H-NMR
spectra of a mixture of phenylethyl boronic acid (0.014 M in CDCl;) and different concentrations
of DMA were performed at 298.2 K. Increasing the concentration of DMA, a downfield shift of
hydrogens (B-O-H) could be observed as a result of the formation of hydrogen bonds between
phenylethyl boronic acid and DMA (Figure S7). Due to the presence of two different species of
BA in CDCI;, the change in the chemical shift of the -CH,- (next to boron center) proton upon
interaction with DMA could not be analyzed. In order to confirm the chemical shift of this protons,

we ran the experiment in acetone-ds. As expected, we can see a slight upfield shift (Figure S8).

Downfield shift due to H-bonding (B-0-H) JH
1

| u\ @/\/ o
12 equiv 1, \ (KD I [

I - A S S, L S W—

6 equiv 5 \ M 1 A

3 equiv

DMA

0.5 equiv [ ] |

|
Oequiv. |1 __||. i AJ‘ _.-"I-._ _.J{H\__ JI

85 80 75 7.0 65 60 55 50 45 40 35 30 25 20 15 1.0 05 0.0

25 T

1,5 1

A shift

05 +

0 2 4 6 8 10 12
Equiv of DMA

Figure S7: '"H-NMR titration curve of phenyl ethyl boronic acid with DMA in CDCl; (based on
the shift of B-OH bond).
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Figure S8: 'H-NMR spectrum of phenyl ethyl boronic acid in the presence of increasing
concentrations of DMA in acetone-d.

To further establish the hydrogen bond interaction, 3'P-NMR spectrum of a mixture of
phenylethyl boronic acid (0.01 M in CD,Cl,) and HMPA (0.01 M in CD,Cl,) was performed.
HMPA showed an appreciable shift in the presence of a boronic acid, as shown in Figure S9. The
shift observed in the presence of BA also supports the hypothesis of contribution of H-bonding

and Lewis acid-base interaction.

Ratio= 1:1 A3 =0.83 ppm

c o i
N a i
—b—

5 o
f1 (ppm)
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Figure S9: 3'P-NMR spectrum of HMPA in the presence of phenyl ethyl BA.

Boronic acid speciation: Boronic acids are prone to form boroxine under anhydrous
conditions or in the presence of dehydrating agents.'” In order to confirm the precentage of
boroxine and boronic acid in a commerical phenyl ethyl boronic acid sample, we performed 'H
experiment in DMSO-d; at 298.2 K. We could easily see the —OH peak (2 protons, Figure S10)
deriving from free boronic acid without any other peaks from boroxine. Nevertheless, the
speciation of boronic acids during the course of the photocatalytic cycle cannot be predicted, as a
result of the generation of anionic species (fluorine and tosyl anions), which can be involved, to a
minor extent, in the activation of boronic acids.!® Despite this possibility, the major activation

pathway is ruled by the interaction between DMA and free boronic acids.

— 2.5000 DMSO-d6
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Figure S10: "TH-NMR spectrum of phenyl ethyl BA in DMSO-dj.

Job’s plot: Various solutions of phenyl ethyl boronic acid and DMA in acetone-ds were
prepared, with the sum of both concentrations at a constant value of ¢;,, = 0.13 mol/L. '"H NMR of
the solutions was recorded at 298 K on a Bruker Avance 300 MHz spectrometer. The result (Figure
S11) shows a maximum at x = 0.3, which indicates a 2.3:1 stoichiometry of the intermediate

obtained through the combination of strong hydrogen bonds and weaker and transient Lewis acid-
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base interactions between the two species present in solution (as already confirmed through 3'P

NMR, Figure S9).

Job's plot

0,005 T
0,0045 +
0,004 —+
0,0035 +
< 0,003 +
X, 0,0025
0,002 +
0,0015 +
0,001 +
0,0005

0 0,2 0,4 0,6 0,8 1 1,2
X

Figure S11: Job's plot Job plot analysis ( x*Ad as a function of ). x is the molar fraction of
phenyl ethyl boronic acid

Cyclic voltammetry measurements: In light of the results of "H-NMR experiments, we
performed cyclic voltammetry experiments to understand the effect of the interaction between
boronic acids and DMA on the oxidation potential of these species.

Procedure: The experiments were conducted using a cyclic potentiometer (Metrohm PGSTAT20
potentiostat/ galvanostat) with a glassy carbon working electrode, a Pt counter electrode and an
Ag/AgCl reference electrode [referenced to SCE using ferrocene (Fc) as an internal standard (0.42
V vs. SCE)].2° In the standard procedure, 0.02 mmol of substrate were dissolved in 10 mL of a 0.1
M [N(Bu)4]PFg electrolyte solution in degassed MeCN. The reactor was sealed with a rubber
septum and purged with nitrogen. Each measurement was conducted at 100 mV/s at room
temperature under nitrogen atmosphere without stirring.

At first, the redox potentials of boronic acid 2 and DMA were measured. The observed oxidation
peaks (2.24 V vs SCE for phenyl ethyl boronic acid and 2.01 V vs SCE for DMA) lie outside the
redox window of 4CzIPN (E,, (P*/P-) = +1.43, E» (P/P-) = -1.24 vs SCE), (Figure S13).

The cyclic voltammogram of a mixture of boronic acid 2 and DMA (1:4) was then measured. In
the voltammogram, beside the peaks of the boronic acid and DMA, it is possible to observe a new
local maximum, which is related to the species formed through the interaction between boronic

acid and DMA in the mixture (Figure S12).
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To correctly define the oxidation potential of the new arising oxidizable species, in our case the
Nernst equation could not be employed, since an irreversible cyclic voltammogram was obtained.
This result can be accounted for the reactivity of the oxidized species, which undergoes
degradation. To estimate the value of E?,, the half peak potential E,, (which corresponds to the
potential at half the maximum of the local maximum current in the cyclic voltammogram) was
calculated (Equation S1).

f (Ep/2 ) = Cmax/2 [Equation S1]

In the case of boronic acid and DMA, the half peak potential value was found to be 1.13 V vs SCE.
This species can therefore quench the excited state of 4CzIPN, as the value found lies in the redox

window of the PC. The result obtained proves that DMA can activate boronic acids towards

oxidation.
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Figure S12: Cyclic voltammogram of boronic acid 2 in the presence of DMA.
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Figure S13: Cyclic voltammograms of boronic acid 2 and of DMA.

Competition experiment: To define the reaction kinetics and selectivity in the presence of
two boron species with similar redox values, a competition experiment was performed. In the
presence of cyclopentyl boronic acid (1 equiv) and cyclohexyl boronic acid pinacol ester (1 equiv),
it was observed that the activation of boronic acid by DMA was faster and afforded the alkylated
product as major product. Indeed, DMA is able to activate boronic acids towards single electron
transfer (SET), but the same mode of activation of boronic esters is slower, as illustrated in Figure
S14. This result explains the possibility to achieve the selective activation of boronic acids in the
presence of boronic esters, which show similar chemical features in terms of oxidation potential.
Nevertheless, the solvent is able to interact with boronic acids in a more efficient manner (through
hydrogen bonding and Lewis acid/base interaction) in the presence of both the species.

To further exclude the steric effect of pinacol boronic esters, we subjected cyclopentyl boronic
acid methyl ester, less sterically hindered than the pinacol counterpart, to the same reaction
conditions. We could not observe a high product formation. This substantiates our hypothesis of a
greater contribution of electronic effects over steric effects (Figure S15).

Intrigued by the possibility to obtain product formation from boronic esters as well (in the absence
of boronic acids), we performed alkylation reaction using different boronic esters as radical source.
Unfortunately, we could not find a reactivity trend to explain the reactivity of secondary boronic

esters. Further studies are currently undergoing in our laboratory (Figure S16).

S22



(=2}
o
]

1

i
(=]
]

T

B
(=]
1
T

—— Alkylation product from BA

S
% 30 — Alkylation product from BE
2
20 -+
10 -+
0 } } t t |
0 5 10 15 20 25
Time (h)

Figure S14: Competitive experiment in the presence of cyclopentyl boronic acid (1 equiv) and
cyclohexyl boronic ester (1 equiv), under the general reaction conditions (1 equiv of 2-vinyl
pyridine, 5 mol% of 4CzIPN, 0.1 M in DMA under Ar atmosphere).
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Figure S15: Reaction rate of cyclohexyl boronic acid pinacol ester (A) and cyclopentyl boronic
acid methyl ester (B) under the general reaction conditions (1.5 equiv of 1-(trifluoromethyl)-4-
vinylbenzene, 5 mol% of 4CzIPN, 0.1 M in DMA under Ar atmosphere), yields were measured
by GC-MS.
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Figure S16: Evaluation of the reactivity of boronic acid pinacol esters under our optimized
conditions, using 2-vinyl pyridine as radical acceptor.
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1.5. General procedure for the alkylation of electron deficient
alkenes (GP1)

H
4CzIPN (5 mol %), —R
Rz\f\RB HO.,-OH ( 0) .~ R R4
. + R, DMA (0.1M), 30 °C , 3

14 W blue LEDs, 20 h, Ar

An oven-dried 10 mL glass vial equipped with a magnetic stirring bar was charged with alkyl
boronic acid (1 equiv, 0.44 mmol), photoredox catalyst (4CzIPN, 5 mol%) and DMA (0.1 M). The
vial was closed with a silicon septum and purged with argon three times. The vial was then charged
with the electron deficient alkene (1.5 equiv, 0.66 mmol) and irradiated with a commercial blue
LED strip (14 W, 450 nm) for 20 h in the aforementioned photoreactor. The progress of the
reaction was monitored by TLC and GC/MS. After completion, the solution was diluted with Et,O
and transferred in a separatory funnel containing deionized water. The organic layer was separated,
and the aqueous layer was extracted with Et,O. The combined organic layers were dried over
Na,S0;. Purification was performed by SiO, column chromatography.

For the pyridine containing compounds: before the purification, silica was neutralized with a
2% Et;N solution in heptane.

TLC: 20% EtOAc in heptane (R¢: 0.45)

Column: gradient 5% to 15 % EtOAc in heptane

*Note: Water bath temperature of the rotavapor was set at 28 °C.

General procedure for continuous-flow experiments

An oven-dried 10 mL glass vial equipped with a stirring bar was

charged with alkyl boronic acid (1 equiv), photoredox catalyst
(4CzIPN, 5 mol%) and a mixture of ACN and DMA (4:1, 0.1 M).

The vial was closed with a silicon septum and purged with argon
three times. The vial was then charged with the electron deficient | i
alkene (1.5 equiv). The resulting clear yellow solution was then

pumped through a /0 mL volume reactor at the desired flow rate, _ FFEEEEE < —
‘ . Figure S17: Vapourtec E-series
keeping the temperature set at 20 °C. Once the solution had been  photoreator; reaction setup.

fully taken up by the pump, the input was changed to ACN/DMA solvent to push the reaction
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mixture through the reactor. The crude reaction mixture was collected in a round bottom flask and

analyzed through GC/MS or NMR.

Table S6: Comparison between batch and flow results.

Scale Concentration Mode Solvent Flow rate Isolated yield Production
(mmol) ™M) Batch/flow?* VIV) (mL/min) (%) (mmol/h)
0.4 0.1 batch DMA NA 77 0.015
1 0.1 batch DMA NA 68 0.034
0.4 0.1 flow DMA 0.2 45 0.22
0.4 0.1 flow DMA/ACN 0.2 87 0.42
1:4
2 0.1 flow DMA/ACN 0.2 68 0.816
2 run 1:4

aPower = 24 W, Volume of reactor = 10 mL

Substrate Scope in Flow

| D | D O\/\/\/ | ; L Nl )
P Z N Z
N N/ N/ N
9 10 14

3 17
Batch: 7% Flow: 60% Batch: 53% Batch: 60% Batch: 60%
Flow: 87% Flow: 58% Flow: 53% Flow: 81%

BPin BPin o Q
NI ~ Med
- ® ° o
19 33 34 39 40
Batch: 64% Batch*: 78% Batch: 20% Flow: 55% Batch: 60%
Flow: 85% Flow*: 80% Flow: 53% oWz 99% Flow: 84%
F
(0]
H F
8 o\ p Et0,C
o BocHN O
HN ~ ¢}
NG 1 (0]
Hl}l Boc O \
Boc O 48 50 54 71 77
Batch: 45% Batch: 43% Flow: 259 Batch: 38% Batch: 58%
Flow: 75% Flow: 58% ow: 25% Flow: 38% Flow: 60%

2-(2-cyclopentylethyl)pyridine (3)
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Compound 3 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 2-10 % EtOAc/Heptane

TH NMR (400 MHz, CDCl;) 6 8.50 (dd, J= 5.1, 1.8 Hz, 1H), 7.56 (td, J= 7.7, 1.9 Hz, 1H), 7.13
(d,/J=7.8Hz, 1H), 7.07 (dd, J=17.5, 4.9 Hz, 1H), 2.82 — 2.76 (m, 2H), 1.84 — 1.67 (m, 5SH), 1.66
—1.51 (m, 2H), 1.50 (dq, J=11.7, 6.7, 5.2 Hz, 2H), 1.19 — 1.09 (m, 2H).

