Supporting Information

Enantioselective Reductive Homocoupling of Allylic Acetates Enabled by Dual Photoredox/Palladium Catalysis: Access to C_{2}-Symmetrical
1,5-Dienes
Hong-Hao Zhang, Menghan Tang, Jia-Jia Zhao, Changhua Song, and Shouyun Yu*
State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory ofAdvanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC),School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 (China)E-mail: yushouyun@nju.edu.cn

Table of Contents

1. General information S3
2. Numberings and structures of all compounds S4
3. Optimization of the conditions for $2 \mathbf{2 a}$ S8
4. General procedure for the synthesis of products $\mathbf{2}$ and $\mathbf{4}$ S12
4.1 Synthesis of racemic products 2 S12
4.2 Synthesis of chiral products 2 S13
4.3 Synthesis of racemic products 4 S14
4.4 Synthesis of chiral products 4 S15
5. Product characterization S18
6. Mechanistic Studies S105
6.1 Stern-Volmer fluorescence quenching experiments. S105
6.2 Preparation and homocoupling of π-allylpalladium complex 17 S106
6.3 Radical trap experiments S107
6.4 Cyclic Voltammetry experiments S110
6.5 Proposed mechanism S111
7. Gram-scale preparation of 2 s S114
8. Derivatization of $\mathbf{2 s}$ S116
9. Applications of $\mathbf{2 t}$ as chiral diene ligand. S133
10. Attempt of enantioselective reductive cross-coupling S137
11. Unsuccessful substrtates S142
12. References S143
13. NMR spectra for all compounds. S145
14. X-ray single crystal data for compounds $\mathbf{2 t}$ S215

1. General information

Commercial reagents were purchased from Aldrich Chemical, Alfa Aesar, TCI, Strem, Acros, Energy Chemical, J\&K Chemical, Innochem and were used as received. All catalytic reactions were run in dried glassware. Thin layer chromatography (TLC) was performed on EMD precoated plates (silica gel 60 F254, Art 5715) and visualized by fluorescence quenching under UV light and by staining with phosphomolybdic acid or potassium permanganate, respectively. Column chromatography was performed on EMD Silica Gel 60 ($300-400$ Mesh) using a forced flow of $0.5-1.0$ bar. ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ and ${ }^{19} \mathrm{~F}(376 \mathrm{MHz})$ were measured on a Bruker AVANCE III-400 spectrometer. Chemical shifts are expressed in parts per million (ppm) with respect to the residual solvent peak. Coupling constants are reported as Hertz (Hz), signal shapes and splitting patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. GC-MS spectra were performed on Agilent 5977A Series (EI Source). High Resolution Mass spectra were performed on Agilent 1260 Series (ESI Source). High-pressure liquid chromatography (HPLC) was performed on Shimadzu SPD-20A and Agilent 1260 Series chromatographs using chiral columns as noted for each compound. Optical rotations were measured on an automatic polarimeter with $[\alpha]_{\mathrm{D}}{ }^{20}$ values reported in degrees; concentration (c) is in $\mathrm{g} / 100$ mL .

The allylic acetates ($\mathbf{1}$ and $\mathbf{3}$) were prepared according to the literature procedure. ${ }^{1}$

2. Numberings and structures of all compounds

$R^{1}=R^{2}=H, \operatorname{Ir}(\text { ppy })_{2}($ dtbbpy $) P F_{6}(\mathbf{I})$
$\mathrm{R}^{1}=\mathrm{CF}_{3} ; \mathrm{R}^{2}=\mathrm{F}, \operatorname{Ir}\left(\mathrm{dFCF}_{3} \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(\mathbf{V})$
$\mathrm{R}^{1}=\mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{F}, \operatorname{Ir}(\mathrm{dFMeppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(\mathbf{V I})$

fac- $\operatorname{Ir}(\mathrm{ppy}))_{3}$ (II)

$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}$ (III)

Eosin Y(IV)

1g

1h

$1 i$

1j

1k

11

1 m

1n

10

1p

19

1r

1s

$1 \mathbf{t}$

1u

1v

1w

1x

1y

1a'

HE

DIPEA

2a

2g

2m

2h

2n

2t

2q

2u

2v

40

$4 p$

$4 q$

4r

5

6

7

8

11

12

13

14

15

10

16

3. Optimization of the conditions for 2a

Table S1. Screening of the chiral ligands ${ }^{a}$

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, $\mathrm{HE}(0.3 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.25 \mathrm{~mol} \%)$, ligand ($3 \mathrm{~mol} \%$), and photocatalyst $\mathbf{I}(1 \mathrm{~mol} \%)$ in $\mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$ was irradiated by 45 W blue LEDs for 12 h . The yield, diastereoselectivity ($d r$), and regioselectivity ($r r$) were determined by GC. Enantiomeric excess (ee) values determined by HPLC on a chiral stationary phase. PMP = para-methoxyphenyl.

Table S2. Screening of the reductant ${ }^{a}$

entry	$[\mathrm{H}]$	yield $/ \%^{b}$	$e e / \%^{c}$	$d r^{b}$	$r r^{b}$
1	HE	88	>99	$>95: 5$	$84: 16$
2	DIPEA	74	>99	$>95: 5$	$90: 10$
3	$\mathrm{Et}_{3} \mathrm{~N}$	76	>99	$>95: 5$	$83: 17$
4	${ }^{n} \mathrm{Pr}_{3} \mathrm{~N}$	67	>99	$>95: 5$	$87: 13$
5	${ }^{n} \mathrm{Bu}_{3} \mathrm{~N}$	74	>99	$>95: 5$	$88: 12$
6	NMM^{2}	57	98	$85: 15$	$38: 62$
7	$\mathrm{HCO}_{2} \mathrm{H}$	71	72	$74: 26$	$30: 70$
8	$\mathrm{HCO}_{2} \mathrm{NH}_{4}$	44	45	$72: 28$	$27: 73$

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, reductant $(0.3 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.25$ $\mathrm{mol} \%)$, ligand $\mathbf{L 5}(3 \mathrm{~mol} \%)$, and photocatalyst $\mathbf{I}(1 \mathrm{~mol} \%)$ in the $\mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$ was irradiated by 45 W blue LEDs for 12 h . ${ }^{b}$ Determined by GC. ${ }^{c}$ Enantiomeric excess (ee) values determined by HPLC on a chiral stationary phase. $\mathrm{PMP}=$ para-methoxyphenyl.

