Degradation Dependent Controlled Delivery of Doxorubicin by Glyoxal Crosslinked Magnetic and Porous Chitosan Microspheres

Nechikkottil Sivadasan Sumitha¹, Prabha Prakash², Balagopal N. Nair³,

Gopalakrishnanchettiar Sivakamiammal Sailaja^{1,4,5*}

¹Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi-682 022, Kerala, India

²Department of Biotechnology, Cochin University of Science and Technology, Kochi-682 022, Kerala, India

³School of Molecular and Life Sciences (MLS), Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth WA6845, Australia

⁴Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kochi-682 022, Kerala, India

⁵Centre for Excellence in Advanced Materials, Cochin University of Science and Technology, Kochi-682 022, Kerala, India.

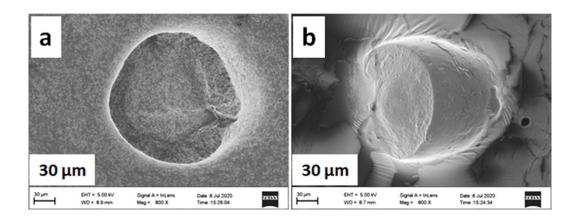
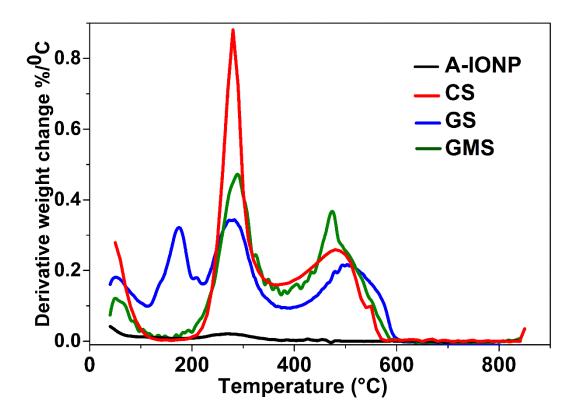
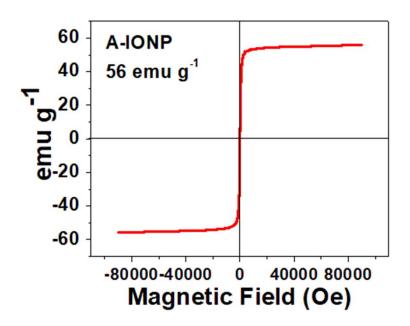


Figure S1. FESEM image of (a) GMS; (b) Cross section of GMS.

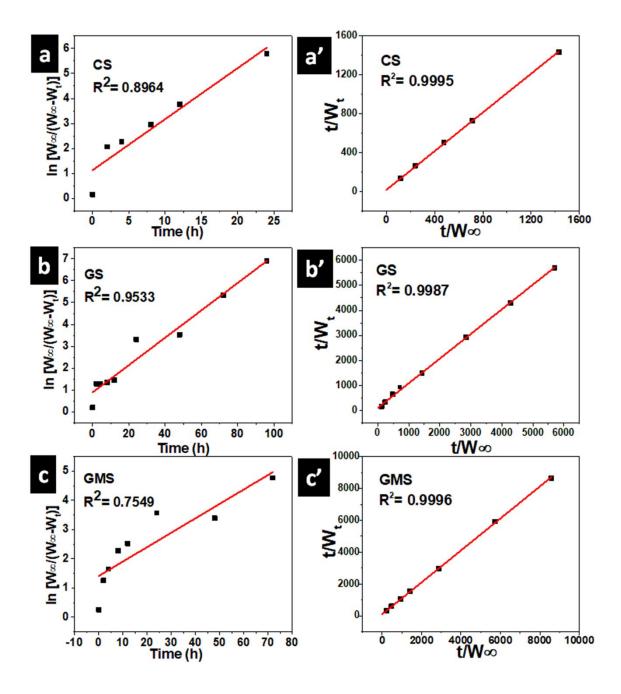

Figure S2. Differential thermogravimetric (DTG) curves of CS, GS, GMS and A-IONP.

Table S1. $T_{50\%}$, $T_{90\%}$ and residual weight (at 700 0 C) of CS, GS, GMS and A-IONP from thermogravimetric analysis conducted under N_{2} atmosphere from 40-800 0 C.

Sample	T _{50%}	T _{90%}	Residual weight
	(⁰ C)	(°C)	at 800 °C (%)
CS	299	492	0
GS	278	524	0
GMS	394	-	12.8
A-IONP	-	-	94.8

Figure S3. Magnetization curve of A-IONP recorded at room temperature with magnetic field sweeping from –80000 Oe to +80000 Oe.

Figure S4. Swelling kinetic curve fitting by first order and second order kinetic models respectively: (a, a') CS; (b, b') GS; (c, c') GMS.