13C NMR (101 MHz, CDCl3) J 162.68, 149.16, 136.22, 122.63, 120.81, 39.95, 37.71, 36.39,
32.64,25.22.

IR (neat, v/em') 2975, 1684, 1395, 1358, 1166, 1143.

HRMS (ESI*): [M+H]"cal’d for C,,HgN:176.14336 found: 176.1437

2-(2-cyclobutylethyl)pyridine (4)

“

N

Compound 4 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 2-10 % EtOAc/Heptane

'TH NMR (300 MHz, CDCl3) ¢ 8.52 (d, J= 4.0 Hz, 1H), 7.60 — 7.51 (m, 1H), 7.11 (d, J= 8.0 Hz,
2H), 2.74 — 2.64 (m, 2H), 2.27 (d, J= 2.9 Hz, 1H), 2.12 — 1.96 (m, 2H), 1.81 (q, J = 7.5 Hz, 4H),
1.70 — 1.54 (m, 2H).

13C NMR (101 MHz, CDCl;) ¢ 162.57, 149.27, 136.29, 122.78, 120.91, 37.20, 36.22, 35.94,
28.30, 18.53.

IR (neat, v/em™) 2925, 2853, 1591, 1473, 1433, 747.

HRMS(ESI"): [M+H]" cal’d for C;;H¢N: 162.1277, found: 162.1278

2-(2-cyclohexylethyl)pyridine (5)?!
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Compound 5 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 2-10 % EtOAc/Heptane

TH NMR (400 MHz, CDCl;) 6 8.51 (d, /= 4.8 Hz, 1H), 7.58 — 7.51 (m, 1H), 7.14 — 7.08 (m, 1H),
7.10 —7.01 (m, 1H), 2.80 — 2.74 (m, 2H), 1.78 (d, J = 13.1 Hz, 2H), 1.74 — 1.58 (m, 5H), 1.28 —
1.12 (m, 4H), 1.00 — 0.89 (m, 2H).

I3C NMR (101 MHz, CDCl;) ¢ 162.89, 149.19, 136.21, 122.61, 120.77, 37.66, 37.57, 35.91,

33.27, 26.67, 26.35. Spectroscopic data were consistent with literature values.

2-isopentylpyridine (6)*

-

Compound 6 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 2-10 % EtOAc/Heptane

'TH NMR (300 MHz, CDCl;) 6 8.51 (d, J = 4.2 Hz, 1H), 7.60 — 7.57 (m, 1H), 7.10-7.06 (m, 2H),
2.83 — 2.76 (m, 2H), 1.63-1.59 (m, 3H), 0.95 (d, J = 5.2 Hz, 6H). Spectroscopic data were

consistent with literature values.

2-(2-(2,6,6-trimethylbicyclo[3.1.1]heptan-3-yl)ethyl)pyridine (7)

| X
N
Compound 7 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.
Column Chromatography : Silica, gradient 2-12 % EtOAc/Heptane
TH NMR (400 MHz, CDCl;) ¢ 8.53 — 8.49 (m, 1H), 7.57 (td, J="7.7, 1.8 Hz, 1H), 7.15 (d, /= 7.8

Hz, 1H), 7.10 —7.04 (m, 1H), 2.89 (ddd, J=13.6, 11.1, 4.6 Hz, 1H), 2.74 (ddd, J = 13.6, 10.6, 6.0
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Hz, 1H), 2.32 — 2.17 (m, 2H), 1.95 (m, 2H), 1.76 (dd, J = 9.0, 3.9 Hz, 1H), 1.73 — 1.52 (m, SH),
1.19 (s, 3H), 1.03 — 0.98 (m, 6H).

13C NMR (101 MHz, CDCLy) 6 162.85, 149.35, 136.33, 122.71, 120.93, 48.44, 43.88, 42.16,
41.46,38.93, 37.01, 36.63, 34.84, 34.18, 28.25, 23.12, 21.81.

IR (neat, v/em) 2902, 1594, 1568, 1472, 1452, 1433, 1372, 1315, 1146, 746
HRMS(ESI")[M+H]" cal’d for C;,H,sN: 244.2059, found : 244.2068

2-(3-phenylpropyl)pyridine (8)*

(i/\/
P Ph
N

Compound 8 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 5-20 % EtOAc/iso-Hexane

TH NMR (400 MHz, CDCls) ¢ 8.58 — 8.50 (m, 1H), 7.63 — 7.58 (m, 1H), 7.29 (m, 2H), 7.24 —
7.16 (m, 3H), 7.16 — 7.10 (m, 2H), 2.85 (m, 2H), 2.74 — 2.68 (m, 2H), 2.15 — 1.99 (m, 2H).

I3C NMR (101 MHz, CDCl;) 6 162.02, 149.25, 142.23, 136.54, 128.58, 128.42, 125.88, 122.96,
121.16,77.48,77.16,76.84,37.91, 35.66, 31.58. Spectroscopic data were consistent with literature
values.

Note: Compound 8 is smelly; all the work-up process should be done under proper ventilated
hood.
2-(8-bromooctyl)pyridine (9)>*

| A

N/ 6Br

Compound 9 was prepared according to the general procedure (GP1) and isolated as a clear oil.
'TH NMR (400 MHz, CDCl;) 4 8.50 (d, J = 4.8 Hz, 1H), 7.56 (td, J= 7.6, 1.7 Hz, 1H), 7.12 (d, J
=7.8 Hz, 1H), 7.07 (dd, /= 7.4, 5.0 Hz, 1H), 3.38 (t, /= 6.9 Hz, 2H), 2.81 — 2.70 (m, 2H), 1.87 —
1.78 (m, 2H), 1.70 (dd, J= 15.0, 7.4 Hz, 2H), 1.43 — 1.32 (m, 8H).

13C NMR (101 MHz, CDCl;) 6 162.52, 149.25, 136.47, 122.86, 121.04, 77.16, 38.49, 34.18,
32.95, 29.98, 29.41, 28.79, 28.28. Spectroscopic data were consistent with literature values.

2-butylpyridine (10)%
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Compound 10 was prepared according to the general flow procedure and isolated as a clear oil.
Column Chromatography : Silica, gradient 0-10 % EtOAc/iso-Hexane

'TH NMR (400 MHz, CDCl;) 6 8.51 (d, J = 4.5 Hz, 1H), 7.56 (dt, J= 7.7, 3.8 Hz, 1H), 7.13 (d, J
=7.8 Hz, 1H), 7.08 (dd, J=7.2, 5.1 Hz, 1H), 2.81 —2.75 (m, 2H), 1.75 - 1.66 (m, 2H), 1.43 — 1.32

(m, 2H), 0.93 (t, /= 7.4 Hz, 3H). Spectroscopic data were consistent with literature values.

2-hexylpyridine (11)%

—

"
Compound 11 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 5-20 % Et,O/Pentane (after neutralizing silica with
2% Et;N)

TH NMR (400 MHz, CDCl;) ¢ 8.52 — 8.49 (m, 1H), 7.56 (td, J="7.7, 1.8 Hz, 1H), 7.12 (d, /= 7.8
Hz, 1H), 7.07 (dd, J= 7.4, 5.0 Hz, 1H), 2.79 — 2.74 (m, 2H), 1.70 (q, J = 7.6 Hz, 2H), 1.37 — 1.26
(m, 6H), 0.91 — 0.82 (m, 3H).

13C NMR (101 MHz, CDCl3) d 162.67, 149.30, 136.30, 122.77, 120.93, 38.59, 31.83, 30.02,

29.21, 22.70, 14.19. Spectroscopic data were consistent with literature values.
2-octylpyridine (12)?’

NT

W~

Compound 12 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 5-20 % Et,O/Pentane (after neutralizing silica with
2% Et;N)

'TH NMR (300 MHz, CDCls) 6 8.51 (d, J=4.7 Hz, 1H), 7.54 (d, J= 7.4 Hz, 1H), 7.16 — 6.97 (m,
2H), 2.77 (t, J = 7.8 Hz, 2H), 1.72 (p, J = 7.3 Hz, 2H), 1.41 — 1.18 (m, 10H), 0.86 (t, J = 6.5 Hz,
3H).
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13C NMR (101 MHz, CDCls) 6 162.36, 148.97, 136.00, 122.47, 120.62, 38.27, 31.66, 29.74,
29.27,29.23,29.03, 22.46, 13.90. Spectroscopic data were consistent with literature values.

2-(4-phenylbutyl)pyridine(13)?®

X

~

N

Compound 13 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 2-10 % EtOAc/Heptane

TH NMR (400 MHz, CDCl3) ¢ 8.52 (ddd, J=4.9, 1.9, 1.0 Hz, 1H), 7.57 (td, J= 7.6, 1.9 Hz, 1H),
7.29 —7.22 (m, 2H), 7.16 (td, J= 5.3, 4.9, 2.3 Hz, 3H), 7.13 — 7.06 (m, 2H), 2.84 — 2.78 (m, 2H),
2.69 —-2.61 (m, 2H), 1.84 — 1.75 (m, 2H), 1.73 — 1.64 (m, 2H).

13C NMR (101 MHz, CDCl;) 6 162.30, 149.36, 142.65, 136.38, 128.53, 128.39, 125.78, 122.84,
121.05, 38.40, 35.95, 31.33, 29.66. Spectroscopic data were consistent with literature values.

2-(4-methylpentyl)pyridine(14)>°

X

Vz

N

Compound 14 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 2-10 % EtOAc/Heptane (after neutralizing silica with
2% Et;N)

TH NMR (400 MHz, CDCl;) ¢ 8.51 (d, J= 4.0 Hz, 1H), 7.57 (td, J= 7.7, 1.9 Hz, 1H), 7.13 (d, J
=7.8 Hz, 1H), 7.08 (ddd, J=7.4,4.9, 1.0 Hz, 1H), 2.78 — 2.72 (m, 2H), 1.77 — 1.67 (m, 2H), 1.57
(dp,J=13.3,6.7 Hz, 1H), 1.28 — 1.20 (m, 2H), 0.88 (s, 3H), 0.86 (s, 3H).

I3C NMR (101 MHz, CDCl;) ¢ 162.67, 149.31, 136.33, 122.79, 120.96, 38.85, 28.06, 27.95,

22.72. Spectroscopic data were consistent with literature values.

tert-butyl 2-(2-(pyridin-2-yl)ethyl)pyrrolidine-1-carboxylate (15)3°
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Compound 15 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 5-25 % EtOAc/Heptane

'TH NMR (300 MHz, CDCl;) 6 8.51 (d, J= 3.0 Hz, 1H), 7.59 (t, J= 7.8 Hz, 1H), 7.16 — 7.00 (m,
2H), 3.99 — 3.74 (m, 1H), 3.41-3.28 (m, 2H), 2.86 — 2.71 (m, 2H), 2.02-1.98 (m, 1H), 1.96-1.87
(m, 2H), 1.82-1.72 (m, 3H), 1.44 (s, 9H). Spectroscopic data were consistent with literature values.

tert-butyl 4-(2-(pyridin-2-yl)ethyl)piperidine-1-carboxylate (16)*'

X

bz

N
N‘Boc
Compound 16 was prepared according to the general procedure (GP1) and could not be isolated
as a pure compound because of the presence of the byproducts arising from the decomposition of
the photocatalyst (4CzIPN). Yield was determined by 'HNMR using dibromomethane as an

internal standard.