Table S3. Optimization of the conditions for $\mathbf{2 a}{ }^{a}$

entry	PC	solvent	base	yield/ $/ \%^{b}$	$e e / \%{ }^{c}$	$d r^{b}$	$r r^{b}$
1	I	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	74	> 99	> 95:5	90:10
2	II	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	63	> 99	88:12	41:59
3	III	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	49	> 99	>95:5	48:52
4	IV	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	50	> 99	94:6	34:66
5	V	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	45	> 99	94:6	64:36
6	VI	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	57	> 99	95:5	70:30
7	I	THF	$\mathrm{K}_{2} \mathrm{CO}_{3}$	71	> 99	> 95:5	87:13
8	I	DMF	$\mathrm{K}_{2} \mathrm{CO}_{3}$	68	> 99	> 95:5	86:14
9	I	DMAC	$\mathrm{K}_{2} \mathrm{CO}_{3}$	28	ND	ND	ND
10	I	DMSO	$\mathrm{K}_{2} \mathrm{CO}_{3}$	68	> 99	> 95:5	69:31
11	I	Tol	$\mathrm{K}_{2} \mathrm{CO}_{3}$	66	> 99	> 95:5	84:16
12	I	DCM	$\mathrm{K}_{2} \mathrm{CO}_{3}$	14	ND	ND	ND
13	I	$\mathrm{CH}_{3} \mathrm{CN}$	KHCO_{3}	63	> 99	> 95:5	90:10
14	I	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$	85	> 99	>95:5	94:6
15	I	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	50	> 99	$>95: 5$	93:7
16	I	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	67	> 99	> 95:5	90:10
17	I	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	90	> 99	> 95:5	94:6
18	I	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	41	> 99	> $95: 5$	91:9
19	I	$\mathrm{CH}_{3} \mathrm{CN}$	-	36	> 99	>95:5	86:14
20^{d}	I	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$96(92)^{e}$	> 99	> 95:5	> 95:5

${ }^{a}$ Reaction conditions: 1a (0.2 mmol), DIPEA (0.3 mmol), base (0.3 mmol), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.25 \mathrm{~mol} \%)$, ligand L5 ($3 \mathrm{~mol} \%$), and photocatalyst ($1 \mathrm{~mol} \%$) in the indicated solvent (4.0 mL) was irradiated by 45 W blue LEDs for $12 \mathrm{~h} .{ }^{b}$ Determined by GC. ${ }^{c}$ Enantiomeric excess (ee) values determined by

HPLC on a chiral stationary phase. ${ }^{d} \mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was used. ${ }^{e}$ Isolated yields. PMP $=$ para-methoxyphenyl.

Initial condition (table 1, entry 1):

Figure S1. GC spectrum of the reaction under initial condition and optimal condition.

4. General procedure for the synthesis of products 2

4.1 Synthesis of racemic products 2

General Procedure A: In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\operatorname{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}, 1.25 \mathrm{~mol} \%),(\pm)-\operatorname{BINAP}(3.7 \mathrm{mg}$, $0.006 \mathrm{mmol}, 3 \mathrm{~mol} \%)$, anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol}$, $1.0 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($97.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), allylic acetates $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0$ equiv), DIPEA ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$. The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

General Procedure B: In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}, 1.25 \mathrm{~mol} \%),(R)-2,2^{\prime}$-Bis[bis-(4-methoxy-3,5-di-t-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (R-L5) (3.7 mg , $0.003 \mathrm{mmol}, 1.5 \mathrm{~mol} \%$), ($($)-2,2'-Bis[bis(4-methoxy-3,5-di-t-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (\boldsymbol{S}-L5) ($3.7 \mathrm{mg}, 0.003 \mathrm{mmol}, 1.5 \mathrm{~mol} \%$), anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL}$) was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\text { ppy })_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol}, 2.0 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(97.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), allylic acetates 1 ($0.2 \mathrm{mmol}, 1.0$ equiv), DIPEA ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$. The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted
with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

4.2 Synthesis of chiral products 2

General Procedure C (in-glovebox): In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}, 1.25 \mathrm{~mol} \%)$, (R)-2,2'-Bis[bis(4-methoxy-3,5-di-t-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (L5) ($7.3 \mathrm{mg}, 0.006 \mathrm{mmol}, 3 \mathrm{~mol} \%$), anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2.0 \mathrm{mg}$, $0.002 \mathrm{mmol}, 1.0 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(97.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), allylic acetates $1(0.2 \mathrm{mmol}, 1.0$ equiv), DIPEA ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$. The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45 W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

General Procedure \boldsymbol{C}^{\prime} (out-of-glovebox): In air, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, was charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}, 1.25 \mathrm{~mol} \%),(R)-2,2^{\prime}$-Bis-[bis(4-methoxy-3,5-di-t-butylphenyl)phosphino]-4,4’,6,6'-tetramethoxy)-1,1'-biphenyl $\mathrm{mg}, 0.006 \mathrm{mmol}, 3 \mathrm{~mol} \%$). The tube was evacuated and backfilled with N_{2} for 3 times ($3 \times 5 \mathrm{~min}$). Degassed $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was added by syringe under N_{2}, and the mixture was stirred for 30 min . In air, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, was charged with $\operatorname{Ir}(\mathrm{ppy})_{2}$ (dtbbpy) $\mathrm{PF}_{6}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol}, 1.0 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(97.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), allylic acetates 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), DIPEA ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv). The tube was evacuated and backfilled with N_{2} for 3 times ($3 \times 5 \mathrm{~min}$). Degassed $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was added by
syringe under N_{2}. Next, the $\mathrm{Pd} /$ ligand slurry was transferred via a syringe to the tube in a continuous flow over 10 seconds. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

4.3 Synthesis of racemic products 4

General Procedure D: In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\operatorname{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}, 1.25 \mathrm{~mol} \%),(\pm)-\operatorname{BINAP}(3.7 \mathrm{mg}$, $0.006 \mathrm{mmol}, 3 \mathrm{~mol} \%)$, anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol}$, $1.0 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($97.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), allylic acetates 1 ($0.2 \mathrm{mmol}, 1.0$ equiv), Hantzsch ester (HE) ($76 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$. The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45 W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

