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1. Characterization Equipment

The morphologies and structures of the samples were characterized by using scanning electron 

microscopy (SEM, Model Quanta 250 FEG) and transmission electron microscopy (TEM, JEOL, 

JEM-2100F). The structures and crystallinities of the different catalytic films were characterized 

by X-ray diffraction (XRD). The X-ray source was Bruker D8Advance with monochromatic Cu 

Kα radiation (λ=1.5406 Å) in the 2θ range of 10–55°. A Raman spectrum was used with the laser 

line at 785 nm as the excitation source at room temperature (Bruker, model: Senteraa 2009, 

Germany). The chemical states of the component elements in the film samples were investigated 

using Thermo Scientific Sigma Probe spectrometer with a monochromatic AlKα source (photon 

energy 1486.6 eV), spot size of 400 μm, energy step size of 1.0 eV and pass energy of 200 eV. 

The optical properties of the photoanodes were measured by Perkin Elmer UV-Vis-NIR model 

Lambda 950. Finally, photoluminescence (PL) spectra were detected at room temperature using 

an Edinburgh F-4600 NF900 (FLS920) fluorescence spectrophotometer at an excitation of 400 

nm. Electron paramagnetic resonance (EPR) measurements in the X-band (9.64 GHz) were 

performed using a CW/Pulse EPR System(QM09). The power 1 mW absorbed by the samples 

was recorded at room temperature. To measure the time-resolved photoluminescence (TRPL), 

we used the second harmonic generated beam of a Ti:sapphire laser (800 nm wavelength, 100 fs 

pulse-width, and 82 MHz repetition rate). The collected luminescence signal was dispersed by a 

monochromator (MS3504i, SOLAR TII) then detected by a photomultiplier tube (PMT-100, 

Becker & Hickl). The luminescence signal from the photomultiplier tube was processed by time-

correlated single-photon counting (TCSPC) system (SPC-730, Becker & Hickl) to yield the 

temporal behavior of FTOs and hematite-based samples. The monitoring window for the TRPL 

measurements was 590 nm and 469 nm for FTOs and α-Fe2O3 s, respectively and the excitation 

intensity was about 4.7 MW/cm2.
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2. Calculation of parameters for MoS2 nanosheets

The concentration (CM), length (L), and thickness (N) of the exfoliated MoS2 nanosheets was 

estimated by eq. S1, S2, and S3.

L(nm) =                                                                                                           (S1)
(3500 ×

𝐸𝑋𝑇𝐵
𝐸𝑋𝑇345

― 140)

(11.5 ―
𝐸𝑋𝑇𝐵

𝐸𝑋𝑇345
)

C (mg. mL-1) = EXT345/(α×l)                                                                                                      (S2)

Thickness (N (nm)) =                                                           (S3)2.3 × 1036 × 𝑒𝑥𝑝 ( ― 54888
𝜆𝐴

)

In equation S1, L is average size of nanosheets were estimated by EXTB and EXT345 values in 

UV-vis data. 

Concentration of the nanosheets in equation S2, depends on EXT345 value, the absorption 

coefficient (α), and the path length (l). 

The equation S3 includes the wavelength of the absorbance light at A point (λA) which can be 

found in the UV-vis data (Fig.1a).
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3. SEM and EDX of W doped samples

Fig. S1. (a-c) Top-view, (d-f) EDX, and (g-i) cross section of 0.25W:α-Fe2O3, 0.5W:α-Fe2O3, and 1W:α-Fe2O3 
electrodes.
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4. HRTEM and FFT for crystal structure 

Fig. S2. (a) HRTEM image of 0.5W:α-Fe2O3, (b) FFT, inverse FFT, and profile of  inverse FFT images of 0.5W:α-
Fe2O3 , and (c) HRTEM image of 0.5W:α-Fe2O3/MoS2 with FFT of MoS2 layer. 
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5. XPS survey spectra for α-Fe2O3, 0.5W:α-Fe2O3, 0.5W:α-Fe2O3/MoS2
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Fig. S3. XPS survey spectra for pure α-Fe2O3, 0.5W:α-Fe2O3, 0.5W:α-Fe2O3/MoS2.    
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6. Optical analysis for W doped samples
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Fig. S4. (a) UV–vis reflectance spectra and band gap energies, (b) XPS for VB, and (c) PL of pure α-Fe2O3, 
0.25W:α-Fe2O3 , 0.5W:α-Fe2O3, and 1W:α-Fe2O3.    