Column Chromatography: Silica, 50 % DCM/ Heptane to remove the catalyst then gradient 10-
35 % EtOAc/Heptane

TH NMR (300 MHz, CDCls) & 8.48 (d, J = 4.4 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.08 (m, 2H),
3.88 (br, 2H), 2.82 — 2.73 (m, 2H), 2.64 (m, 2H), 1.74 — 1.60 (m, 4H), 1.42 (s, 10H), 1.15 — 1.06

(m, 2H). Spectroscopic data were consistent with literature values.
2-(2-(tetrahydro-2H-pyran-4-yl)ethyl)pyridine (17)3'

X

Z

N
O

Compound 17 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography: Silica, gradient 10-33 % EtOAc/Heptane
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'H NMR (400 MHz, CDCl;) 6 8.50 (d, J = 4.8 Hz, 1H), 7.57 (dd, J = 10.6, 4.7 Hz, 1H), 7.12 (d,
J=17.8 Hz, 1H), 7.09 — 7.05 (m, 1H), 3.97 — 3.90 (m, 2H), 3.34 (t, J=11.7 Hz, 2H), 2.79 (dd, J =
8.8, 7.4 Hz, 2H), 1.72 — 1.59 (m, 4H), 1.52 (tt, /= 7.6, 5.2 Hz, 1H), 1.32 (m, 2H). Spectroscopic

data were consistent with literature values.
2-(3-(benzyloxy)propyl)pyridine (18)*

X

|
N7 °

Compound 18 was prepared according to the general procedure (GP1) and isolated as a brown oil.
TH NMR (300 MHz, CDCI3) 6 8.52 (d, J = 4.4 Hz, 1H), 7.55 (td, J = 7.7, 1.4 Hz, 1H), 7.33 (m,
4H), 7.29 — 7.24 (m, 1H), 7.12 (d, J = 7.4 Hz, 1H), 7.06 (dd, J = 11.9, 5.1 Hz, 1H), 4.50 (s, 2H),
3.52 (t, J = 6.3 Hz, 2H), 2.89 (t, ] = 7.7 Hz, 2H), 2.13 — 1.83 (m, 2H). Spectroscopic data were

consistent with literature values.

4-(2-cyclopentylethyl)pyridine (19)

NI A

=

Compound 19 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 2-10 % EtOAc/Heptane

'H NMR (400 MHz, Chloroform-d) ¢ 8.47 (d, J=5.73, 2H), 7.10 (d, J = 5.73 Hz, 2H), 2.60 (t, J
=8.07 Hz, 2H), 1.77-1.70 (m, 3H), 1.65-1.57 (m, 4H), 1.54-1.49 (m, 2H), 1.14-1.10 (m, 2H).

I3C NMR (101 MHz, CDCI3) ¢ 151.94, 149.60, 123.90, 39.59, 36.86, 34.48, 32.60, 25.20.

IR (neat, v/em™') 2975, 2873, 1685, 1395, 1358, 1166, 1143, 729.

HRMS(ESIY): [M+H] cal’d for C;;H;g: 176.1433, found : 176.1437

4-(2-cyclohexylethyl)pyridine (20)?!
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Compound 20 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 2-10 % EtOAc/Heptane

'TH NMR (400 MHz, Chloroform-d) 6 8.47 (d, J/=5.91 Hz, 2H), 7.10 (d, J=5.93, 2H), 2.60 (t, J/=8.2
Hz, 2H), 1.79 — 1.68 (m, 6H), 1.54 — 1.46 (m, 2H), 1-26-1.28 (m, 1H), 1.22-1.15 (m, 2H), 0.99 —
0.87 (m, 2H).

I3C NMR (101 MHz, CDCI3) 6 152.27, 149.74, 124.02, 38.24, 37.38, 33.35, 32.74, 26.73, 26.40,

0.14. Spectroscopic data were consistent with literature values.

4-isopentylpyridine (21)*

N 7

Compound 21 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 2-10 % EtOAc/Heptane

TH NMR (400 MHz, Chloroform-d) 6 8.47 (d, J=5.91 Hz, 2H), 7.10 (d, /=5.93, 2H), 2.60 (t, J=8.2
Hz, 2H), 1.45-1.64 (m, 3H) 0.95 (d, J = 5.2 Hz, 6H). Spectroscopic data were consistent with

literature values.

4-(4-methylpentyl)pyridine (22)%*°

N
I/

Compound 22 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 2-10 % EtOAc/Heptane

TH NMR (300 MHz, CDCl;) 0 8.47 (d, J= 5.3 Hz, 1H), 7.10 (d, J= 5.2 Hz, 1H), 2.58 (t, J= 7.7
Hz, 2H), 1.69 — 1.49 (m, 4H), 1.36 (m, 1H), 0.87 (d, J = 6.6 Hz, 6H). Spectroscopic data were

consistent with literature values.
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tert-butyl 2-(2-(pyridin-4-yl)ethyl)pyrrolidine-1-carboxylate (23)*°

II300
N

NI X
=
Compound 23 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.
Column Chromatography : Silica, gradient 4:2:1 (Heptane/DCM/EtOAc) to remove the
decomposition products from the catalyst, then 40 % EtOAc/Heptane to get the final pure product.
'H NMR (400 MHz, Chloroform-d) (rotamers around the tertiary amide); ¢ 8.48 (brs, 2H), 7.12
(brs, 2H), 3.86 — 3.77 (m, 1H), 3.41 — 3.31 (m, 2H), 2.62 — 2.60 (m, 2H), 2.0 — 1.95 (m, 1H), 1.91-
1.80 (m, 2H), 1.68-1.61 (m, 3H)1.45 (s, 9H). Spectroscopic data were consistent with literature

values.
2-(2-cyclobutyl-1-phenylethyl)pyridine (24)3

_— Ph
Compound 24 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.
Column Chromatography : Silica, gradient 5-10 % EtOAc/Heptane
'TH NMR (300 MHz, CDCl;) 6 8.47 (d, J=4.3 Hz, 1H), 7.44 (t,J=7.6 Hz, 1H), 7.28 (s, 2H), 7.19
(t,J=17.5 Hz, 2H), 7.08 (t, J = 7.6 Hz, 2H), 7.00 — 6.92 (m, 1H), 4.04 (t, /= 7.8 Hz, 1H), 2.22 —
2.11 (m, 1H), 2.10 — 1.98 (m, 1H), 1.72 — 1.60 (m, 2H), 1.56 — 1.45 (m, 3H), 1.43 — 1.30 (m, 2H),
1.19 (s, 1H), 1.15 - 0.99 (m, 2H).
13C NMR (75 MHz, CDCl3) 0 164.29, 149.21, 144.10, 136.26, 136.14, 128.40, 128.34, 128.07,
126.26, 122.62, 121.11, 52.87, 41.61, 37.94, 32.86, 32.55, 25.16, 25.14. Spectroscopic data were

consistent with literature values.
2-(2-cyclopentyl-1-phenylethyl)pyridine (25)**

Ph

—

/
\ N
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Compound 25 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 5-10 % EtOAc/Heptane

TH NMR (300 MHz, CDCl3) 6 8.47 (d, J=4.3 Hz, 1H), 7.44 (t,J= 7.6 Hz, 1H), 7.28 (s, 2H), 7.19
(t, J=17.5 Hz, 2H), 7.08 (t, J = 7.6 Hz, 2H), 7.00 — 6.92 (m, 1H), 4.04 (t, /= 7.8 Hz, 1H), 2.22 —
2.11 (m, 1H), 2.10 — 1.98 (m, 1H), 1.72 — 1.60 (m, 2H), 1.56 — 1.45 (m, 3H), 1.43 — 1.30 (m, 2H),
1.19 (s, 1H), 1.15-0.99 (m, 2H).

I3C NMR (75 MHz, CDCl;) 6 164.29, 149.21, 144.10, 136.26, 136.14, 128.40, 128.34, 128.07,
126.26, 122.62, 121.11, 52.87, 41.61, 37.94, 32.86, 32.55, 25.16, 25.14. Spectroscopic data were

consistent with literature values.
2-(2-cyclohexyl-1-phenylethyl)pyridine (26)**

= Ph

Compound 26 was prepared according to the general procedure (GP1) and isolated as a yellowish
oil.

Column Chromatography : Silica, gradient 5-10 % EtOAc/Heptane

1H NMR (400 MHz, Chloroform-d) 6 8.54 (d, J=5.75 Hz, 1H), 7.53 (td, J = 7.7, 1.9 Hz, 1H), 7.34
(d, J = 8.2, Hz, 2H), 7.30-7.24 (m, 2H), 7.17 (d, J= 3.9 Hz, 1H), 7.13 (d, J = 7.5 Hz, 1H), 7.03-
7.07 (m, 1H), 4.22 (t, ] = 7.9 Hz, 1H), 2.14-2.07 (m, 1H), 2.01-1.94 (m, 1H), 1.80-1.74 (m, 2H),
1.64-1.57 (m, 3H), 1.18-1.05 (m, 4H), 0.97-0.90 (m, 2H).

I3C NMR (101 MHz, CDCI3) ¢ 164.32, 149.20, 144.09, 136.29, 128.40, 128.03, 126.22, 122.58,
121.10, 50.58, 42.74, 35.01, 33.53, 33.19, 26.61, 26.19, 26.15. Spectroscopic data were consistent

with literature values.
2-(1-(4-chlorophenyl)-2-cyclopentylethyl)pyridine (27)

Cl

Z~
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Compound 27 was prepared according to the general procedure (GP1) and isolated as a yellow
viscous oil.

Column Chromatography : Silica, gradient 0-10 % EtOAc/Heptane

TH NMR (400 MHz, CDCl3) ¢ 8.56 (ddd, J=4.9, 1.9, 0.9 Hz, 1H), 7.55 (td, J= 7.7, 1.9 Hz, 1H),
7.31-7.27 (m, 2H), 7.26 — 7.22 (m, 2H), 7.14 (dt, /= 7.9, 1.1 Hz, 1H), 7.08 (ddd, J=7.5,4.9, 1.2
Hz, 1H), 4.08 (t, J= 7.8 Hz, 1H), 2.21 (dt, J=13.4, 7.5 Hz, 1H), 2.09 (ddd, /= 13.4, 8.3, 6.7 Hz,
1H), 1.77 — 1.68 (m, 2H), 1.63 — 1.54 (m, 3H), 1.47 — 1.40 (m, 2H), 1.22 — 1.07 (m, 2H).

13C NMR (101 MHz, CDCl3) ¢ 163.80, 149.48, 142.67, 136.54, 132.13, 129.53, 128.63, 122.67,
121.46, 52.31, 41.69, 37.96, 32.96, 32.60, 25.25.

IR (neat, v/em') 2944, 2864, 1587, 1569, 1488, 1470, 1432, 1090, 1014, 822, 746, 545.
HRMS (ESI*): [M+H]" cal’d for C,gH,;CIN: 286.1356 found: 286.1350

2-(1-(3-chlorophenyl)-2-cyclopentylethyl)pyridine (28)

X
l —
N cl

Compound 28 was prepared according to the general procedure (GP1) and isolated as a yellow
viscous oil.

Column Chromatography : Silica, gradient 0-10 % EtOAc/Heptane

'TH NMR (400 MHz, CDCl;) 0 8.56 (ddd, J=4.9, 1.8, 0.8 Hz, 1H), 7.56 (td, /= 7.7, 1.9 Hz, 1H),
7.35-7.33 (m, 1H), 7.25-7.22 (m, 2H), 7.17 - 7.13 (m, 2H), 7.11-7.07 (m, 1H), 4.08 (t,J=7.9 Hz,
1H), 2.22 (dt,J=13.5,7.6 Hz, 1H), 2.12 - 2.03 (m, 1H), 1.78 — 1.67 (m, 2H), 1.62 — 1.55 (m, 3H),
1.43 (m, 2H), 1.20 — 1.10 (m, 2H).

I3C NMR (101 MHz, CDCl;) 6 163.49, 149.51, 146.30, 136.60, 134.28, 129.76, 128.27, 126.60,
126.44, 122.76, 121.55, 52.65, 41.63, 37.95, 32.92, 32.65, 25.26, 25.24.

HRMS (ESI*): [M+H]" cal’d for C;gH,;CIN: 286.1356 found: 286.1348

2-(1-(2-chlorophenyl)-2-cyclopentylethyl)pyridine (29)
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Compound 29 was prepared according to the general procedure (GP1) and isolated as a yellow
viscous oil.

Column Chromatography : Silica, gradient 0-10 % EtOAc/Heptane

TH NMR (400 MHz, CDCl3) 0 8.64 — 8.55 (m, 1H), 7.60 — 7.51 (m, 2H), 7.36 (dd, J=7.9, 1.2 Hz,
1H), 7.30 — 7.20 (m, 2H), 7.24 (dd, /= 10.7, 4.5 Hz, 2H), 7.16 — 7.07 (m, 2H), 4.74 (t, J=7.7 Hz,
1H), 2.30 (dt,J=13.5,7.5 Hz, 1H), 2.14 —2.05 (m, 1H), 1.80 — 1.74 (m, 2H), 1.68 — 1.57 (m, 3H),
1.51 —1.42 (m, 2H), 1.24 — 1.15 (m, 2H).