General Procedure E: In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}, 1.25 \mathrm{~mol} \%),(R)-2,2^{\prime}$-Bis[bis-(4-methoxy-3,5-di-t-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (R-L5) (3.7 mg , $0.003 \mathrm{mmol}, 1.5 \mathrm{~mol} \%$), (S)-2, ${ }^{\prime}$ '-Bis[bis(4-methoxy-3,5-di-t-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (S-L5) ($3.7 \mathrm{mg}, 0.003 \mathrm{mmol}, 1.5 \mathrm{~mol} \%$), anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL}$) was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\text { ppy })_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol}, 2.0 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(97.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv),
allylic acetates 1 ($0.2 \mathrm{mmol}, 1.0$ equiv), Hantzsch ester (HE) ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$. The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

4.4 Synthesis of chiral products 4

General Procedure F: In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\operatorname{Pd}_{2}(\mathrm{dba})_{3} \quad\left(\begin{array}{lllll}2.3 & \mathrm{mg}, & 0.0025 \mathrm{mmol}, 1.25 \mathrm{~mol} \%) \text {, }\end{array}\right.$ (R)-2,2'-Bis[bis(4-methoxy-3,5-di- t-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (L5) ($7.3 \mathrm{mg}, 0.006 \mathrm{mmol}, 3 \mathrm{~mol} \%$), anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2.0 \mathrm{mg}$, $0.002 \mathrm{mmol}, 1.0 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(97.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), allylic acetates $\mathbf{1}(0.2 \mathrm{mmol}, 1.0$ equiv), Hantzsch ester (HE) ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ (1.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

Reaction Setup

Medium-sized screw-cap test tubes (8 mL) were used for all 0.1 mmol scale reactions: Fisher13 x 100 mm tubes (Cat. No. 14-959-35C)

Cap with Septa: Thermo Scientific ASM PHN CAP w/PTFE/SIL (Cat. No. 03378316)

Figure S1. Spectrum of the blue LEDs source and absorption spectra of $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}$ and Eosin Y

5. Product characterization

2a
4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(methoxybenzene) (2a): According to General Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50 ; 1$; Reaction time $=12 \mathrm{~h}$; yield: $92 \%(27.1 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -57.5 (c 3.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.02-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.23$ - $5.87(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=10.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.96(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=5.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 157.7, 141.0, 134.8, 129.1, 115.3, 113.5, 55.1, 54.9; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2}$ 295.1693; Found 295.1683; According to General Procedure \boldsymbol{C}^{\prime} : 3aa 90\% GC yield, > 99\% ee, > 95:5 dr, > 95:5 rr.

Analysis of Stereochemistry:
Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OJ, hexane/ethanol = 99/1, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=15.63 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=17.56 \mathrm{~min}($ minor $) .(\pm)-\mathbf{2 a}:$ According to General Procedure B.

((3S,4S)-hexa-1,5-diene-3,4-diyl)dibenzene (2b) ${ }^{2}$: According to General Procedure Clash column chromatography eluent, petroleum ether/ethyl acetate $=100 ; 0$ to 100:1; Reaction time $=12$ h; yield: $84 \%(19.7 \mathrm{mg})$; 93:7 dr$;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-50.1\left(\mathrm{c} 0.33, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.10-6.98(\mathrm{~m}, 6 \mathrm{H}), 6.19-6.02(\mathrm{~m}, 2 \mathrm{H}), 5.10$ $(\mathrm{dd}, J=10.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{dd}, J=17.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.6,140.6,140.1,128.2,128.1,126.0,115.8,55.8 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{19}$ 235.1481; Found 235.1489.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OJ, hexane/ethanol = 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.68 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=14.25 \mathrm{~min}($ minor $) .(\pm)-\mathbf{2 b}$: According to General Procedure A.
VWD1 A, Wavelength $=220 \mathrm{~nm}$ (D:ZHHL20191007XDEF_LC 2019-10-07 13-25-191OnlineEdited--029.D)

VWD1 A, Wavelength=220 nm (D:ISXI20190904IDEF_LC 2019-09-04 18-20-04IOnlineEdited-016.D)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	12.681	BV R	0.2671	2. 47525 e 4	1411.69666	99.8869
2	14. 248		0. 1980	28.01520	1. 8787	0. 1

4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(methylbenzene) (2c): According to General Procedure \boldsymbol{C} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $94 \%(24.6 \mathrm{mg}) ; 94: 6 \mathrm{dr}$; > 95:5 rr; a colourless sticky oil; $[\alpha]_{D}{ }^{20}=-38.6$ (c 1.04, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06-6.88(\mathrm{~m}, 8 \mathrm{H}), 6.06$ (dddd, $J=16.9,10.2,5.9,2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.06(\mathrm{dd}, J=10.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{dd}, J=17.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{dd}, J=5.9,2.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.24 (s, 6H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 141.0,139.7,135.4,128.9,128.0,115.4,55.2,21.0$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23}$ 263.1794; Found 263.1786.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = $90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=14.12 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=15.98 \mathrm{~min}$ (minor).

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	14.117	37825337	1395638	99.934	99.924
2	15.975	25102	1062	0.066	0.076
Total		37850440	1396700	100.000	100.000

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	14.109	16645	940	0.040	0.065
2	15.164	41749185	1452376	99.960	99.935
Total		41765830	1453316	100.000	100.000

2d
4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)di-1,1'-biphenyl (2d): According to General Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100 ; 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $90 \%(34.7 \mathrm{mg})$; 91:9 dr; > 95:5 rr; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-22.7$ (c 0.79 , CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.33-7.27(\mathrm{~m}$, 2H), $7.18-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.22-6.10(\mathrm{~m}, 2 \mathrm{H}), 5.17-5.06(\mathrm{~m}, 4 \mathrm{H}), 3.73$ (dd, $J=5.9,2.4 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.7,140.8,140.4,138.8,128.6,128.6,127.0,126.9,126.9,116.0$, 55.4; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{27}$ 387.2108; Found 387.2116.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak AD-H, hexane/ethanol = 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.44 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=11.41 \mathrm{~min}$ (minor).

4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(phenoxybenzene) (2e): According to General
Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100 ; 1$ to $50: 1$; Reaction time $=12 \mathrm{~h}$; yield: $92 \%(38.5 \mathrm{mg})$; 93:7 dr; > 95:5 rr; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -24.3 (c 0.76, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H})$, $7.03-6.94(\mathrm{~m}, 5 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.80(\mathrm{~m}, 4 \mathrm{H}), 6.19-6.05(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{dd}, J=$ $10.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.11-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.6,155.1,140.3,137.7,129.6,129.5,122.9,118.9,118.4,116.0,55.4 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{O}_{2}$ requires $\mathrm{m} / \mathrm{z} 419.2006$, found $\mathrm{m} / \mathrm{z} 419.1998$.