The Tauc equation for direct bandgap thus, can be expressed as in below equation1, 

(α.hν)=A(hν-Eg)1/2

where hν is photon energy, Eg and A is a proportionality constant.

The reflectance is converted into absorption coefficient by using the Kubelka-Munk (K-M) or 

remission function F(R∞), which gives the final relation equation1:

(F(R).hν)=A(hν-Eg)1/2

where hν is photon energy, F(R) is the reflectance of the sample Eg, and A is a proportionality 

constant.

As shown in Fig. S4a, the band gap for α-Fe2O3 decreased after doping W from 2.16 to 2.11 eV. 

The W:α-Fe2O3 samples could absorb more photons than the pristine α-Fe2O3 sample could, and 
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therefore generated more electron-hole pairs. This confirms the improved PEC efficiency under 

higher wave number (low energy) of visible light irradiation compared with that of pure α-Fe2O3.

7. XPS depth profile of the 0.5W: α-Fe2O3
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Fig. S5. (a) XPS depth profiles of W4f in different etching times and (b) XPS depth profiles of W4f, Fe2p, and O1s 
in the 0.5W:α-Fe2O3 photoanode.
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8. The EPR for detect the defects in the W: α-Fe2O3 samples
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Fig. S6. Electron paramagnetic resonance (EPR) spectra of the pure α-Fe2O3, 0.25W:α-Fe2O3, 0.5W:α-Fe2O3, and 
1W:α-Fe2O3 photoanodes.   

The EPR results of α-Fe2O3, 0.25W:α-Fe2O3, 0.5W:α-Fe2O3, and 1W:α-Fe2O3 photoelectrode are 

shown in Fig. S5. It can be easily seen that the g-values of all sample spectra are the same 

whereas the peak intensities are enhanced for the W doped α-Fe2O3 electrodes. The peak 

intensity of the EPR spectrum is correlated with the concentration of Fe3+ and Fe2+ ions, which 

implies that more oxygen vacancies were produced by the doping process of the tungsten.   
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9. PEC performance of W doped samples
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Fig. S7. (a) Linear scan voltammetry and (b) chopped LSV vs. potential linear from 0.3 to 1.5 V vs. RHE, (c) 
photocurrent response, and (d) photocurrent stability at 1.23 V vs. RHE for pure α-Fe2O3, 0.25W:α-Fe2O3 , 0.5W:α-
Fe2O3, and 1W:α-Fe2O3 under 100 mWcm-2 illumination. The electrolyte was a 1 M NaOH.



11

             
350 400 450 500 550 600

0

5

10

15

20

25
IP

C
E

 %

Wavelength(nm)

-Fe2O3

0.25% W:-Fe2O3

0.5% W:-Fe2O3

1% W:-Fe2O3

(a)

0 30 60 90 120
0.2

0.1

0.0

0.1

0.2
 Pure -Fe2O3

0.25% W:-Fe2O3

 0.5% W:-Fe2O3

1% W:-Fe2O3

light on

light off

Po
te

nt
ia

l (
V

 v
s 

A
g/

A
gC

l)

Time (sec)

(b)

 
0 500 1000 1500

0

500

1000

1500

2000
 Pure -Fe2O3

0.25% W:-Fe2O3

0.5% W:-Fe2O3

 1% W:-Fe2O3

-Z
" 

(
)

(c)

Z' (  )
0.5 0.7 0.9 1.1 1.3

0.0

4.0x108

8.0x108

1.2x109

1.6x109

2.0x109
 Pure -Fe2O3

0.25% W:-Fe2O3

0.5% W:-Fe2O3

 1% W:-Fe2O3

C
-2

SC
(F

-2
)

Potential (V vs RHE)

(d)

Fig. S8. (a) The incident-photon-to-current-efficiencies (IPCE), (b) change in open circuit potential (ΔOCP) value, 
(c) Nyquist plot, and . Mott–Schottky analysis for pure α-Fe2O3, 0.25W:α-Fe2O3 , 0.5W:α-Fe2O3, and 1W:α-Fe2O3 
under 100 mWcm-2 illumination. The supporting electrolyte was a 1 M aqueous solution of NaOH.
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10. Calculation of Vfb, ND and Wscl values

