Supporting info

Gas-phase Oxidation of NO₂ to HNO₃ by Phenol: Atmospheric Implications

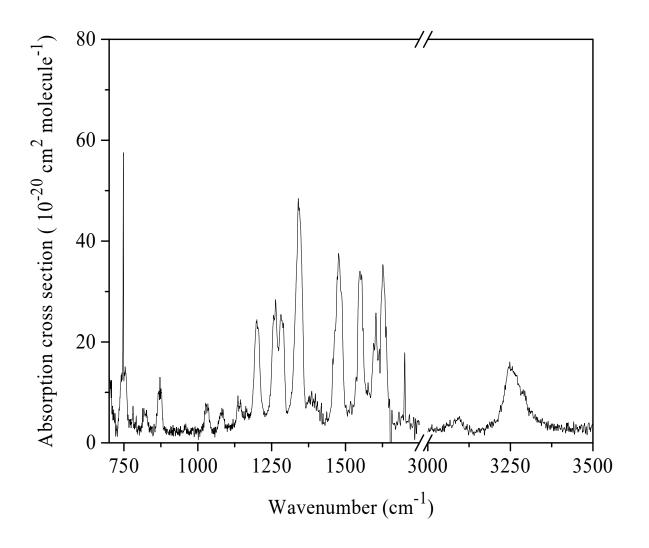
Koushik Mondal^a, Souvick Biswas^a, Aparajeo Chattopadhyay^{a, #}, Piyali Chatterjee^a and Tapas Chakraborty^{a*}

^a School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India

[#] Present address: Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, CO 80305, USA

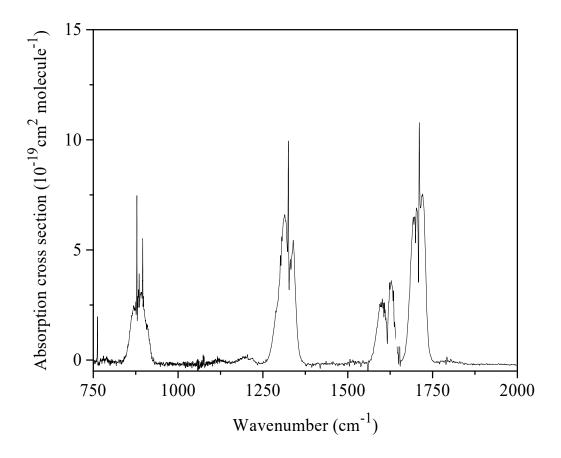
&

Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA


* Corresponding author:

Email: pctc@iacs.res.in

Supporting information includes 2 Figures, 1 Table, and 6 pages.


Contents:

S 1a: FTIR spectrum of <i>o</i> -nitrophenol	S2
S 1b: FTIR Spectrum of nitric acid	S3
S 2a: Calculation of second order rate law	S4
S 2b: Calculation of second order rate law	S5
Table S 1: Characteristic vibrational frequencies of the spices identified, and absorption	n cross-
sections of the particular modes according to PNNL database	S6

Spectrum of HNO_3 was recorded after diluting 2 mbar of HNO_3 to 1 bar by using UHP N_2 .

S 1b: FTIR Spectrum of nitric acid

Spectrum of o-nitrophenol was recorded after diluting 400 mbar of *o*-nitrophenol- N_2 mixture to 1 bar by using UHP N_2 .

S 2a: Calculation of second order rate law:

Rate law for the reaction

 $A + B \longrightarrow Products$

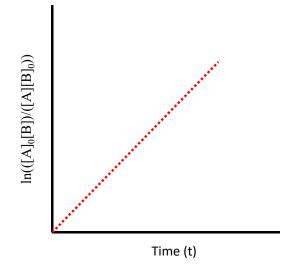
Rate of the reaction:

$$d[A]/dt = k[A][B]$$
 ------1

Integrated form of this differential equation is

 $\ln(([A]_0[B])/([A][B]_0)) = k ([A]_0 - [B]_0)t ----2$

Where $[A]_0$ = initial concentration of A and [A] = concentration of A at t time


 $[B]_0$ = initial concentration of B and [B] = concentration of B at t time

So the plot of $\ln(([A]_0[B])/([A][B]_0))$ vs t will be a straight line and slope of the plot = k ($[A]_0 - [B]_0$)

In our case

A = PhOH

 $B = N_2O_4$

S 2b: Calculation of third order rate law:

Rate law for the reaction

 $2 A + B \longrightarrow Products$

Rate of the reaction:

$$d[A]/dt = k[A]^{2}[B]$$
 ------1

Integrated form of this differential equation is

ln (([B]₀ [A])/([A]₀ [B])) + (2([B]₀ – [B])(2 [B]₀ – [A]₀))/([A]₀ [A]) = kt(2[B]₀ – [A]₀)² ---2 Where [A]₀= initial concentration of A and [A] = concentration of A at t time

 $[B]_0$ = initial concentration of B and [B] = concentration of B at t time

So the plot of ln (([B]₀ [A])/([A]₀ [B])) + (2([B]₀ – [B])(2 [B]₀ – [A]₀))/([A]₀ [A]) vs t will be a straight line and slope of the plot = $kt(2[B]_0 - [A]_0)^2$

If $Y = \ln (([B]_0 [A])/([A]_0 [B])) + (2([B]_0 - [B])(2 [B]_0 - [A]_0))/([A]_0 [A])$ taken then plot of Y vs t will be a straight line passing through origin.

In our case

$$A = NO_2$$

B = PhOH

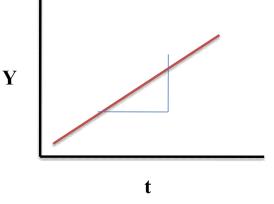


Table S 1

Frequencies (cm ⁻¹)	Species	Vibrational mode	Absorption cross-section (cm ² molecule ⁻¹)
878	HNO ₃	-NO ₂ deformation	6.81×10 ⁻¹⁹
1325	HNO3	-NO symmetric streching	9.95×10 ⁻¹⁹
1711	HNO3	-NO anti symmetric streching	1.04×10 ⁻¹⁸
748	o-nitrophenol	-OH bending	5.70×10 ^{-19 a}
3250	<i>o</i> -nitrophenol	-OH streching	1.61×10 ^{-19 a}
1875	NO	NO streching	1.03×10 ⁻¹⁹

a = estimated in the present study.

Table S 1: Characteristic vibrational frequencies of the spices identified, and absorption cross-sections of the particular modes according to $PNNL^{48}$ database. Absorption cross-section of *o*-nitrophenol has been estimated in the present study (a).