Analysis of Stereochemistry:
Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OJ, hexane/ethanol = 95/5, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=19.48 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=13.18 \mathrm{~min}$ (minor). $(\pm)-2 \mathrm{e}:$ According to General Procedure A.

4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis((trifluoromethoxy)benzene) (2f): According to General
Procedure \boldsymbol{C} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100 ; 0$ to $100: 1$;
Reaction time $=12 \mathrm{~h}$; yield: $56 \%(22.5 \mathrm{mg}) ; 92: 8 \mathrm{dr}$; > 95:5 rr; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -11.6 (c 0.55, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05-6.91(\mathrm{~m}, 8 \mathrm{H}), 6.13-6.00(\mathrm{~m}, 2 \mathrm{H}), 5.15$ (dd, $J=10.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.08-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.5,140.9,139.4,129.3,120.7,120.40(\mathrm{q}, J=256.9 \mathrm{~Hz}), 116.8,55.2 ;{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-58.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{O}_{2}$ requires m / z 403.1127, found $\mathrm{m} / \mathrm{z} 403.1136$.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol $=$ $95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=17.64 \mathrm{~min}$ (major).

2g
4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(fluorobenzene) (2g): According to General Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100 ; 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $86 \%(23.3 \mathrm{mg}) ; 90: 10 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-23.8(\mathrm{c} 0.61$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.78(\mathrm{~m}, 4 \mathrm{H}), 6.05(\mathrm{dddd}, J=$ $17.0,10.2,5.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{dd}, J=10.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{dd}, J=17.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.55$ $(\mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.2(\mathrm{~d}, J=244.2 \mathrm{~Hz}), 140.1,138.0(\mathrm{~d}, J$ $=3.3 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 116.2,115.1(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 55.1 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -116.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{2}$ requires $\mathrm{m} / \mathrm{z} 271.1293$, found $\mathrm{m} / \mathrm{z} 271.1296$.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: $>99 \%$, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol $=$ $90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.73 \mathrm{~min}$ (major).

2h
4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(chlorobenzene) (2h): According to General Procedure \boldsymbol{C} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100 ; 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $61 \%(18.5 \mathrm{mg}) ; 92: 8 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{D}{ }^{20}=-17.4$ (c 0.53 , CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.11-5.94(\mathrm{~m}$, $2 \mathrm{H}), 5.11(\mathrm{dd}, J=10.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.05-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 140.7,139.7,131.9,129.5,128.4,116.5,116.5,55.0 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Cl}_{2}$ requires $\mathrm{m} / \mathrm{z} 303.0703$, found $\mathrm{m} / \mathrm{z} 303.0709$.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = $90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=16.98 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=15.65 \mathrm{~min}$ (minor). mV

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	15.649	95366	3318	0.364	0.400
2	16.983	26070991	826793	99.636	99.600
Total		26166357	830111	100.000	100.000

mV

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	15.580	26978623	916538	99.480	99.537
2	16.945	140942	4267	0.520	0.463
Totai		27119565	920804	100.000	100.000

4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis((trifluoromethyl)benzene) (2i): According to General
Procedure \boldsymbol{C} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $58 \%(21.5 \mathrm{mg}) ; 88: 12 \mathrm{dr}$; $>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -13.7 (c 0.45, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 4 \mathrm{H})$, $6.15-5.96(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{dd}, J=10.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.09-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.1,139.0,128.4,125.3$ ($\mathrm{q}, J=3.8 \mathrm{~Hz}$), 117.2, $55.3 ;{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.5$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{6}$ requires $\mathrm{m} / \mathrm{z} 371.1230$, found m/z 371.1227 .

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol $=$ $95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=47.33 \mathrm{~min}($ major $)$.
VWD1 A, Wavelength=220 nm (D:VZHHL2019112111 2019-11-21 13-19-281OnlineEdited-013.D)

$(\pm)-\mathbf{2 i}{ }^{\mathbf{\prime}}$
min

Peak RetTime Type Width Area Height Area

\#	[min]	[min]	[mAU*s]	[mAU]	\%
1	47.326 BB	2. 7338	. 06165 e 4	98. 18	00

3,3'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(methoxybenzene) (2j): According to General
Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50: 1$; Reaction time $=12 \mathrm{~h}$; yield: $90 \%(26.5 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -10.0 (c 0.56, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.52(\mathrm{~m}, 6 \mathrm{H})$, $6.15-6.01(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{dd}, J=10.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{dd}, J=17.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H})$, 3.59 (dd, $J=5.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3$, 144.2, 140.3, 129.1, 120.6, 115.9, 114.1, 111.3, 55.7, 55.1; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2}$ requires m / z 295.1693, found $m / z 295.1697$.

Analysis of Stereochemistry:

Enantiomeric excess: 98\%, determined by HPLC (Daicel Chiralpak OJ, hexane/isopropanol = 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=22.89 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=21.15 \mathrm{~min}($ minor $) .(\pm)-\mathbf{2 j}$: According to General Procedure A.

2k
3,3'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(fluorobenzene) (2k): According to General Procedure \boldsymbol{C} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $66 \%(17.9 \mathrm{mg}) ; 89: 11 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-22.8(\mathrm{c} 0.54$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.68(\mathrm{~m}, 6 \mathrm{H}), 6.12-5.95(\mathrm{~m}$, $2 \mathrm{H}), 5.13(\mathrm{dd}, J=10.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.08-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.7(\mathrm{~d}, J=245.3 \mathrm{~Hz}), 144.8(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 139.4,129.6(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 123.8(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}), 116.7,114.9(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 113.1(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 55.3 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -113.5; HRMS (ESI) m/z: [M+H] Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{2}$ requires $\mathrm{m} / \mathrm{z} 271.1294$, found m / z 271.1299.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: 99%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol $=$ $90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=14.06 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=16.71 \mathrm{~min}$ (minor).