I3C NMR (101 MHz, CDCls) 6 162.94, 149.52, 141.56, 136.37, 134.11, 129.55, 129.44, 127.49,
127.04, 123.73, 121.45, 47.90, 41.28, 38.12, 32.99, 32.78, 25.30, 25.28.

IR (neat, v/em™) 3063, 3006, 2864, 1586, 1569, 1470, 1431, 1050, 1033, 745, 575.

HRMS (ESI*): [M+H]" cal’d for C;gH,;CIN: 286.1356, found : 286.1355

2-(1-(3-chlorophenyl)-2-cyclohexylethyl)pyridine (30)
o]

X

Vs

N

Compound 30 was prepared according to the general procedure (GP1) and isolated as a yellow
viscous oil.

Column Chromatography : Silica, gradient 0-10 % EtOAc/Heptane

TH NMR (400 MHz, CDCl;) 6 8.57 (tdd, J = 4.8, 1.8, 0.8 Hz, 1H), 7.56 (td, J= 7.7, 1.9 Hz, 1H),
7.33 (t,J=1.7 Hz, 1H), 7.25 - 7.13 (m, 4H), 7.09 (ddd, J=7.5,4.9, 1.0 Hz, 1H), 4.18 (t, /= 7.9
Hz, 1H), 2.19 — 2.01 (m, 1H), 1.92 (ddd, J=23.4, 15.0, 11.0 Hz, 1H), 1.75 (dd, /= 12.5, 1.5 Hz,
2H), 1.68 — 1.57 (m, 3H), 1.14 — 1.07 (m, 4H), 0.98 (m, 2H).

13C NMR (101 MHz, CDCl3) 6 163.56, 149.54, 146.37, 136.58, 134.29, 129.77, 128.27, 126.58,
126.43,122.73, 121.52, 50.45, 42.82, 35.12, 33.56, 33.35, 26.70, 26.29, 26.27.

IR (neat, v/em') 2920, 2849, 1586, 1569, 1470, 1447, 1429, 9067, 775, 745, 731, 696

HRMS (ESI): [M+H]" cal’d for found C;9H,;CIN: 300.1513, found: 300.1515

tert-butyl 2-(2-phenyl-2-(pyridin-2-yl)ethyl)pyrrolidine-1-carboxylate (31)
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N
Boc

Compound 31 was prepared according to the general procedure (GP1) and isolated as a yellow
viscous oil.

Column Chromatography : Silica, gradient 5-10 % EtOAc/Heptane + 2% Et;N

TH NMR (400 MHz, CDCls, rotameric center) ¢ 8.52 (d, J = 3.8 Hz, 1H), 7.60 — 7.47 (m, 1H),
7.45 —7.22 (m, 5H), 7.20 — 7.12 (m, 1H), 7.02 (d, J = 21.4 Hz, 1H), 4.13 (brs, 1H), 3.85 — 3.53
(m, 1H), 3.32 (brs, 2H), 2.94 — 2.43 (m, 1H), 1.98 — 1.89 (m, 1H), 1.87 — 1.61 (m, 4H), 1.42 (s,
9H).

I3C NMR (101 MHz, CDCl3) 6 163.15, 154.51, 149.32, 149.13, 142.45, 136.44, 128.60, 128.52,
128.38,122.51,121.37,79.21,77.48,77.16, 76.84, 55.89, 55.66, 51.27,46.43, 46.02, 39.58, 38.87,
30.45, 30.08, 28.66, 23.81, 23.07, 22.86.

IR (neat, v/em™') 2972, 1679, 1588, 1392, 1364, 1216, 745, 698.

HRMS (ESI"): [M+Na]" cal’d for C;H,3N,O,Na: 375.2048 found: 375.2040

2-(2-cyclopentyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenyl)ethyl)pyridine (32)

X

~

N

BPin
Compound 32 was prepared according to the general procedure (GP1) and isolated as a greenish
solid. M.P.: 127.6 °C
Column Chromatography : Silica, gradient 10-25 % EtOAc/Heptane
TH NMR (300 MHz, CDCl3) ¢ 8.55 (dd, J=5.0, 1.6 Hz, 1H), 7.74 (d, J= 7.7 Hz, 2H), 7.52 (td, J
=7.7,1.8 Hz, 1H), 7.37 (d, J= 7.7 Hz, 2H), 7.14 (d, J = 7.9 Hz, 1H), 7.09 — 7.02 (m, 1H), 4.13 (4,
J=17.9 Hz, 1H), 2.29 - 2.09 (m, 2H), 1.73 (m, 2H), 1.61 — 1.53 (m, 3H), 1.49 — 1.36 (m, 2H), 1.31
(s, 12H), 1.21 — 1.05 (m, 2H).

S38



13C NMR (75 MHz, CDCly) 6 164.08, 149.31, 147.41, 136.44, 135.08, 127.68, 122.76, 121.29,
83.74, 53.13, 41.40, 37.99, 33.01, 32.54, 25.24, 24.96.

1IB NMR (128 MHz, CDCls) ¢ 31.03.

IR (neat, v/em™) 2942, 2861, 1598, 1450, 1356, 1140, 1089, 855, 739.

HRMS (APCI): [M+2H]2* cal’d for C24H3sBNO,: 184.1288 found: 184.1131

2-(2-cyclopentyl-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenyl)ethyl)pyridine (33)

X

Vs

N

BPin
Compound 33 was prepared according to the general procedure (GP1) and isolated as a clear
viscous oil.
Column Chromatography : Silica, gradient 10-25 % EtOAc/Heptane
'H NMR (400 MHz, CDCI3) ¢ 8.55 (dd, J = 4.8, 0.9 Hz, 1H), 7.76 (s, 1H), 7.64 (d, J = 7.3 Hz,
1H), 7.56 — 7.47 (m, 2H), 7.29 (dd, J = 9.0, 6.1 Hz, 1H), 7.16 (t,J = 7.7 Hz, 1H), 7.06 (ddd, J =
7.4,49,1.0Hz, 1H), 4.14 (t, ] =7.8 Hz, 1H), 2.28 (dt, J = 13.5, 7.6 Hz, 1H), 2.14 — 2.05 (m, 1H),
1.76 — 1.68 (m, 2H), 1.64 — 1.54 (m, 3H), 1.47 - 1.39 (m, J = 15.0, 4.0 Hz, 2H), 1.33 (s, 12H), 1.19
—1.12 (m, 2H).
13C NMR (75 MHz, CDCI3) 6 164.08, 149.31, 147.41, 136.44, 135.08, 127.68, 122.76, 121.29,
83.74, 53.13, 41.40, 37.99, 33.01, 32.54, 25.24, 24.96.
HB NMR (128 MHz, CDCI13) 6 31.03.
IR (neat, v/em'') 2941, 2858, 1588, 1355, 1142, 708.
HRMS: We could not observed the exact mass in HRMS in ESI (positive and negative mode) and
APCI positive mode.
To further confirm the structure we performed protodeboronation following the reported

procedure:!3
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N
| [Ir(cod)OMe]; (2 mol%) N
N BPin
THF, H,0 80 °C, 2 h

0.1 mmol

In a flame dried 10 mL reaction vial, compound 33, [Ir(cod)OMe], (2 mol%) and degassed THF
(0.3 mL) were added under N, followed by addition of water (0.20 mL). The resulting reaction
mixture was then placed in a preheated oil bath at 80 °C and stirred for 2 h. Afterwards, the reaction
mixture was cooled to room temperature and the crude residue was purified by flash

chromatography on silica gel.
Column Chromatography : Silica, gradient 5-10 % EtOAc/Heptane

Spectroscopic data were consistent with compound 25.
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4,4,5,5-tetramethyl-2-(3-methyl-1-phenylbutyl)-1,3,2-dioxaborolane (34)3>-3

BPin

O

Compound 34 was prepared according to the general procedure (GP1) and yield was determined
by 'HNMR using dibromomethane as an internal standard.

THNMR (300 MHz, CDCl5) 6 7.31-7.24 (m, 4H), 7.18-7.13 (m, 1H), 2.46 (t,J= 8.0 Hz, 1H), 1.71
(qd, J=13.3, 6.5 Hz, 2H), 1.51 (dt, J = 19.4, 6.2 Hz, 1H), 1.23 (s,6), 1.22 (s, 6H), 0.93 (t, J= 6.2

Hz, 6H). Spectroscopic data were consistent with literature values.

2-(2-cyclopentyl-1-phenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (35)
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BPin

Compound 35 was prepared according to the general procedure (GP1) and yield was determined
by 'HNMR using dibromomethane as an internal standard.

'TH NMR (300 MHz, CDCl;) 6 7.31-7.24 (m, 4H), 7.18-7.13 (m,1H), 2.41 (t,J=7.7 Hz, 1H), 1.85
—1.70 (m, 4H), 1.64 — 1.44 (m, 7H), 1.23 (d, J=4.4 Hz, 12H).

ITB NMR (128 MHz, CDCls) ¢ 33.89.

Note: Characteristic peak appeared at 2.34 (t, j = 7.39, 1H).

2-(1,3-diphenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (36)3°

BPin O

Compound 36 was prepared according to the general procedure (GP1) and isolated as white solid.
Column Chromatography : Silica, gradient 5-10 % Et,0/iso-Hexane
'"H NMR (400 MHz, CDCl;) 6 7.34-7.27 (m, 6H), 7.25 — 7.17 (m, 4H), 2.74 — 2.64 (m, 2H), 2.42
(t,J=7.7 Hz, 1H), 2.00 (tt, /= 15.4, 7.9 Hz, 1H), 1.81 (dt, J=20.6, 7.4 Hz, 1H), 1.73 — 1.62 (m,
2H), 1.28 (s, 6H), 1.26 (s, 6H).
1IB NMR (128 MHz, CDCl3) 6 33.97. Spectroscopic data were consistent with literature values.
tert-butyl 2-(2-phenyl-2-(4.,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)ethyl)pyrrolidine-1-carboxylate (37)

BPin

N

\BOC
Compound 37 was prepared according to the general procedure (GP1) and isolated as a yellow
viscous oil.
Column Chromatography : Silica, gradient 5-20 % EtOAc/Heptane
TH NMR (400 MHz, CDCl; rotameric center) 6 7.16 (m, 5H), 3.81 (brs, 1H), 3.31 (brs, 2H), 2.36
(m, 2H), 1.99 — 1.63 (m, 5H), 1.49 (s, 9H), 1.17 (d, /= 5.2 Hz, 12H).
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13C NMR (101 MHz, CDCl;) 6 154.81, 143.41, 128.43, 128.39, 125.34, 83.43, 79.17, 57.98,
46.04, 37.65, 30.91, 28.78, 28.72, 24.76, 24.66, 23.22.

1IB NMR (128 MHz, CDCl3) ¢ 32.70.

IR (neat, v/em™) 3363, 2975, 1667, 1474, 1391, 1147, 850, 731, 698.

HRMS (ESI*): [M+2Na]** cal’d for Cp3H3,BNNa,0,: 218,121418 found: 218.1175.

2-(2-cyclopentylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (38)*’

PinB/\/O

Compound 38 was prepared according to the general procedure (GP1) and isolated as a yellow
viscous oil.

Column Chromatography : Silica, gradient 2-5 % Et,O/Heptane

'H NMR (300 MHz, CDCls) 6 1.71-1.67 (m, 3H), 1.62 — 1.36 (m, 6H), 1.24 (s, 12H), 1.06-1.02
(m, 4H), 0.82 — 0.71 (m, 2H).

13C NMR (101 MHz, CDCl;) 6 82.92, 42.78, 32.48, 30.30, 25.36, 24.87.

ITB NMR (128 MHz, CDCls) 6 34.73. Spectroscopic data were consistent with literature values.

2-(4-(2-cyclopentylethyl)phenyl)-4.,4,5,5-tetramethyl-1,3,2-dioxaborolane (39)

PinB

Compound 39 was prepared according to the general procedure (GP1) and isolated as a white solid.
M.P.: 55 °C

Column Chromatography : Silica, gradient 2-8 % EtOAc/Heptane

TH NMR (400 MHz, CDCl3) 0 7.74 (d, J = 7.8 Hz, 2H), 7.21 (d, J= 7.8 Hz, 2H), 2.67 — 2.60 (m,
2H), 1.83 — 1.72 (m, 3H), 1.62 (ddd, J=8.2, 7.7, 4.9 Hz, 4H), 1.56 — 1.45 (m, 2H), 1.35 (s, 12H),
1.18 — 1.05 (m, 2H).

I3C NMR (75 MHz, CDCls) § 146.69, 134.95, 127.99, 83.73, 39.78, 38.08, 35.50, 32.78, 25.37,
25.00.

