Supporting Information

Photohardenable Pressure-Sensitive Adhesives using Poly(methyl methacrylate) containing Liquid Crystal Plasticizers

Mioka Koike,^{†,‡} Miho Aizawa,[§] Hiroyuki Minamikawa,^{||} Atsushi Shishido,^{*,†,‡} and Takahiro Yamamoto^{*,§}

†Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

§Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

||Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

* E-mail: ashishid@res.titech.ac.jp (A. S.)

* E-mail: takahiro.yamamoto@aist.go.jp (T. Y.)

Measurement of tack strength of PP_x/PMMA mixtures.

Tack strength was measured by a probe tack test. Probe tack test was conducted in the rheometer using an aluminum probe under the following conditions: temperature was 25 °C, the approaching and debonding speeds were 0.5 mm/s, the contact pressure was 1 ± 0.2 N/cm², and the contact time was 1 s. To investigate the tackiness of photoplasticized samples, the tack strength of the samples pre-irradiated with UV light (wavelength: 365 nm; intensity: 30 mW/cm²) for 30 min were measured under UV-light irradiation.

Supplementary figures

Figure S1. UV–vis absorption spectral changes of BMAB in THF before UV-light irradiation (solid line) and after UV-light (dotted line; wavelength: 365 nm; intensity: 30 mW/cm²) irradiation, and after Vis-light (dot-dashed line; wavelength: 435 nm; intensity: 30 mW/cm²) irradiation following the UV-light irradiation.

Figure S2. The XRD patterns of (A) PP₅, (B) PP₅₀, and (C) PP₁₀₀ after UV-light irradiation at 25 °C.

Figure S3. The DSC curves of (A) PP₅, (B) PP₅₀, and (C) PP₁₀₀ before (a) and during (b) UV-light irradiation.

Figure S4. Polarized optical micrographs of (A) PP₅₀/PMMA and (B) PP₁₀₀/PMMA before UVlight irradiation at 25 °C. P and A denote polarizer and analyzer, respectively.

Figure S5. Temperature dependences of the viscoelastic parameters of $PP_x/PMMA$ mixtures before (black lines) and under (red lines) UV-light irradiation (wavelength: 365 nm; intensity: 30 mW/cm²). (A) and (B) show the *G*' (solid lines) and *G*'' (dashed lines) values of PP₅/PMMA and PP₁₀₀/PMMA, respectively. (C) and (D) show the tan δ values of PP₅/PMMA and PP₁₀₀/PMMA, respectively. The viscoelastic parameters were measured at a frequency of 1 Hz and a strain of 0.1% upon heating at 1 °C/min.

Figure S6. The viscoelastic parameters of (A) PP₅/PMMA and (B) PP₁₀₀/PMMA at 25 °C upon the alternate irradiation of UV (wavelength: 365 nm; intensity: 30 mW/cm²) and Vis (wavelength: 435 nm; intensity: 30 mW/cm²) light; solid line: G'; dashed line: G''.

Table S1. Tack strengths of PP₅/PMMA, PP₅₀/PMMA, and PP₁₀₀/PMMA at 25 °C under UV-light irradiation (wavelength: 365 nm; intensity: 30 mW/cm²).

Sample	Tack strength under UV-light irradiation (mN/mm ²)
PP ₅ /PMMA	7.3 ± 1.3
PP ₅₀ /PMMA	3.0 ± 0.4
PP ₁₀₀ /PMMA	5.6 ± 1.4

Figure S7. The stress-strain curves of PP₅/PMMA (dotted line), PP₅₀/PMMA (solid line), and PP₁₀₀/PMMA (dot-dashed line) at 25 °C.

Figure S8. The XRD pattern of the PP₅₀/PMMA film at 25 °C with polyimide sheets. The peak labeled as "X" originates from the polyimide sheet.

Figure S9. Typical stress-strain curves obtained in a lap-shear test of PP₅₀/PMMA sample specimens prepared in (A) photochemical and (B) thermal manners.