2I
3,3'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis((trifluoromethyl)benzene) (21): According to General
Procedure \boldsymbol{C} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $45 \%(16.7 \mathrm{mg}) ; 85: 15 \mathrm{dr}$; $>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -12.0 (c 0.36, CHCl_{3}); ${ }^{11} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H})$, $7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.18-6.02(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{dd}, J=10.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.08$ (dd, $J=17.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.67(\mathrm{dd}, J=5.6,2.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{113} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9$, $138.8,131.5,128.7,124.9(\mathrm{q}, J=3.4 \mathrm{~Hz}), 1231(\mathrm{q}, J=3.5 \mathrm{~Hz}), 117.3,55.5 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}) $\delta-62.8$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{6}$ requires $\mathrm{m} / \mathrm{z} 371.1230$, found m / z 371.1235.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: 98\%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol = 90/10, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=7.97 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=6.56 \mathrm{~min}$ (minor).

2m
2,2'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(methoxybenzene) (2m): According to General
Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50: 1$; Reaction time $=12 \mathrm{~h}$; yield: $95 \%(27.9 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -124.8 (c 1.88, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08$ (dd, $J=7.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.01-6.95$ $(\mathrm{m}, 2 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.19-6.05(\mathrm{~m}, 2 \mathrm{H}), 5.05-5.03(\mathrm{~m}$, $2 \mathrm{H}), 5.02-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{dd}, J=5.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,141.0,131.3,128.7,126.7,120.1,115.1,110.5,55.4,47.1$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2}$ requires $\mathrm{m} / \mathrm{z} 295.1693$, found $\mathrm{m} / \mathrm{z} 295.1680$.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol $=$ $90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=15.18 \mathrm{~min}$ (major).

2n
2,2'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(fluorobenzene) (2n): According to General Procedure \boldsymbol{C} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $91 \%(24.6 \mathrm{mg}) ; 94: 6 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-21.0$ (c 0.34, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.02$ (dddd, $J=8.2,7.1,5.2,1.8 \mathrm{~Hz}$, 2H), $6.97-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.18-6.03(\mathrm{~m}, 2 \mathrm{H}), 5.15-5.05(\mathrm{~m}, 4 \mathrm{H}), 4.06$ (dd, J $=5.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4(\mathrm{~d}, J=244.8 \mathrm{~Hz}), 139.1,129.4(\mathrm{~d}, J=5.1$ $\mathrm{Hz}), 127.7(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 123.8(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 116.6,115.2(\mathrm{~d}, J=23.3 \mathrm{~Hz}), 47.9$; ${ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.5$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{2}$ requires m / z 271.1294, found $\mathrm{m} / \mathrm{z} 271.1300$.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = $90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.58 \mathrm{~min}$ (major).

VWD1 A, Wavelength=220 nm (D:Lzy2019111911 2019-11-19 14-00-4	5.D)	
$\frac{1}{5} 10$	15 20	min
Peak RetTime Type Width Area Height Area $\#$ $[\mathrm{~min}]$ $[\mathrm{min}]$ $[\mathrm{mAU} * \mathrm{~s}]$ $[\mathrm{mAU}]$ $\%$		

20
2,2'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis((trifluoromethyl)benzene) (20): According to General
Procedure \boldsymbol{C} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $60 \%(22.2 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ $-53.6\left(\mathrm{c} 0.42, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36-7.29$ (m, 2H), $7.17-7.07$ (m, 2H), $6.11-5.94$ (m, 2H), 5.14 (dd, $J=10.2,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.99(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.34-4.23(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.6,140.1$, 131.6, 129.5, 128.2 (q, $J=29.4 \mathrm{~Hz}$), 126.1, $125.9(\mathrm{q}, J=6.4 \mathrm{~Hz}), 124.5(\mathrm{q}, ~ J=274.4 \mathrm{~Hz}), 116.7$, 49.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-57.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{6}$ requires $\mathrm{m} / \mathrm{z} 371.1230$, found $\mathrm{m} / \mathrm{z} 371.1238$.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

20
 $0^{\circ} \mathrm{C}$-rt

20'
Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol = $90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=8.97 \mathrm{~min}$ (major).

2p
4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(benzo[d][1,3]dioxole) (2p): According to General
Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50: 1$; Reaction time $=12 \mathrm{~h}$; yield: $93 \%(30.0 \mathrm{mg}) ; 93: 7 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -26.8 (c 0.81, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.65-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.59-6.53(\mathrm{~m}, 4 \mathrm{H})$, $6.20-6.06(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.13-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.10-$ $5.06(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.9,144.8,138.8,124.3,121.6$, 121.2, 116.2, 106.6, 100.3, 49.3; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{4}$ requires m / z 323.1279, found $\mathrm{m} / \mathrm{z} 323.1273$.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OJ, hexane/ethanol = 99/1, flow rate $\left.0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=9.92 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=11.63 \mathrm{~min}($ minor $) .(\pm)-\mathbf{2 p}$: According to General Procedure B.

5,5'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(2,2-difluorobenzo[d][1,3]dioxole) (2q): According to General Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=$ 100:0 to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $60 \%(23.6 \mathrm{mg}) ; 85: 15 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-13.1\left(\mathrm{c} 1.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.77(\mathrm{~m}$, 2H), $6.74-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.00$ (dddd, $J=16.9,10.2,5.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{dd}, J=10.2,1.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.07-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{dd}, J=5.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8$, $142.1,139.4,138.3,131.6$ (t, $J=254.8 \mathrm{~Hz}$), 123.2, 116.9, 109.2, 109.0, 55.3; ${ }^{19}$ F NMR (376 MHz , CDCl_{3}) δ-49.87, -49.95; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~F}_{4} \mathrm{O}_{4}$ requires $\mathrm{m} / \mathrm{z} 395.0901$, found $\mathrm{m} / \mathrm{z} 395.0911$.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: 98\%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = $90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=11.49 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=8.68 \mathrm{~min}$ (minor).

5,5'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(2,3-dihydrobenzofuran) (2r): According to General Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50: 1$; Reaction time $=12 \mathrm{~h}$; yield: $90 \%(28.6 \mathrm{mg})$; 91:9 dr$;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -25.5 (c 0.47, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=8.2,1.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{dddd}, J=16.9,10.1,5.9,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{dd}, J=10.2$, $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{dd}, J=17.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.53-4.44(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{dd}, J=5.9,2.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.14 - $3.05(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3,134.8,127.7,126.6,124.6,115.1,108.7$, 71.1, 55.3, 29.8; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2}$ requires $\mathrm{m} / \mathrm{z} 319.1693$, found m / z 319.1699.

Analysis of Stereochemistry:

Enantiomeric excess: 98\%, determined by HPLC (Daicel Chiralpak OJ, hexane/ethanol = 95/5, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=17.25 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=20.92 \mathrm{~min}($ minor $) .(\pm)-\mathbf{2 r}$: According to General Procedure B.