1TIB NMR (128 MHz, CDCl3) 6 31.27.

IR (neat, v/em') 2949, 2862, 1611, 1357, 1318, 1143, 1088, 859, 656

HRMS (APCI): [M+H]" cal’d for C19H3¢,BO,: 410.2240 found: 410.6688
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tert-butyl 2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenethyl)pyrrolidine-1-carboxylate (40)

Boc,
N

PinB

Compound 40 was prepared according to the general procedure (GP1) and isolated as a yellow
solid. M.P.: 101.8 °C

Column Chromatography : Silica, gradient 2-15 % EtOAc/Heptane

TH NMR (300 MHz, CDCl;, rotameric center) 6 7.72 (d, J= 7.4 Hz, 2H), 7.20 (d, J= 7.3 Hz, 2H),
3.80 (brs, J = 28.0 Hz, 1H), 3.36 (brs, 2H), 2.61 (d, /= 7.9 Hz, 2H), 2.00 — 1.87 (m, 1H), 1.86 —
1.74 (m, 2H), 1.71 — 1.57 (m, 3H), 1.45 (s, 9H), 1.33 (s, 12H).

I3C NMR (101 MHz, CDCls) 0 154.75, 145.56, 135.04, 127.91, 83.75,79.21,77.48, 77.16, 76.84,
57.39, 57.07, 53.54, 46.61, 46.29, 36.30, 35.99, 33.13, 30.76, 30.26, 28.68, 24.97.

HB NMR (128 MHz, CDCls) 6 32.21.

IR (neat, v/em) 2975, 2930, 1667, 1515, 1474, 1366, 981, 850, 698, 672.

HRMS (ESI*): [M+CH3;0H+H]* cal’d for C,4H4BNOs: 423.2978 found: 423.2661

methyl 5-phenylpentanoate(41)38
0

\OJV\/\Q

Compound 41 was prepared according to the general procedure (GP1) and isolated as a clear oil.
Column Chromatography : Silica, gradient 2-8 % EtOAc/Heptane

TH NMR (300 MHz, CDCl3) § 7.23 — 7.14 (m, 2H), 7.11-7.07 (m, 3H), 3.57 (s, 3H), 2.55 (t, J =
6.3 Hz, 2H), 2.29 — 2.19 (m, 2H), 1.59 (m, 4H).

13C NMR (75 MHz, CDCl;) 6 174.14, 142.22, 128.48, 128.42, 125.88, 51.57, 35.68, 34.05,

31.00, 24.70. Spectroscopic data were consistent with literature values.

benzyl 3-cyclopentylpropanoate (42)°
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Compound 42 was prepared according to the general procedure (GP1) and isolated as a clear oil.
Column Chromatography : Silica, gradient 2-8 % EtOAc/Heptane

'TH NMR (400 MHz, CDCl;) 6 7.39 — 7.30 (m, 5SH), 5.12 (s, 2H), 2.41 — 2.34 (m, 2H), 1.75 (m,
3H), 1.71 — 1.64 (m, 2H), 1.60 (m, 2H), 1.51 (m, 2H), 1.16 — 1.02 (m, 2H).

Spectroscopic data were consistent with literature values.

tert-butyl 2-(3-0x0-3-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)benzyl)oxy)propyl)pyrrolidine-1-carboxylate (43)

0O Boc
/@/\ OJK/\LN)
PinB

Compound 43 was prepared according to the general procedure (GP1) and isolated as a clear oil.
Column Chromatography : Silica, gradient 5-20 % EtOAc/Heptane

'H NMR (400 MHz, CDCl3) ¢ 7.80 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.12 (s, 2H),
3.78 (brs, 1H), 3.46 —3.20 (m, 2H), 2.36 (m, 2H), 2.03 — 1.56 (m, 6H), 1.45 (s, 9H), 1.34 (s, 12H).
13C NMR (101 MHz, CDCl;) & 173.28, 154.88, 139.18, 135.12, 127.40, 83.98, 79.44, 66.21,
56.73,46.53, 46.35, 31.46, 30.99, 30.82, 29.83, 28.67, 25.00, 23.19.

1IB NMR (128 MHz, CDCI3) 6 31.22.

IR (neat, v/em) 2975, 1736, 1689, 1391, 1358, 1142, 1087, 858, 730, 656.

HRMS (ESI*): [M+CH3;0H+H]" cal’d for C,sH43BNO;: 481.3105 found: 482.2681

3-cyclopentylpropanenitrile (44)%

ey

Compound 44 was prepared according to the general procedure (GP1) and isolated as a clear oil.
Column Chromatography : Silica, gradient 2-8 % EtOAc/Heptane
TH NMR (400 MHz, CDCI3) 6 2.26-2.21 (m, 2H), 1.71 — 1.61 (m, 3H), 1.60 — 1.38 (m, 6H), 1.0-

0.93 (m, 2H). Spectroscopic data were consistent with literature values.

S44



2-(cyclopentyl(phenyl)methyl)malononitrile (45)*!

CN
CN

Compound 45 was prepared according to the general procedure (GP1) and isolated as a clear oil.
Column Chromatography : Silica, gradient 5-15 % EtOAc/Heptane

'TH NMR (400 MHz, CDCI3) ¢ 7.45 — 7.33 (m, 5H), 4.10 (d, J= 4.6 Hz, 1H), 2.93 (dd, /= 11.0,
4.6 Hz, 1H), 2.62 — 2.47 (m, 1H), 2.05 (dtd, J =11.1, 7.3, 3.7 Hz, 1H), 1.82 — 1.54 (m, 4H), 1.35
—1.24 (m, 1H), 1.10 — 1.01 (m, 1H). Spectroscopic data were consistent with literature values.

1-(2-cyclopentylethyl)-4-(trifluoromethyl)benzene (46)

FsC

Compound 46 was prepared according to the general procedure (GP1) and isolated as a clear oil.
Column Chromatography : Silica, gradient 2-8 % EtOAc/Heptane

'TH NMR (400 MHz, CDCI3) ¢ 7.54 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 2.72 — 2.64 (m,
2H), 1.86 — 1.76 (m, 3H), 1.69 — 1.61 (m, 4H), 1.59 — 1.50 (m, 2H), 1.21 — 1.08 (m, 2H). 3C
NMR (101 MHz, CDCIl3) 6 147.33 (d, J= 1.2 Hz), 128.78, 128.12 (q, J = 32.2 Hz), 125.9 (q, J =
270 Hz), 125.3 (q, J = 3.8 Hz), 39.75, 37.97, 35.16, 32.78, 25.38.

IR (neat, v/em') 2944, 2860, 2862, 1324, 1122, 1066, 1018.

HRMS (APCI): [M+H]"cal’d for C4H;gF5: 243.1355 found: 243.1133

1-isopentyl-4-(trifluoromethyl)benzene (47)*

FsC
Compound 47 was prepared according to the general procedure (GP1) and isolated as a clear oil.

Column Chromatography : Silica, gradient 2-8 % EtOAc/Heptane
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'H NMR (400 MHz, CDCl3) 6 7.51 (d, J = 7.9 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 2.69 — 2.64 (m,
2H), 1.59 (m, 1H), 1.51 (m, 2H), 0.94 (d, /= 6.4 Hz, 6H). Spectroscopic data were consistent with

literature values.

diethyl 2-(1-methoxypropan-2-yl)malonate (48)*
CO,Et
0 CO,Et

Compound 48 (48 % yield) was prepared according to the general procedure in flow (GP1) and
isolated as a clear oil.

Column Chromatography : Silica, gradient 4-12 % EtOAc/Heptane (TLC stain: KMnQy)

'H NMR (300 MHz, CDCl3) & 4.24 — 4.13 (m, 4H), 3.42 (d, J= 7.5 Hz, 1H), 3.33 (d, /= 5.9 Hz,
1H), 3.30 (s, 1H), 2.53 (m, 1H), 1.26 (m, 6H), 1.02 (d, J = 6.9 Hz, 1H). Spectroscopic data were

consistent with literature values.

benzyl (4,4-diphenylbutyl)carbamate (49)

C
o HTOQ
(@)

Compound 49 was prepared according to the general procedure in flow (GP1) and isolated as a
yellow oil.

Column Chromatography : Silica, gradient 5-25 % EtOAc/Heptane

'TH NMR (400 MHz, CDCl3) 8 7.30 (m, 15H), 5.14 (s, 2H), 4.87 (s, 1H), 3.95 (t, J= 7.7 Hz, 2H),
3.25 (dd, J=13.0, 6.6 Hz, 2H), 2.12 (dd, J = 15.5, 7.8 Hz, 2H), 1.51 (dt, J = 14.5, 7.1 Hz, 2H).
13C NMR (101 MHz, CDCl3) 6 156.42, 144.74, 136.70, 128.52, 128.11, 128.09, 127.82, 126.25,
77.48,77.16, 76.84, 66.57, 51.01, 40.95, 32.71, 28.55.

GS-MS (EI): 360.3

methyl 2-((tert-butoxycarbonyl)amino)-3-cyclopentylpropanoate (50)*

Boc<

NH
_O

O
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Compound 50 was prepared according to the general procedure (GP1) and isolated as a clear oil.
Column Chromatography : Silica, gradient 2-20 % EtOAc/Heptane

'TH NMR (400 MHz, CDCl3) 6 4.98 (d, J= 7.5 Hz, 2H), 4.37 — 4.25 (m, 2H), 3.75 (s, 3H), 1.91 -
1.75 (m, 4H), 1.71 — 1.60 (m, 5H), 1.18 — 1.09 (m, 2H). Spectroscopic data were consistent with

literature values.
methyl 2-(Bis(tert-butoxycarbonyl)amino)-3-cyclopentylpropanoate (51)

Boc<_ ,.Boc

N
/OYK/O
@)
Compound 51 was prepared according to the general procedure (GP1) and isolated as a clear oil.

Column Chromatography : Silica, gradient 2-10 % EtOAc/Heptane

'TH NMR (400 MHz, CDCl3) ¢ 4.90 (dd, J = 9.6, 5.0 Hz, 1H), 3.70 (s, 3H), 2.05 (m, 1H), 1.99 —
1.89 (m, 1H), 1.86 — 1.70 (m, 3H), 1.66 — 1.55 (m, 4H), 1.49 (s, 18H) 1.18 — 1.05 (m, 2H). 13C
NMR (101 MHz, CDCl3) 6 171.86, 152.24, 83.07, 57.84, 52.24,37.07, 36.13, 33.04, 32.59, 28.12,
25.30, 25.14.

IR (neat, v/em™) 2980, 2952, 1788, 1740, 1698, 1477, 1455, 1367, 1134, 908, 728.

HRMS (ESI*): [M+Na]" cal’d for C;9H33NNaOg: 394.2204 found: 394.2200.

2-amino-3-cyclopentylpropanoic acid®

@)

WOH
NH,

Compound 51 (0.2 mmol) was dissolved in aqueous 6 M HCI (2 mL) and heated to 125 °C for 24
h. After complete hydrolysis, solvent was removed in vacuo at 60 °C. The crude solid was re-
dissolved in water and washed with Et,O. Removal of solvent in vacuo afforded the amino acid
hydrochloride as white crystals.!

'TH NMR (400 MHz, D,0) ¢ 4.00 (t, J = 6.4 Hz, 1H), 2.04 — 1.90 (m, 3H), 1.88 — 1.79 (m, 2H),
1.69 — 1.61 (m, 2H), 1.55 (m, 1H), 1.17 (m, 2H).

I3C NMR (101 MHz, D,0) 6 175.64, 55.41, 38.72, 37.99, 34.54, 34.21, 27.12, 26 91.

S47



methyl (tert-butoxycarbonyl)leucinate (52)*

Boc«

NH
/ON

O

Compound 52 was prepared according to the general procedure (GP1) and isolated as a clear oil.
Column Chromatography : Silica, gradient 2-20 % EtOAc/Heptane

TH NMR (400 MHz, CDCl3) 0 4.93 (d, /= 7.6 Hz, 1H), 4.30 (dd, /= 13.8, 8.6 Hz, 1H), 3.71 (s,
3H), 1.67 (dd, J=13.1, 6.5 Hz, 1H), 1.62 — 1.53 (m, 1H), 1.53 — 1.47 (m, 1H), 1.42 (s, 9H), 0.92
(dd, J= 6.5, 2.6 Hz, 6H). Spectroscopic data were consistent with literature values.

tert-Butyl 3-(2-((Bis(zert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropyl)pyrrolidine-1-carboxylate (53)

N—-Boc
Boc
\
N /
Boc O
O

Compound 53 was prepared according to the general procedure (GPl) using
[Ir{dF(CF;)ppy}2(dtbpy)]PF¢ (3 mol%) and isolated as a yellow solid. M.P.: 96.3 °C

Column Chromatography : Silica, gradient 2-22 % EtOAc/Heptane

TH NMR (400 MHz, CDCl3) ¢ 5.08 — 4.70 (m, 1H), 3.82 (brs, 1H), 3.64 (s, 3H), 3.38 — 3.15 (m,
2H), 1.78 (m, 6H), 1.46 — 1.28 (m, 27H).