The Vfb, ND and Wscl values of photoanodes were calculated with equations (S4):

2 2
0

2 2
0 0

1 2 (V )

2 2
( )

int int

B
fb

D

D
D

B B
fb fb

K TV
C A eN e

Slope N
A eN A e Slope

K T K TV ercept ercept V
e e



 

  

  

    
                                                                                        

where V is the CB potential (V), Vfb the flat band potential (V), k the Boltzmann constant, T the 

temperature (K), e the charge of an electron (C), ε the relative permittivity, ε0 the dielectric 

constant, ND the donor concentration per unit volume (cm3), and Csc the surface charge 

capacitance (F/cm2). We can obtain qualitative information on donor concentration based on the 

Mott–Schottky plot in which the positive slopes of the electrodes indicate n-type semiconductors. 

The width of the space charge layer (WSCL) can be obtained by solving Poisson’s equation, using 

equation (S5). 

                                                                                                         (S5)     
02 ( )fb

SCL
D

V V
W

eN
 



Table S1: Vfb, ND and Wscl values of W doped α-Fe2O3 with different atomic percentage

Sample slope Intercept (X axius) ND(cm-3) Vfb(v) Wscl (nm)
α-Fe2O3 5.13E+09 0.94 2.75E+20 0.91 4.64

0.25W:α-Fe2O3 4.98E+09 0.94 2.83E+20 0.91 4.57
0.5W:α-Fe2O3 2.80E+09 0.87 5.04E+20 0.84 3.37
1W:α-Fe2O3 2.86E+09 0.89 4.94E+20 0.86 3.43

Table S2: Vfb, ND and Wscl values for α-Fe2O3, 0.5W:α-Fe2O3 and 0.5W:α-Fe2O3/MoS2

Sample slope Intercept (X axius) ND (cm-3) Vfb (v) Wscl (nm)
α-Fe2O3 5.13E+09 0.94 2.75E+20 0.91 4.64

0.5W: α-Fe2O3 2.80E+09 0.87 5.04E+20 0.84 3.37
0.5W: α-Fe2O3/MoS2 2.37E+09 0.84 5.97E+20 0.81 3.08
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11. The relationship between of Vfb and ND vs. percentage of W doped
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12. The PEC performance for optimized α-Fe2O3/MoS2
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Fig. S10. (a) LSV, (b) photocurrent response, (c) photocurrent stability for pure α-Fe2O3, α-Fe2O3/4layerMoS2, α-
Fe2O3/8layerMoS2, and α-Fe2O3/12layerMoS2 under 100 mWcm-2 illumination in 1 M NaOH.

The LSV of the α-Fe2O3 α-Fe2O3/4layer MoS2, α-Fe2O3/8layer MoS2, and α-Fe2O3/12layer MoS2 
electrodes were measured between 0.3 and 1.5 V vs. RHE, as shown in Fig. S11a. The 
photocurrent density significantly increased after the deposition of MoS2 nanosheets with the 
highest value of 0.7 mA.cm-2 at 1.5 V vs. RHE for α-Fe2O3/8layer MoS2. Chronoamperometry 
scans for 4 cycles (Fig. S11b), measured under intermittent irradiation (30 min light on and 15 
min light off) confirm the photocurrent responses. The fast and uniform reactions to each light 
on/off interval of the electrodes reflect the good producibility of the samples. As shown in Fig. 
S11c, the photocurrent stabilities of different α-Fe2O3/MoS2 films were obtained by continuous 
illumination after 10 on-off cycles. The photoelectrodes showed stable photocurrent, even in 15-
min light illumination, without a significant downturn. These behaviors may possibly be 
attributable to the heterojunction between MoS2 and α-Fe2O3, which improved the charge 
separation and reduced the recombination of photogenerated electrons and holes 2. Therefore, the 
optimum concentration of MoS2 on the surface of each electrode is 800 mL (8times×each time 
amount (100ml)) which loaded on the optimum W doped α-Fe2O3 electrodes. 
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13. The LSV and chopped LSV for optimized all of W:α-Fe2O3/MoS2
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Fig. S11. (a)Linear scan voltammetry and (b)chopped LSV vs. potential from 0.3 to 1.5 V (vs. RHE) for pure α-
Fe2O3, α-Fe2O3/MoS2, 0.25W:α-Fe2O3/MoS2 , 0.5W:α-Fe2O3/MoS2, and 1W:α-Fe2O3/MoS2 under 100 mWcm-2 
illumination. The electrolyte was a 1 M NaOH.
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14. LSV for comparison the photocurrent density vs. potential
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Fig. S12. Linear scan voltammetry (LSV) for comparison the photocurrent density vs. potential from 0.3 to 1.5 V (vs. 
RHE) of (a) pure α-Fe2O3, α-Fe2O3/MoS2, 0.25W:α-Fe2O3, and 0.25W:α-Fe2O3/MoS2 , (b) pure α-Fe2O3, α-
Fe2O3/MoS2, 0.5W:α-Fe2O3, and 0.5W:α-Fe2O3/MoS2, and (c) pure α-Fe2O3, α-Fe2O3/MoS2, 1W:α-Fe2O3, and 
1W:α-Fe2O3/MoS2 under 100 mWcm-2 illumination. The electrolyte was a 1 M NaOH.
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15. Calculation of τ value in TRPL