2s
1,1'-((3S,4S)-hexa-1,5-diene-3,4-diyl)dinaphthalene (2s): According to General Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $94 \%(31.4 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-121.2$ (c 1.48, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.30$ (dddd, $J=17.5,10.2,5.5,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.17$ (dd, $J=10.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.07$ (dd, $J=$ $17.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $4.85(\mathrm{dd}, J=5.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.6,138.5$, 134.0, 131.7, 129.1, 126.7, 125.9, 125.4, 125.3, 124.8, 123.3, 116.6, 48.3; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{23}$ requires $\mathrm{m} / \mathrm{z} 335.1794$, found $\mathrm{m} / \mathrm{z} 335.1791$.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD, hexane/ethanol $=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=8.04 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=5.88 \mathrm{~min}($ minor $) .(\pm)-2 \mathrm{~s}:$ According to General Procedure B.

2t
4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(1-methoxynaphthalene) (2t): According to General
Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50: 1$; Reaction time $=12 \mathrm{~h}$; yield: $89 \%(35.1 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; colorless solid, m.p. 168.4-169.7 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-118.5\left(\mathrm{c} 2.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{ddd}, J=8.3,1.5,0.6 \mathrm{~Hz}$, $2 \mathrm{H}), 8.20-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.54$ (ddd, $J=8.4,6.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ (ddd, $J=8.1,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.30-6.16(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{dd}, J=10.2,1.6 \mathrm{~Hz}$, 2 H), $5.08-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{dd}, J=5.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{113} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.7,141.1,132.5,130.3,126.3,125.9,124.55,124.50,123.0,122.6,115.9,103.5,55.2,47.5$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{O}_{2}$ requires $\mathrm{m} / \mathrm{z} 395.2006$, found $\mathrm{m} / \mathrm{z} 395.2017$.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol $=$ $80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=10.16 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=17.69 \mathrm{~min}$ (minor).
mV

mV

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.163	29615131	1617407	99.910	99.951
2	17.719	26713	791	0.090	0.049
Total		29641844	1618198	100.000	100.000

2u
2,2'-((3S,4S)-hexa-1,5-diene-3,4-diyl)dinaphthalene (2u): According to General Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $60 \%(20.1 \mathrm{mg})$; 91:9 dr; > 95:5 rr; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-38.4$ (c 0.86 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.24$ (dddd, $J=17.0,10.2,5.7,2.4$ $\mathrm{Hz}, 2 \mathrm{H}), 5.16(\mathrm{dd}, J=10.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{dd}, J=17.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5,140.0,133.4,132.1,127.8,127.6,127.5,126.9,126.6$, 125.7, 125.2, 116.1, 55.5; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{23}$ requires $\mathrm{m} / \mathrm{z} 335.1794$, found $\mathrm{m} / \mathrm{z} 335.1787$.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OJ, pentane/ethanol $=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=14.89 \mathrm{~min}$ (major). (\pm)-2u: According to General Procedure A.

2v
6,6'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(2-methoxynaphthalene) (2v): According to General
Procedure \boldsymbol{C} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50: 1$;
Reaction time $=12 \mathrm{~h}$; yield: $94 \%(37.1 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; olorless solid, m.p. 179.2-180.4 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-36.4\left(\mathrm{c} 1.76, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.00(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.31-6.17(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{dd}, J=10.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{dd}, J=17.0,1.5$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.93(\mathrm{dd}, J=5.8,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,140.8$, 137.8, 133.1, 129.1, 128.9, 127.2, 126.7, 126.6, 118.5, 115.9, 105.5, 55.4, 55.2; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{O}_{2}$ requires $\mathrm{m} / \mathrm{z} 395.2006$, found $\mathrm{m} / \mathrm{z} 395.2019$.

Analysis of Stereochemistry:

Enantiomeric excess: 98\%, determined by HPLC (Daicel Chiralpak AD-H*2, hexane/ethanol = 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=35.36 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=34.41 \mathrm{~min}($ minor $) .(\pm)-2 \mathrm{v}$: According to General Procedure B.

2w
5,5'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(benzofuran) (2w): According to General Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50: 1$; Reaction time $=12 \mathrm{~h}$; yield: $94 \%(29.5 \mathrm{mg}) ; 93: 7 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-27.7$ (c 1.11, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{dd}, J=$ $8.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{dd}, J=2.2,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.23-6.09(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{dd}, J=10.3,1.7 \mathrm{~Hz}, 2 \mathrm{H})$, $5.07-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{dd}, J=5.8,2.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.5,144.9$, $141.3,137.2,127.3,124.6,120.5,115.5,110.9,106.5,55.9 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{2}$ requires $\mathrm{m} / \mathrm{z} 315.1380$, found $\mathrm{m} / \mathrm{z} 315.1385$.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OJ, hexane/ethanol $=95 / 5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=17.58 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=25.43 \mathrm{~min}($ minor $) .(\pm)-3 h \mathbf{h}$: According to General Procedure A.

2x
3,3'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(benzo[b]thiophene) (2x): According to General
Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to 50:1; Reaction time $=12 \mathrm{~h}$; yield: $81 \%(28.1 \mathrm{mg}) ; 92: 8 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-44.6$ (c 1.34, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.77$ (m, 4H), 7.39 - 7.31 (m, 4H), $7.11-$ $7.06(\mathrm{~m}, 2 \mathrm{H}), 6.24-6.09(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{dd}, J=10.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.13-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.32$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.3,138.5,138.3,136.8,124.2,123.8,122.9,122.2$, 121.8, 117.1, 47.3; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~S}_{2}$ requires $\mathrm{m} / \mathrm{z} 347.0923$, found m / z 347.0910.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol = $80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.10 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=10.74 \mathrm{~min}$ (minor).

2y
2,2'-((3S,4S)-hexa-1,5-diene-3,4-diyl)didibenzo[b,d]furan (2y): According to General Procedure C Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50: 1$; Reaction time $=12 \mathrm{~h}$; yield: $91 \%(37.7 \mathrm{mg}) ; 87: 13 \mathrm{dr}$; > 95:5 rr; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-29.9$ (c 1.77, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 8.00-7.93(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41$ (ddd, J $=8.3,7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.36-6.23(\mathrm{~m}, 2 \mathrm{H}), 5.16-5.07$ (m, 4H), $4.09(\mathrm{dd}, J=5.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Acetone- d_{6}) δ 157.1, 155.4, 142.7, $138.9,128.8,128.0,125.0,124.8,123.6,121.5,121.2,115.8,112.3,111.8,56.6$; HRMS (ESI) m/z:
$[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{O}_{2}$ requires $\mathrm{m} / \mathrm{z} 415.1693$, found $\mathrm{m} / \mathrm{z} 415.1683$.