I3C NMR (101 MHz, CDCl3) 6 170.97, 154.40, 151.94, 83.07, 79.27, 56.70, 56.06, 52.19, 45.99,
36.05, 35.48, 31.03, 30.59, 28.51, 27.98, 23.82, 23.14.

IR (neat, v/em) 2973, 1736, 1687, 1392, 1163, 1143.

HRMS (ESI*): [M+Na]" cal’d for C,3H4oN,NaOg : 495.2681 found: 498.2679.

Methyl 2-(Bis(tert-butoxycarbonyl)amino)-4-phenylbutanoate(54)*
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Boc\ITI 0]

Boc O _
Compound 54 was prepared according to the general procedure (GP1) and isolated as a liquid.
Column Chromatography : Silica, gradient 5-20 % EtOAc/Heptane
'TH NMR (400 MHz, CDCls) ¢ 7.30 — 7.25 (m, 2H), 7.18 (m, 3H), 4.91 (dd, J=9.4, 5.3 Hz, 1H),
3.71 (s, 3H), 2.71 — 2.65 (m, 2H), 2.46 (m, 1H), 2.26 — 2.14 (m, 1H), 1.49 (s, 18H).
13C NMR (101 MHz, CDCls) ¢ 171.35, 152.19, 141.32, 128.52, 128.48, 126.11, 83.22, 57.86,
52.26, 32.64, 31.83, 28.08. Spectroscopic data were consistent with literature values.

tert-Butyl 3-(2-((Bis(zert-butoxycarbonyl)amino)-3-methoxy-3- (tetrahydro-
2H-pyran-4-yl)-1-carboxylate (55)

Compound 55 was prepared according to the general procedure (GP1) and isolated as a liquid.
Column Chromatography : Silica, gradient 5-15 % EtOAc/Heptane

'TH NMR (300 MHz, CDCl3) 6 4.95 (dd, J = 9.3, 5.0 Hz, 1H), 3.97 — 3.88 (m, 2H), 3.70 (s, 3H),
3.33 (q, J = 11.5 Hz, 2H), 2.08 — 1.93 (m, 2H), 1.90 — 1.78 (m, 1H), 1.72 (d, J = 13.5 Hz, 2H),
1.49 (s, 18H), 1.23 (m, 2H).

I3C NMR (101 MHz, CDCl3) 6 171.64, 152.25, 83.29, 68.08, 67.99, 55.53, 52.34, 37.31, 33.54,
32.74,32.12, 28.10.

IR (neat, v/em'') 2978, 2931, 2841, 1793, 1744, 1698, 1365, 1248, 1125, 857, 731.

HRMS (ESI*): [M+Na]" cal’d for C;oH33NNaO;: 410.2153 found: 410.2148.
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Methyl 3-(2-((tert-butoxycarbonyl)amino)propanamido)-5-
methylhexanoate(56)*

(@]
-
H (0] (@)
Boc” \‘)J\N
H

Compound 56 was prepared according to the general procedure in flow (GP1) and isolated as a
white solid.

Column Chromatography : Silica, gradient 5-40 % EtOAc/Heptane

'TH NMR (300 MHz, CDCl5) 6 6.60 (s, 1H), 4.99 (s, 1H), 4.64 —4.55 (m, 1H), 4.16 (br s, 1H), 3.72
(s, 3H), 1.67-1.60 (m, 2H), 1.57-1.51 (m, 1H), 1.44 (s, 9H), 1.35 (dd, J = 6.9, 2.6 Hz, 3H), 0.91
(br s, 6H). Spectroscopic data were consistent with literature values.

Note: We observed the severe decomposition of the photocatalyst which interfered in the
isolation of the product.

Table S7: Unsuccessful substrates?

Entry Boronic Acid Alkene Acceptor Yield (%)
1 (I)H | X 0
Me” > oH N
2 0O 0
\O)J\/
3 OH | X 0
7 B~om NZ N\F
4 (l)H | X 0
5 ) 10
\OJ\/
6 (l)H X 10
B< | A~ The major side product was
/©/ OH N anisole, whose formation could
MeO be due to HAT between solvent
and aryl radical.
7 [O:©/ B(OH), Q O 20
(0]

aReaction conditions: 1 equiv (0.22 mmol) of BA, 1.5 equiv of alkene, 5 mol % of the photocatalyst. ® Yields were determined by
'H-NMR using 3,4,5-trimethoxybenzaldehyde as internal standard.
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1.6. General procedure for the defluorinative alkylation of -
CF; containing alkenes/ allylation reaction (GP2)

HO.__OH 4-CzIPN (5 mol %),

IIQ 14 W blue LEDs, DMA (0.1 M), R
30°C,Ar,20h FF
An oven-dried 10 mL glass vial equipped with a magnetic stirring bar was charged with alkyl

boronic acid (1.5 equiv, 0.66 mmol), photoredox catalyst (4CzIPN, 5 mol%) and DMA (0.1 M).

CF3

| R
R

The vial was closed with a silicon septum and purged with argon three times. The vial was then
charged with -CF; containing alkene (1 equiv, 0.44 mmol) and irradiated with a commercial blue
LED strip (14 W, 450 nm) for 20 hours in the aforementioned photoreactor. The progress of the
reaction was monitored by TLC and GC/MS. After completion, the solution was diluted with Et,O
and transferred in a separatory funnel containing deionized water. The organic layer was separated,
and the aqueous layer was extracted with Et,O. The combined organic layers were dried over
Na,SO,. Purification was performed by SiO, column chromatography.

*Note: Water bath temperature of the rotavapor was set at 35°C.

(3-cyclopentyl-1,1-difluoroprop-1-en-2-yl)benzene (57)*

F
A F

Compound 57 was prepared according to the general procedure (GP2) and isolated as a clear oil.
Column Chromatography : Silica, Heptane

'"H NMR (400 MHz, CDCl3) 6 7.40 — 7.21 (m, 5H), 2.40 — 2.37 (m, 2H), 1.78 (dq, J = 14.7, 7.3
Hz, 1H), 1.71 — 1.55 (m, 4H), 1.50 — 1.40 (m, 2H), 1.19 — 1.03 (m, 2H). Spectroscopic data were

consistent with literature values.

(5,5-difluoropent-4-ene-1,4-diyl)dibenzene (58)
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Ph

Compound 58 was prepared according to the general procedure (GP2) and isolated as oil.
Column Chromatography : Silica, gradient 0-1 % EtOAc/Heptane

TH NMR (300 MHz, CDCl;) 6 7.33 (dd, J=8.2, 6.6 Hz, 2H), 7.28 — 7.20 (m, 5H), 7.18 — 7.13 (m,
1H), 7.13 — 7.06 (m, 2H), 2.65 — 2.53 (m, 2H), 2.42 (tt, J= 7.5, 2.4 Hz, 2H), 1.68 (p, J = 7.7 Hz,
2H).

13C NMR (75 MHz, CDCl;) 6 153.72 (dd, J = 289.2, 287.6 Hz), 141.97 , 133.73 (d, /= 2.4 Hz),
128.56 , 128.48 , 128.43 , 128.39, 127.38 , 125.95,92.31 (dd, /= 19.2, 15.5 Hz), 35.36 , 29.53
(t,J=2.5Hz),27.42.

19F NMR (377 MHz, CDCl3) 6 -91.52 (d, J = 44.0 Hz), -91.65 (d, J = 44.0 Hz).

IR (neat, v/em™') 3061, 2932, 2862, 1726, 1496, 1446, 1229, 1118, 719, 694, 492.

HRMS (APCI): [M+H]" cal’d for C{7H7F;: 259.1293 found: 259.1278

4-(3-cyclobutyl-1,1-difluoroprop-1-en-2-yl)-1,1'-biphenyl(59)*

F A A

F
Compound 59 was prepared according to the general procedure (GP2) and isolated as white solid.
Column Chromatography : Silica, gradient 0-4 % EtOAc/Heptane

TH NMR (400 MHz, CDCl;) 6 7.63 — 7.56 (m, 4H), 7.48 — 7.42 (m, 2H), 7.38 — 7.33 (m, 3H), 2.52
(dt, J=17.6, 2.3 Hz, 2H), 2.42 — 2.28 (m, 1H), 2.02 — 1.94 (m, 2H), 1.84 — 1.76 (m, 2H), 1.72 —

1.62 (m, 2H). Spectroscopic data were consistent with literature values.

1-(3-cyclopentyl-1,1-difluoroprop-1-en-2-yl)-4-(phenylethynyl)benzene (60)
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Compound 60 was prepared according to the general procedure (GP2) and isolated as white solid.
M.P.: 45.7 °C

Column Chromatography : Silica, gradient 0-4 % EtOAc/Heptane

'H NMR (400 MHz, CDCl;) 6 7.62 (dd, J= 11.4, 4.0 Hz, 4H), 7.51 — 7.35 (m, 6H), 2.47 (dd, J =
5.5,2.0 Hz, 2H), 1.94 — 1.84 (m, 1H), 1.77 — 1.68 (m, 4H), 1.53-1.51 (m, 2H), 1.25 — 1.15 (m,
2H).

I3C NMR (101 MHz, CDCl5) 6 154.11 (dd, J=290.0, 286.2 Hz), 140.76, 140.08, 133.13 (dd, J =
3.0,4.4 Hz), 128.93, 128.85 (dd, J=3.7,3.2 Hz), 127.49, 127.18, 127.15, 92.19 (dd, /= 22.0, 12.6
Hz), 38.44 (t, J = 2.3 Hz), 33.62, 32.31, 25.14. (dd peak at 128.85 partially overlaps with 128.93
peak)

19F NMR (376 MHz, CDCl) 6 -91.55 (d, J = 44.5 Hz), -91.96 (d, J = 44.5 Hz).

IR (neat, v/em'') 2948, 1728, 1486, 1228, 1107, 1143, 799, 729.

HRMS (ESI*): [M+H]" cal’d for CyyH;;F5: 299.1605 found: 299.1598

4-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)-1,1'-biphenyl (61)3°

A

F
Compound 61 was prepared according to the general procedure (GP2) and isolated as white solid.
Column Chromatography : Silica, gradient 0-4 % EtOAc/Heptane

TH NMR (400 MHz, CDCl3) 6 7.69 — 7.60 (m, 4H), 7.54 — 7.33 (m, 5H), 2.37 (dt, /= 7.1, 2.3 Hz,
2H), 1.78-1.66 (m, J=20.6, 7.9 Hz, 5H), 1.43 — 1.28 (m, 1H), 1.20-1.18 (m, J= 5.6 Hz, 3H), 1.04-
0.93 (m, 2H).
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19F NMR (376 MHz, CDCls) 6 -90.63 (d, J=43.3 Hz), -91.18 (d, J=43.2 Hz). Spectroscopic data

were consistent with literature values.

1-(1,1-difluoro-4-methylpent-1-en-2-yl)-4-(phenylethynyl)benzene (62)

Compound 62 was prepared according to the general procedure (GP2) and isolated as white solid.
Column Chromatography : Silica, gradient 0-4 % EtOAc/Heptane

TH NMR (400 MHz, CDCl3) 6 7.64 — 7.57 (m, 4H), 7.47-7.37 (m, 5H), 2.31 (ddd, J=7.3,4.8,2.6
Hz, 2H), 1.64 (td, J=13.6, 6.8 Hz, 1H), 0.92 (d, J = 6.6 Hz, 6H).

I3C NMR (101 MHz, CDCl3) 0 154.27 (dd, J = 290.4, 286.4 Hz), 140.75, 140.08, 133.10 (dd, J =
4.4,3.3 Hz), 128.93, 128.78 (t, /= 3.3 Hz), 127.50, 127.21, 127.16, 91.52 (dd, J = 22.0, 12.6 Hz),
36.67 (d, J=0.9 Hz), 26.62 (t,J = 2.4 Hz), 22.24.

F NMR (376 MHz, CDCl;) ¢ -91.01 (d, J=43.5 Hz), -91.51 (d, J=43.4 Hz).