The time-resolved photoluminescence (TRPL) curves shown in Fig.6d in the manuscript, assess 
recombination kinetics of photoinduced electron-hole pairs. TRPL decay spectrum was fitted 
with a biexponential decay function displayed as Eq. (S6)3:

                                                                                                 (S6)PL (t) = 𝐴1𝑒
―

𝑡
𝜏1 + 𝐴2𝑒

―
𝑡

𝜏2 +y0

Where τi is the decay time, K is a constant for the baseline offset, and Ai is the decay amplitude. 
The fitting parameters are summarized in Table S3. The average emission time also was 
calculated based on Eq. (S7)3:

                                                                                                                           (S7)τ =
𝐴1𝜏2

1 + 𝐴2𝜏2
2

𝐴1𝜏1 + 𝐴2𝜏2

Table S3. Biexponential of the PL decay of pure α-Fe2O3, 0.5W:α-Fe2O3, and 0.5W:α-Fe2O3/MoS2

Parameters

Samples
α-Fe2O3 0.5W:α-Fe2O3 0.5W:α-Fe2O3/MoS2

y0 0.00 0.01 0.01

A1 0.07 0.34 0.23

τ1 0.41 1.83 3.28

A2 0.19 0.18 1.05

τ2 0.28 1.75 1.98

Avg lifetime (ns) 0.32 1.80 2.33
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16. Calculation of ηinj and ηsep values 

The Jabs (the photocurrent density achievable assuming 100% absorbed photon-to-current 

conversion efficiency for photons) was calculated by the solar spectral irradiance at AM 1.5G 

(W·m–2·nm–1, ASTM G173−03) which is first converted to solar photocurrents vs. wavelength 

(A·m–2·nm–1) assuming 100% IPCE for photons. Further, the solar photocurrents are multiplied 

by the light-harvesting efficiency (LHE) at each wavelength. By adding these products up, Jabs 

for pure α-Fe2O3, 0.5%W:α-Fe2O3 and 0.5%W:α-Fe2O3/MoS2 is calculated to be 9.1, 7.87 and 

7.56 mA/cm2. Further, charge separation and injection efficiencies were measured using a 0.5 M 

H2O2 hole scavenger added to 1 M NaOH electrolyte solution 4, 5.

The water-splitting photocurrent (JH2O) is a product of the rate of photon absorption expressed as 

a current density (Jabs) and the highest Jabs, can be calculated by the following equations S8 and 

S9 6:

Jabs=                                                                            (S8)∫800𝑛𝑚
200𝑛𝑚

𝜆
1240 × 𝜂𝐿𝐻𝐸(𝜆) × 𝐴𝑀1.5𝜓(𝜆)𝑑𝜆

                                                                                                              (S9)𝜂𝐿𝐻𝐸(𝜆) = 1 ― 10 ―𝐴(𝜆)

Where (λ), AM 1.5ψ(λ), and A(λ) refer to the light-harvesting efficiency, AM 1.5 simulated 𝜂𝐿𝐸𝐻

solar spectral irradiance, and absorbance at a specific wavelength, respectively. Furthermore, the 

charge separation efficiency of the photogenerated carriers (ηsep), and the charge injection 

efficiency to the electrolyte (ηinj) are calculated by equations S10, S11, and S12 under different 

applied biases using a widely accepted hole scavenger approach7.