Analysis of Stereochemistry:

Enantiomeric excess: 96%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol $=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=8.26 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=7.11 \mathrm{~min}$ (minor). $(\pm) \mathbf{- 3 h j}:$ According to General Procedure B.

4,4'-((2E,4S,5S,6E)-octa-2,6-diene-4,5-diyl)bis(methoxybenzene) (4a): According to General Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50 ; 1$; Reaction time $=12 \mathrm{~h}$; yield: $64 \%(20.6 \mathrm{mg}) ; 89: 11 \mathrm{dr}$; >95:5 rr; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -36.5 (c 0.58, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.95-6.88(\mathrm{~m}, 4 \mathrm{H}), 6.73-6.65(\mathrm{~m}, 4 \mathrm{H})$, 5.66 (ddt, $J=15.2,5.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.44-5.29(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.44(\mathrm{dd}, J=5.8,2.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.65(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,136.0,133.7,129.1$, 125.8, 113.4, 55.1, 54.2, 18.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2}$ requires m / z 323.2006, found $\mathrm{m} / \mathrm{z} 323.2013$.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OJ*2, hexane/ethanol = 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=25.50 \mathrm{~min}$ (major. $(\pm)-4 \mathrm{a}:$ According to General

Procedure E.

4b
((2E,4S,5S,6E)-octa-2,6-diene-4,5-diyl)dibenzene (4b): According to General Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1 ;$ Reaction time $=12$ h; yield: $87 \%(22.8 \mathrm{mg})$; > 95:5 dr; >95:5 rr; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-54.3\left(\mathrm{c} 0.89, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 4 \mathrm{H}), 5.78$ - $5.64(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{dd}, J=5.9,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.67$ (dd, $J=6.4,1.6$ $\mathrm{Hz}, 6 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,133.4,128.2,127.9,126.3,125.7,55.1,18.1$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23}$ 263.1794; Found 263.1799.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OJ*2, hexane/ethanol = 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=16.18 \mathrm{~min}$ (major. $(\pm)-\mathbf{4 b}$: According to General Procedure E.

4,4'-((2E,4S,5S,6E)-octa-2,6-diene-4,5-diyl)bis(fluorobenzene) (4c): According to General
Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1$; Reaction time $=12 \mathrm{~h}$; yield: $82 \%(24.4 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -38.7 (c 0.60, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.95-6.88(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 4 \mathrm{H})$, 5.73 - 5.58 (m, 2H), $5.38(\mathrm{dq}, J=15.1,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{dd}, J=5.8,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{dd}, J=6.4$, $1.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0(\mathrm{~d}, J=243.8 \mathrm{~Hz}$), $139.2(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 132.9$, $129.4(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 126.7,114.8(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 54.4,18.0$; ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -117.4; HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{2}$ 299.1606; Found 299.1602.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD*3, hexane/isopropanol = $99 / 1$, flow rate $0.4 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=25.92 \mathrm{~min}$ (major). $(\pm)-4 \mathrm{c}:$ According to

General Procedure E.

Peak RetTime Type \# Width [min]	Area [min]	Height [mAU*s]	[mAU]	Area
$\%$				

Peak $\#$ $\#$RetTime Type	Width	Area $[\mathrm{min}]$	Height $[\mathrm{mAU}$ as]	Area [mAU]	$\%$

4,4'-((2E,4S,5S,6E)-octa-2,6-diene-4,5-diyl)bis(chlorobenzene) (4d): According to General
Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1$;
Reaction time $=12 \mathrm{~h}$; yield: $67 \%(22.1 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -58.3 (c 0.82, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17$ - 7.11 (m, 2H), $7.10-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.01$ - $6.96(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.60(\mathrm{~m}, 2 \mathrm{H}), 5.47-5.31(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.42(\mathrm{~m}, 2 \mathrm{H})$, $1.66(\mathrm{dd}, J=6.5,1.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.4,142.3,133.0,132.9,129.5$, 128.10, 128.08, 128.06, 126.8, 126.6, 125.9, 55.0, 54.3, 18.0; HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Cl}_{2}$ 331.1015; Found 331.1010.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak AD*2, hexane/isopropanol $=$ $100 / 0$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=20.2 \mathrm{~min}$ (major) $(\pm)-4 \mathrm{~d}:$ According to

General Procedure E.

4e
3,3'-((2E,4S,5S,6E)-octa-2,6-diene-4,5-diyl)bis(methoxybenzene) (4e): According to General
Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50 ; 1$; Reaction time $=12 \mathrm{~h}$; yield: $72 \%(23.2 \mathrm{mg})$; $>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -43.7 (c 0.59, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.58(\mathrm{~m}, 4 \mathrm{H})$, $6.58-6.54(\mathrm{~m}, 2 \mathrm{H}), 5.76-5.61(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{dq}, J=15.1,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.53-3.45$ (m, 2H), 1.67 (dd, $J=6.4,1.6 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,145.4,133.1,128.9$, 126.4, 120.7, 114.0, 111.1, 55.1, 55.0, 18.1; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2}$ 323.2006; Found 323.2009.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OJ*2, hexane/ethanol $=$ 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=20.81 \mathrm{~min}$ (major. $(\pm)-4 \mathrm{e}$: According to General Procedure E.

$4 f$
3,3'-((2E,4S,5S,6E)-octa-2,6-diene-4,5-diyl)bis(fluorobenzene) (4f): According to General
Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1$; Reaction time $=12 \mathrm{~h}$; yield: $63 \%(18.8 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -50.2 (c 0.70, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.69(\mathrm{~m}, 6 \mathrm{H})$, $5.71-5.58(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6(\mathrm{~d}, J=245.2 \mathrm{~Hz}), 146.1(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 132.3,129.4(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}), 127.3,123.8(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 114.8(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 112.8(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 54.7(\mathrm{~d}, J=$ 1.8 Hz), 18.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.8; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{2}$ 299.1606; Found 299.1610.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD*2, hexane/isopropanol = $99 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=14.66 \mathrm{~min}$ (major). (\pm)-4f: According to General Procedure E.