IR (neat, v/em') 2953, 2870, 1912, 1522, 1486, 1460, 1222, 1135, 770, 759, 728, 693, 625, 599.
HRMS (ESIY): [M+H]" cal’d for C;9HoF>: 273.1449 found: 272.1454

HRMS (APCI): [M] cal’d for C;sH;sF,: 272.1376 found: 272.1358

tert-butyl 2-(3,3-difluoro-2-(4-(phenylethynyl)phenyl)allyl)pyrrolidine-1-
carboxylate (63)

Compound 63 was prepared according to the general procedure (GP2) and isolated as viscous oil.
Column Chromatography : Silica, gradient 5-10 % EtOAc/Heptane

TH NMR (300 MHz, CDCls, rotameric center) ¢ 7.49 (m, 9H), 3.93 (s, 1H), 3.40 (s, 2H), 2.95 —
291(d,J=11.61, 1H), 2.56 — 2.33 (m, 1H), 1.96 — 1.64 (m, 4H), 1.50 (brs, 9H).
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13C NMR (75 MHz, CDCls) 6 154.50, 140.56, 140.31, 132, 128.89, 128.59 (t,J= 3.5 Hz), 127.55,
127.23, 127.08, 90.03 (dd, J = 26.0, 9.6 Hz), 55.61 (t, J = 3.0 Hz), 46.78, 46.37, 31.98, 31.57,
29.58,29.12,29.67, 22.78, 22.74 (CF, peak could not be observed due to the presence of rotameric
carbon center).

19F NMR (376 MHz, CDCl5) 6 -89.36 (d, J = 39.9 Hz), -89.53 (d, J= 40.1 Hz), -89.78 (s).

IR (neat, v/em™') 2973, 1686, 1391, 1285, 1160, 1105, 762, 729, 696.

HRMS (ESI"): [M+Na]" cal’d for C,4H,7F,NNaO,: 422.1906 found: 422.1896.

tert-butyl 4-(3-(cyclopentylmethyl)-4,4-difluorobut-3-en-1-yn-1-yl)piperidine-
1-carboxylate (64)

Boc<
N

X
|

F7OF

Compound 64 was prepared according to the general procedure (GP2) and isolated as a clear
viscous oil.

Column Chromatography : Silica, gradient 0-5 % EtOAc/Heptane (KMnOj, stain)

TH NMR (400 MHz, CDCl;) 6 3.64 (ddd, J=12.9, 6.9, 3.5 Hz, 2H), 3.24 (ddd, /= 13.4, 8.1, 3.5
Hz, 2H), 2.72 (tt, J="7.8, 3.9 Hz, 1H), 2.02 (s, 2H), 1.82 — 1.72 (m, 4H), 1.66 — 1.56 (m, 4H), 1.55
—1.50 (m, 2H), 1.45 (s, 9H), 1.25 (s, 1H), 1.14 (dt, J=13.9, 7.0 Hz, 2H).

13C NMR (101 MHz, CDCl;) 6 159.28 (dd, J = 294.0, 291.0 Hz), 154.90, 95.77 (t, J = 5.7 Hz),
79.61, 78.15 (dd, J=34.3, 14.5 Hz), 74.23 (dd, J = 8.1, 3.7 Hz), 66.99, 42.12 (br s), 38.79 (t, J =
2.2 Hz), 33.29 (d, J = 1.5 Hz), 32.22, 31.46, 28.59, 27.72, 25.15, 22.83.

19F NMR (376 MHz, CDCls) ¢ -82.45 (d, J=22.7 Hz), -87.07 (d, J = 22.8 Hz).

IR (neat, v/em) 2926, 2865, 1693, 1425, 1366, 1161.

HRMS (ESI¥): [M+K]" cal’d for C,yH,9F,NOK : 376.1848 found: 376.2063

1-(4-(3-(difluoromethylene)-5-methylhex-1-yn-1-yl)piperidin-1-yl)-2,2-
dimethylpropan-1-one (65)
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Compound 65 was prepared according to the general procedure (GP2) and isolated as a clear
viscous oil.

Column Chromatography : Silica, gradient 0-5 % EtOAc/Heptane (KMnOj, stain)

TH NMR (400 MHz, CDCls) 6 3.62 (ddd, J=13.2, 7.0, 3.5 Hz, 2H), 3.25 (ddd, /= 13.5, 8.0, 3.6
Hz, 2H), 2.71 (dp, J= 7.7, 4.0 Hz, 1H), 1.91 — 1.86 (m, 2H), 1.88 — 1.71 (m, 3H), 1.63 — 1.53 (m,
2H), 1.47 — 1.41 (m, 9H), 0.91 (d, /= 6.4 Hz, 6H).

I3C NMR (101 MHz, CDCl3) 6 159.40 (dd, J = 294.2, 291.2 Hz), 154.88 , 95.77 (t, J = 5.7 Hz),
79.60 , 77.78-77.29, 74.13 (dd, J = 8.1, 3.7 Hz), 42.29 , 37.17 (d, J = 2.4 Hz), 36.37 (d, /= 1.3
Hz), 31.45,28.57,27.67 ,27.13 (t, J= 2.3 Hz), 22.09 (peak of alkyne carbon partially overlaps
with CDCl; peak).

19F NMR (376 MHz, CDCl5) 0 -82.12 (d, J=21.5 Hz), -86.88 (d, J=21.1 Hz).

IR (neat, v/em) 2957, 2870, 1692, 1365, 1232, 1164, 1087, 860, 731.

HRMS (ESI*): [M+K]" cal’d for C;gH,7F,NOK : 350.1691 found: 350.1909.

5-(1,1-difluoro-5-phenylpent-1-en-2-yl)benzo[d][1,3]dioxole (66)

F_F

Ph
Compound 66 was prepared according to the general procedure (GP2) and isolated as oil.
Column Chromatography : Silica, gradient 0-2 % EtOAc/Heptane
TH NMR (400 MHz, CDCl;) 6 7.25 - 7.22 (m, 2H), 7.18 — 7.15 (m, 1H), 7.12 — 7.09 (m, 2H), 6.79
—6.70 (m, 3H), 5.93 (s, 2H) 2.61 — 2.55 (m, 2H), 2.36 (tt, J = 7.6, 2.4 Hz, 2H), 1.72 — 1.62 (m,
2H).
I3C NMR (101 MHz, CDCl3) 6 153.63 (dd, J=289.1,286.3 Hz), 147.84 , 146.84 , 141.95 , 128.45
(d,J=3.5Hz), 127.33 (dd, J=4.3,2.9 Hz), 125.96, 121.92 (t,J= 3.1 Hz), 108.92 (t, /= 3.3 Hz),
108.41,101.23,92.06 (dd, J=22.2, 13.4 Hz), 29.43 (t).
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19F NMR (376 MHz, CDCl5) 6 -91.80 (d, J=45.1 Hz), -92.14 (d, /= 45.1 Hz).
IR (neat, v/em) 3026, 1727, 1503, 1489, 1237, 1038, 961, 935, 810, 697, 558.
HRMS (ESI*): [M+H]" cal’d for C;gH;7F,0,: 303.1191 found: 303.1092.

5-(3-cyclopentyl-1,1-difluoroprop-1-en-2-yl)benzo|[d][1,3]dioxole (67)

Compound 67 was prepared according to the general procedure (GP2) and isolated as oil.
Column Chromatography : Silica, gradient 0-2 % EtOAc/Heptane

'H NMR (300 MHz, CDCl;) ¢ 6.85 — 6.70 (m, 3H), 5.96 (s, 2H), 2.33 (dt, /= 7.6, 2.5 Hz, 2H),
1.81 (dt, J=14.9, 7.4 Hz, 1H), 1.75 — 1.55 (m, 4H), 1.54 — 1.40 (m, 2H), 1.14 (td, /= 14.1, 6.9
Hz, 2H).

13C NMR (75 MHz, CDCl;) 6 153.94 (dd, J = 287.9, 286.3 Hz), 147.75 , 146.76 , 127.81 (d, J =
2.3 Hz), 122.01 (t, J = 3.1 Hz), 109.06 (t, /= 3.2 Hz), 108.36, 101.22 , 92.21 (dd, J = 20.2, 15.3
Hz), 38.28 (t,/=2.4 Hz), 34.03 , 32.25, 25.12.

19F NMR (377 MHz, CDCls) 6 -92.66 (d, J = 46.8 Hz), -92.82 (d, /= 46.8 Hz).

IR (neat, v/em') 2949, 2868, 1728, 1504, 1490, 1237, 1039, 936, 810.

HRMS (ESI"): [M+H]" cal’d for C;5sH,7F,0,: 267.1191 found: 267.1171.

1-bromo-4-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)benzene (68)*

Br

F A
F
Compound 68 was prepared according to the general procedure (GP2) and isolated as oil.

Column Chromatography : Silica, Heptane
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TH NMR (300 MHz, CDCI3) 6 7.46 (m, 2H), 7.18 (m, 2H), 2.24 (dt, J = 7.1, 2.4 Hz, 2H), 1.62-
1.54 (m, 5H), 1.26-1.15 (m, 4H), 0.90-0.85 (m, 2H). Spectroscopic data were consistent with

literature values.
1-bromo-4-(1,1-difluoro-4-methylpent-1-en-2-yl)benzene (69)**

Br

N

F
Compound 69 was prepared according to the general procedure (GP2) and isolated as oil.
Column Chromatography : Silica, Heptane
'H NMR (400 MHz, CDCl;) 6 7.52 — 7.43 (m, 2H), 7.22 — 7.12 (m, 2H), 2.25 (ddd, J= 7.5, 4.9,
2.8 Hz, 2H), 1.62 — 1.50 (m, 1H), 0.88 (d, /= 6.7 Hz, 6H). Spectroscopic data were consistent with

literature values.
1-bromo-4-(3-cyclopentyl-1,1-difluoroprop-1-en-2-yl)benzene (70)

Br

FH

F
Compound 70 was prepared according to the general procedure (GP2) and isolated as oil.
Column Chromatography : Silica, Heptane
TH NMR (400 MHz, CDCl;) 6 7.50 — 7.46 (m, 2H), 7.21 — 7.16 (m, 2H), 2.39 — 2.35 (m, 2H), 1.83
—1.74 (m, 1H), 1.69 — 1.58 (m, 4H), 1.52 — 1.42 (m, 2H), 1.20 — 1.08 (m, 2H).
13C NMR (75 MHz, CDCl) 6 153.94 (dd, J = 290.3, 286.7 Hz), 133.13 (dd, J = 4.6, 2.8 Hz),
131.69, 130.15 (t,J = 3.2 Hz), 121.23,91.78 (dd, J = 22.5, 12.7 Hz), 38.35 (t, J = 2.2 Hz), 33.53,
32.26, 25.10.
19F NMR (376 MHz, CDCls) 6 -91.18 (d, J= 43.4 Hz), -91.59 (d, /= 43.4 Hz).
IR (neat, v/em') 2949, 2866, 1723, 1488, 1450, 1237, 1155, 1098, 824, 741, 580, 502.
HRMS (ESI*): [M+H]" cal’d for C4H;¢BrF,: 301.0398 found: 301.0757.
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tert-butyl 2-(2-(4-bromophenyl)-3,3-difluoroallyl)pyrrolidine-1-
carboxylate(71)

Br

F A N

IS EPe
Compound 71 was prepared according to the general procedure (GP2) and isolated as viscous oil.
Column Chromatography : Silica, gradient 0-10 % EtOAc/Heptane
'H NMR (400 MHz, CDCl;) 6 7.50 — 7.45 (m, 2H), 7.26 (br m, 2H), 3.78 (br m, 1H), 3.30 (br m,
2H), 3.00 — 2.77 (m, 1H), 2.46-2.33 (m, 1H), 1.90 — 1.71 (m, 3H), 1.67 — 1.58 (m, 1H), 1.45 (s,
9H).
I3C NMR (151 MHz, CDCl;) ¢ 156.56, 154.62, 154.49, 152.71, 152.66, 132.16, 131.78, 129.90,
121.51, 121.32, 89.72, 79.75, 79.15, 55.53, 46.78, 46.39, 31.57, 30.71, 29.82, 29.63, 28.69, 23.68,
22.74.
19F NMR (376 MHz, CDCls) 6 -89.00 (q, J = 38.4 Hz), -89.48 (s).
IR (neat, v/em™') 2967, 1687, 1490, 1364, 1343, 1246, 1160, 1099, 828, 814, 768.
HRMS (ESI"): [M+Na]" cal’d for C,gH,,BrF,NNaO,: 424,0699 found: 424.0691.
Note: Due to rotameric carbon, the coupling constant between fluorine and carbon could not be

analyzed.