                                                                                                                   (S10)𝜂𝑖𝑛𝑗 =  𝐽𝐻2𝑂/ 𝐽𝐻2𝑂2

                                                                                                                   (S11)𝜂𝑠𝑒𝑝 =  𝐽𝐻2𝑂2/ 𝐽𝑎𝑏𝑠

                                                                                                      (S12)𝐽𝐻2𝑂 =  𝐽𝑎𝑏𝑠 ×  𝜂𝑠𝑒𝑝 ×  𝜂𝑖𝑛𝑗 

Where JH2O and JH2O2 refer to the photocurrent density measured in the electrolytes of 1 M NaOH 

and 1 M NaOH + 0.5 M H2O2, respectively.
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17. Energy band diagram from UPS

Energies of the Fermi levels (EF) and the valence band maxima (EVBM) retrieved from ultraviolet 

photoelectron spectroscopy (UPS) spectra show in Fig. S13. The work function (Φ) gives the 

energy of the Fermi level with respect to the vacuum level and is calculated with Eq. (S13):

Φ = hν – Ehighcutoff    ,(hν ≈ 21.22 ev)                                                                                  (S13)

|EVBM| is calculated with Eq. (S14):

|EVBM| = hν - (Ehighcutoff -Elowcutoff)                                                                                      (S14)
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Fig. S13. UPS and work function of (a) pure hematite and 0.5W doped , (b) MoS2, and (c) energy band diagram of 
the heterojunction.
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18. Calculation of the geometry for nanorods 

In the based α-Fe2O3 nanorods structures, a circular depletion layer will grow from the surface 

towards the center of the rod at changing bias potential, and the geometry may represent 

significant changes with respect to Eq.(S4) that we considered in the section 10. Each nanorod is 

described as a cylinder of radius R with axial symmetry and donor density ND. The Poisson 

equation is solved in the depletion approximation for the voltage V. In Eq. (S15) 8,

                                                                                                           (S15)
𝟏
𝒓

∂
∂𝒓(𝒓

∂𝑽
∂𝒓) =  ―  

𝒒
𝜺𝟎𝜺𝒓

𝑵𝑫

εr is the dielectric constant of the α-Fe2O3 nanorods, ε0 is the dielectric constant, ND is the donor 

concentration per unit volume (cm3), and q is the positive elementary charge. The central zone of 

the cylinder is a neutral region of electron density with radius x, and the surface x⩽r⩽R is a 

region of positive space charge qND. The voltage in the quasineutral region Vsc, that coincides 

with the total voltage drop across the barrier, is estimated by Eq. (S16)8:

                                                                           (S16)𝑽𝒔𝒄 = ―
𝑵𝑫

𝟐𝜺𝟎𝜺𝒓
𝒒(𝟏

𝟐(𝑹𝟐 ― 𝒙𝟐) +  𝑹𝟐 𝒍𝒏(
𝒙
𝑹))

Estimated of different quantities for nanorods of radius R and length around 42 and 120 (for 

0.5%W:α-Fe2O3/MoS2 150 nm) from the SEM images, respectively. Radius of the neutral region 

vs. the potential drop across the depletion layer was calculated for pure α-Fe2O3, 0.5%W:α-Fe2O3 

and 0.5%W:α-Fe2O3/MoS2 samples by using the Mott-Schottky data and  above equations that 

shows in Fig. S14.
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Fig. S14. (a) Schematic of the radial direction of a nanorod indicating the depletion layer at the surface and the 
quasineutral region of radius x in the center. (b) Radius of the neutral region vs barrier voltage for pure α-Fe2O3, 
0.5%W:α-Fe2O3 and 0.5%W:α-Fe2O3/MoS2 electrodes.
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19. Hydrogen and Oxygen Evolution Measurement: 