5-(1,1-difluoro-4-methylpent-1-en-2-yl)-1-methyl-1H-indole (72)°

/
F N
N /

Compound 72 was prepared according to the general procedure (GP2).

Column Chromatography : Silica, gradient 0-4 % EtOAc/Heptane

'H NMR (400 MHz, CDCl3) 6 7.56 (s, 1H), 7.31 (d, J = 8.5 Hz, 1H), 7.18 (dt, J = 8.5, 1.5 Hz,
1H), 7.06 (d, J=3.1 Hz, 1H), 6.49 (dd, J=3.1, 0.8 Hz, 1H), 3.80 (s, 3H), 2.33 (ddd, /=7.3, 2.8,
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2.0 Hz, 2H), 1.61 (dt, J = 13.7, 6.8 Hz, 1H), 0.90 (d, J = 6.7 Hz, 6H). Spectroscopic data were

consistent with literature values.

4-(3-cyclopentyl-1,1-difluoroprop-1-en-2-yl)-1,2-dimethoxybenzene (73)

Compound 73 was prepared according to the general procedure (GP2).

Column Chromatography : Silica, gradient 0-4 % EtOAc/Heptane

'H NMR (400 MHz, CDCls) 6 6.86 — 6.81 (m, 3H), 3.88 (s, 6H), 2.35 (dt, J= 7.5, 2.4 Hz, 2H),
1.81 (dt,J=15.2,7.6 Hz, 1H), 1.68 — 1.64 (m, 3H), 1.62 — 1.59 (m, 2H), 1.47 (dd, J=7.3, 4.6 Hz,
1H), 1.19 — 1.09 (m, 2H).

I3C NMR (101 MHz, CDCl;) 6 153.92 (dd), 148.85 , 148.29 , 126.68 (d, J=2.2 Hz), 120.95 (t, J
=29Hz), 111.87(t,J=3.3Hz), 111.12,92.17 (dd, J=19.9, 15.2 Hz), 56.07 , 55.97 , 38.40 (t, J
=2.3Hz),33.92,32.29,25.12.

1F NMR (376 MHz, CDCl;) 0 -92.81, -92.83.

IR (neat, v/em) 2950, 2867, 1729, 1584, 1516, 1252, 1173, 1027, 908, 729.

HRMS (ESI"): [M+H]" cal’d for C;¢H,F,0,: 283.1504 found: 283.1506.

2-(4-((3-(3-cyclopentyl-1,1-difluoroprop-1-en-2-yl)phenoxy)methyl)phenyl)-
4,4,5,5-tetramethyl-1,3,2-dioxaborolane(74)

%w@fo*

Compound 74 was prepared according to the general procedure (GP2) and isolated as oil.
Column Chromatography : Silica, gradient 0-4 % EtOAc/Heptane

'H NMR (400 MHz, CDCl3) 6 7.82 (d, J = 8.0 Hz, 2H), 7.43 (d, J= 8.1 Hz, 2H), 7.25 — 7.20 (m,
1H), 6.91 — 6.84 (m, 3H), 5.09 (s, 2H), 2.33 (dt, J= 7.5, 2.4 Hz, 2H), 1.78 — 1.69 (m, 1H), 1.60 —
1.55 (m, 5H), 1.48 — 1.40 (m, 2H), 1.34 (s, 12H), 1.16 — 1.05 (m, 2H).
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I3C NMR (101 MHz, CDCls) 6 158.73 , 153.98 (dd, J = 289.7, 285.9 Hz), 140.19 , 135.56 (dd, J
=4.2,23 Hz), 135.18 , 129.44 , 126.68 , 121.30 (t, J = 3.0 Hz), 115.46 (t, /= 3.1 Hz), 113.61 ,
92.38 (dd, J/=21.7, 13.1 Hz), 83.96 , 38.32 (t, J = 2.5 Hz), 33.74 ,32.25 ,25.11, 25.01 .

'F NMR (376 MHz, CDCl;) 6 -91.73 (d, J = 44.0 Hz), -91.97 (d, J = 44.2 Hz).

1IB NMR (128 MHz, CDCl3) ¢ 30.42.

IR (neat, v/em') 2948, 2866, 1729, 1611, 1578, 1537, 1339, 1240, 1142, 1114, 858, 656.
HRMS (ESI): [M+isopropanol+H]* cal’d for C30H,;BF,0,4: 504.3050 found: 504.3291.

(8R,9S,13S,14S,17S)-17-(3-(difluoromethylene)-5-methylhex-1-yn-1-yl)-3-
methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-
cyclopenta[a]phenanthren-17-ol (75)

Compound 75 was prepared according to the general procedure (GP2) isolated as viscous-oil.

Column Chromatography : Silica, gradient 0-10 % EtOAc/Heptane

Note: The product is not stable and should be kept in fridge. Unknown side product could not be
separated by column chromatography. The yield was confirmed by NMR.

'H NMR (400 MHz, CDCl3) 6 7.22 (d, J = 9.8 Hz, 1H), 6.71 (dd, J = 8.6, 2.3 Hz, 1H), 6.62 (m,
1H), 3.77 (s, 3H), 2.88 — 2.82 (m, 2H), 2.40 — 2.26 (m, 2H), 2.22-2.13 (m, 1H), 2.08 — 1.98 (m,
2H), 1.95-1.91 (m, 1H), 1.91 — 1.63 (m, 6H), 1.54-1.42 (m, 3H), 1.16 — 1.10 (m, 2H), 0.96 — 0.81
(m, 9H).

I3C NMR (75 MHz, CDCl;) 8 157.61 (d, J = 2.43Hz), 138.07, 132.61, 126.49, 113.93, 111.62, &
96.93 (t,J=5.6 Hz), 80.47 (d, /= 6.2 Hz), 78.29 (dd, J= 8.3, 4.1 Hz), 55.29, 49.85, 49.79, 47.72,
47.65,43.99, 43.83, 39.62, 39.30, 39.16, 33.03, 32.97, 32.02, 29.95, 29.16, 27.47,27.31 (t,J=2.2
Hz) 26.57,22.94,22.83, 19.25, 14.24.

19F NMR (377 MHz, CDCl;) 6 -80.49 (d, J= 19.0 Hz), -85.45 (d, J= 18.9 Hz).

GC-EI: cal’d for C,7H34F,0,: 428.25, found: 428.15.
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(3-cyclopentylprop-1-en-2-yl)benzene(76)

Compound 76 was prepared according to the general procedure (GP1) and isolated as oil.
Column Chromatography : Silica, gradient 0-4 % EtOAc/Heptane

'TH NMR (400 MHz, CDCl3) 6 7.34 (dd, J= 8.3, 1.3 Hz, 2H), 7.29 — 7.24 (m, 2H), 7.22 — 7.16 (m,
1H), 5.17 (d, J= 1.7 Hz, 1H), 4.99 (q, J = 1.2 Hz, 1H), 2.45 (dd, J= 7.4, 0.9 Hz, 2H), 1.86 (hept,
J=17.5Hz, 1H), 1.67 — 1.59 (m, 2H), 1.56 — 1.52 (m, 3H), 1.46 — 1.36 (m, 1H), 1.15 — 1.03 (m,
2H).

13C NMR (75 MHz, CDCl;) ¢ 148.59, 141.78, 128.31, 127.32, 126.40, 112.89, 42.15, 38.33,
32.58,25.21.

IR (neat, v/em) 2947, 2864, 1626, 1446, 892, 776, 699.

HRMS (APCI): [M+H]" cal’d for C14H;o: 187.1481 found: 187.1264

(4-methylpent-1-en-2-yl)benzene (77)°

Compound 77 was prepared according to the general procedure (GP1) and isolated as oil.
Column Chromatography : Silica, iso-hexane

TH NMR (300 MHz, CDCl;) 6 7.34 (m, 5H), 5.28 (s, 1H), 5.05 (s, 1H), 2.41 (d, /= 7.1 Hz, 2H),
1.70 (dt, J=13.5, 6.7 Hz, 1H), 0.90 (d, J = 6.6 Hz, 6H). Spectroscopic data were consistent with

literature values.

pent-4-ene-1,4-diyldibenzene (78)°!

Compound 78 was prepared according to the general procedure (GP1) and isolated as oil.

Column Chromatography : Silica, gradient 0-4 % EtOAc/Heptane
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H NMR (300 MHz, CDCls) 6 7.39 — 7.34 (m, 2H), 7.33 — 7.29 (m, 1H), 7.31 — 7.18 (m, 4H), 7.16
—7.11 (m, 3H), 5.27 (d, J= 1.6 Hz, 1H), 5.06 (d, J= 1.6 Hz, 1H), 2.63 (t, /= 7.7 Hz, 2H), 2.53 (t,
J=17.5Hz, 2H), 1.77 (p, J = 7.7 Hz, 2H).

13C NMR (101 MHz, CDCls) § 148.46, 142.44, 141.42, 128.65, 128.62, 128.58, 128.49, 128.39,
128.33, 128.30, 128.27, 127.45, 126.27, 125.84, 112.57, 35.58, 34.99, 30.01. Spectroscopic data

were consistent with literature values.

tert-butyl 2-(2-phenylallyl)pyrrolidine-1-carboxylate(79)>

Boc
Compound 79 was prepared according to the general procedure (GP1) and isolated as oil.
Column Chromatography : Silica, gradient 0-10 % EtOAc/Heptane
'H NMR (400 MHz, CDCl;) 6 7.51 (br, 2H), 7.38 — 7.26 (m, 3H), 5.37 (d, /= 1.1 Hz, 1H), 5.09
(s, 1H), 3.98-3.86 (br m, 1H), 3.37-3.20 (br m, 3H), 2.42 — 2.22 (m, 1H), 1.92 — 1.71 (m, 4H),

1.54-1.49 (br m, 9H). Spectroscopic data were consistent with literature values.

tert-butyl 2-(2-(ethoxycarbonyl)allyl)pyrrolidine-1-carboxylate (80)>3

EtOZCw

Compound 80 was prepared according to the general procedure (GP1) and isolated as oil.
Column Chromatography : Silica, gradient 0-5 % EtOAc/iso-Hexane

TH NMR (300 MHz, CDCls) 6 6.12 (s, 1H), 5.51 (s, 1H), 4.20 (q, /= 7.1 Hz, 2H), 2.30 (d, /= 7.2
Hz, 2H), 2.09 — 1.97 (m, 2H), 1.79 — 1.68 (m, 2H), 1.62 — 1.47 (m, 4H), 1.30 (t, /= 7.1 Hz, 3H),

1.11-1.07 (m, 2H). Spectroscopic data were consistent with literature values.

tert-butyl 2-(2-(ethoxycarbonyl)allyl)pyrrolidine-1-carboxylate (81)

o ALY

\
Boc

Compound 81 was prepared according to the general procedure (GP1) and isolated as oil.

Column Chromatography : Silica, gradient 5-20 % EtOAc/Heptane
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'H NMR (400 MHz, CDCl5) ¢ 6.17 (d, J = 1.3 Hz, 1H), 5.51 (s, 1H), 4.22 — 4.13 (m, 2H), 3.96
(br s, 1H), 3.33 (br m, 2H), 2.65 (br s, 1H), 2.33 (br s, 1H), 1.87 — 1.75 (m, 3H), 1.66-1.64 (m,
1H), 1.42 (s, 9H), 1.27 (t, J= 7.1 Hz, 3H).

13C NMR (101 MHz, CDCl;) ¢ 167.13, 154.60, 138.37, 127.04, 126.62, 79.30, 60.73, 56.78,
46.47,45.98, 36.57, 35.21, 30.21, 28.56, 22.73, 14.28.

IR (neat, v/em™') 2974, 1715, 1688, 1390, 1364, 1217, 1165, 1142, 770.

HRMS (ESI*): [M+Na]" cal’d for C;sHps NNaQOy: 306.1681 found: 306.1674.

2-(3-cyclopentylprop-1-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (82)'?

%m

Compound 82 was prepared according to the general procedure (GP1) and isolated as oil.
Column Chromatography : Silica, gradient 0-5 % EtOAc/Heptane

'TH NMR (300 MHz, CDCl3) 6 5.76 (d, J = 3.3 Hz, 1H), 5.58 (s, 1H), 2.15 (d, J = 7.2 Hz, 2H),
1.97 (dt, J=15.0, 7.5 Hz, 1H), 1.74-1.65 (m, 2H), 1.61 — 1.53 (m, 2H), 1.52 — 1.44 (m, 2H), 1.26
(s, 12H), 1.17 — 1.03 (m, 2H).

1B NMR (128 MHz, CDCls) 6 30.26. Spectroscopic data were consistent with literature values.
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