For overall water splitting of α-Fe2O3, 0.5W:α-Fe2O3 and 0.5Wα-Fe2O3 /MoS2 photoanodes was 

evaluated by measuring the H2 and O2 evolution at 1.23 V versus RHE under 100 mW.cm-2 

irradiations in 1M of NaOH electrolyte. The produced hydrogen and oxygen gas amounts were 

measured using the gas chromatography (GC). Before starting the water splitting reaction 

nitrogen gas was purged into cell for 2 h to remove the air remaining in the reaction vessel. The 

light source was turned on and the amounts of evolved oxygen and hydrogen were measured by a 

tight syringe every 20 min using a gas chromatograph for 2h. The gas samples were injected in 

the GC, and the resulting peak areas (AreaH2, AreaO2) were recorded. The evolved hydrogen-

oxygen gases were calculated according to the following formula9, 10:

       (S17)𝐻2(𝑜𝑟 𝑂2)𝜇𝑚𝑜𝑙.𝑐𝑚 ―2 = ( 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐻2(𝑜𝑟 𝑂2)𝑝𝑒𝑎𝑘
𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑣𝑒) × (𝐻𝑒𝑎𝑑 𝑠𝑝𝑎𝑐𝑒 𝑣𝑜𝑙𝑢𝑚𝑒) × (

1𝑚𝑜𝑙
24.2 𝐿)

The detailed calculation process for the Faradaic efficiency was shown as following:

Faradic efficiency = Actual photocurrent density/ Theoretical photocurrent density               (S18)

Actual photocurrent density = N× nH2/O2 × F                                                                           (S19)

F is the Faraday constant which is 0.096487 C/μmol). nH2/O2 (μmol ) is amount of H2 or O2 

evolution determined by gas chromatography. N is number of electrons needed to evolve one 

molecule of H2 or O2. It is assumed that 2 electrons are needed to produce one molecule of H2, 

and 4 electrons are needed for one molecule of O2. 

Theoretical photocurrent density= Q = I × t                                                                     (S20)

Q is quantity of charge (electricity) in coulombs (C). I is current in amperes (amps, A) and t is 

time (seconds).
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20. Some of the recent reported doped hematite photoanodes with/without heterojunction

Table S4. Recently reported doped hematite photoanodes with/without heterojunction or cocatalysts

Photoanode Conditions Photocurrent density
(1.23 V vs RHE) Reference

Ti-Fe2O3/10-MoSx
1 M NaOH 

AM 1.5G (100 mW.cm-2) ~1.7 mA.cm-2 (2015)11

Dual-regrowth Fe2O3/with NiFeOx
0.5 M Phosphate solution 
AM 1.5G (100 mW.cm-2) ~1.3 mA.cm–2 (2015)12

SnO2-SiOx/Ti:Fe2O3/with FeOOH
1 M NaOH 

AM 1.5G (100 mW.cm-2) ~1.54 mA.cm-2 (2016)13

W-Fe2O3

1 M NaOH 
AM 1.5G (100 mW.cm-2) ~0.27 mA.cm-2 (2016)14

Ti:Fe2O3/NiPi
0.25 M Na3PO4

AM 1.5G (100 mW.cm-2) ~1.3 mA.cm–2  (2017)15

Fe2O3/with F:FeOOH/FeNiOOH
1 M NaOH 

AM 1.5G (100 mW.cm-2) ~1.05 mA.cm–2  (2018)16

α-Fe2O3/RGO/Ag
1 M KOH

AM 1.5G (100 mW.cm-2) ~0.72 mA.cm–2 (2018)17

P:Fe2O3/MnO2

1 M KOH 
AM 1.5G (100 mW.cm-2) ~1.65 mA.cm-2 (2018)18

P-Fe2O3/Ce-Pi 
1 M NaOH

AM 1.5G (100 mW.cm-2) ~1.24 mA.cm-2 (2019)19

Mn:Fe2O3/Ti:Fe2O3 
1 M NaOH

AM 1.5G (100 mW.cm-2) ~1.2 mA.cm-2 (2020)20

Ti-Co-MOF (ZIF-67) on Fe2O3 
1 M KOH

AM 1.5G (100 mW.cm-2) ~1 mA.cm-2 (2020)21

α-Fe2O3/MoS2 
1 M KOH 

AM 1.5G (100 mW.cm-2) ~0.8 mA.cm-2 (2021)22

0.5%W:α-Fe2O3/MoS2
1 M NaOH

AM 1.5G (100 mW.cm-2) ~1.83 mA.cm–2 This Work
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