$4 g$
3,3'-((2E,4S,5S,6E)-octa-2,6-diene-4,5-diyl)bis(methylbenzene) (4g): According to General
Procedure \boldsymbol{F} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1$; Reaction time $=12 \mathrm{~h}$; yield: $71 \%(20.6 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ $-52.1\left(\mathrm{c} 0.38, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.75(\mathrm{~m}, 6 \mathrm{H})$, $5.76-5.61(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 1.67(\mathrm{dd}, J=$ 6.4, 1.6 Hz, 6H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 143.7$, 137.3, 133.4, 129.0, 127.7, 126.4, 126.1, 125.2, 54.9, 21.4, 18.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27}$ 291.2107; Found 291.2103.

Analysis of Stereochemistry:
Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol = $100 / 0$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.23 \mathrm{~min}$ (major). (\pm) $\mathbf{4 g}$: According to General Procedure D.

Peak $\#$ $\#$	[min]	Width [min]	Area [mAU*s]	Height $[\mathrm{mAU}]$	Area $\%$
--	12.186 VV	0.5587	4531.29932	119.40931	50.0781
2	13.446 VB	0.7720	4517.16260	82.99200	49.9219

2,2'-((2E,4S,5S,6E)-octa-2,6-diene-4,5-diyl)bis(methoxybenzene) (4h): According to General Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50 ; 1$; Reaction time $=12 \mathrm{~h}$; yield: $80 \%(25.8 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -97.0 (c 0.84, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{ddd}, J=$ $8.2,7.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{ddq}, J=12.8,5.4$, $1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $5.39(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{dd}, J=5.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 1.65(\mathrm{dd}, J$ $=6.4,1.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,133.8,132.5,128.7,126.4,125.6,120.0$, 110.4, 55.4, 46.1, 18.1; HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2}$ 323.2006; Found 323.2001.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD*3, hexane/ethanol =99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=22.59 \mathrm{~min}$ (major). $(\pm)-\mathbf{4 h}$: According to General

Procedure E.

2,2'-((2E,4S,5S,6E)-octa-2,6-diene-4,5-diyl)bis(methylbenzene) (4i): According to General Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1$; Reaction time $=12 \mathrm{~h}$; yield: $81 \%(23.5 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -170.2 (c 0.47, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.05-6.98$ (m, 2H), $6.98-6.86(\mathrm{~m}, 4 \mathrm{H}), 5.62$ (dddd, $J=15.1,7.3,3.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.90(\mathrm{dd}, J=5.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 1.66(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.9,130.0,126.8,125.7,125.6,125.4,48.6,19.7,18.0 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27}$ 291.2107; Found 291.2108 .

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD*2, hexane/isopropanol = $99 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=13.89 \mathrm{~min}$ (major). $(\pm)-4 \mathrm{i}:$ According to

General Procedure D.

$\begin{array}{ccccc}\text { Peak RetTime Type } & \text { Width } & \text { Area } & \text { Height } & \text { Area } \\ \# & \text { [min] } & \text { [min] } & {[\mathrm{mAU} \text { s] }} & \text { [mAU] }\end{array}$
$1 \quad 13.886 \mathrm{VB} \quad 0.1970 \quad 1.17414 \mathrm{e} 4 \quad 913.15112 \quad 100.0000$

2,2'-((2E,4S,5S,6E)-octa-2,6-diene-4,5-diyl)bis(chlorobenzene) (4j): According to General
Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50 ; 1$; Reaction time $=12 \mathrm{~h}$; yield: $60 \%(19.9 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -172.2 (c 0.46, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=$ $7.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 2 \mathrm{H}), 5.64-5.52(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{dq}, J=15.2$, $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{dd}, J=5.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{dd}, J=6.2,1.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 140.5,133.6,132.4,129.2,128.7,127.1,126.9,126.6,48.3,18.1 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Cl}_{2}$ 331.1015; Found 331.1017

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OJ*3, hexane/ethanol = 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=21.84 \mathrm{~min}$ (major). $(\pm)-\mathbf{4 j}$: According to General

Procedure E.

4k
((3E,5S,6S,7E)-deca-3,7-diene-5,6-diyl)dibenzene (4k): According to General Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1 ;$ Reaction time $=12$ h; yield: $83 \%(24.1 \mathrm{mg})$; > 95:5 dr; >95:5 rr; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-42.3\left(\mathrm{c} 0.53, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.09-6.97(\mathrm{~m}, 6 \mathrm{H}), 5.74-5.60(\mathrm{~m}, 2 \mathrm{H}), 5.44$ (dt, $J=15.2,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,133.4,131.1,128.2,127.9,125.7,55.2,25.6,13.8 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27}$ 291.2107; Found 291.2109.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak IG*2, hexane/isopropanol = $99 / 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=13.11 \mathrm{~min}$ (major). $(\pm)-\mathbf{4 k}$: According to General Procedure D.

41
((4E,6S,7S,8E)-dodeca-4,8-diene-6,7-diyl)dibenzene (41): According to General Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to 50;1; Reaction time $=12 \mathrm{~h}$; yield: $81 \%(25.8 \mathrm{mg})$; $>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-33.0(\mathrm{c} 0.74$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.07-6.95(\mathrm{~m}, 6 \mathrm{H}), 5.76-5.61(\mathrm{~m}$, $2 \mathrm{H}), 5.39$ (dt, $J=15.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.30$ $(\mathrm{m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.9$, 132.3, 131.7, 128.2, 127.9, 125.6, 55.2, 34.7, 22.5, 13.7; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{31}$ 319.2420; Found 319.2424.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD*2, hexane/isopropanol = 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=13.51 \mathrm{~min}$ (major). (\pm)-41: According to

General Procedure D.

1 13.513 VB
0. 19612.06802 e

$4 m$
($\mathbf{6 E}, \mathbf{8 S}, 9 \mathrm{~S}, 10 E$)-hexadeca-6,10-diene-8,9-diyl)dibenzene (4m): According to General Procedure \boldsymbol{F} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50 ; 1$; Reaction time $=12 \mathrm{~h}$; yield: $85 \%(31.8 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-50.9(\mathrm{c} 0.94$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.07(\mathrm{~m}, 4 \mathrm{H}), 7.07-6.94(\mathrm{~m}, 6 \mathrm{H}), 5.67(\mathrm{ddd}, J=$ 15.3, 6.1, 2.2 Hz, 2H), 5.38 (dt, $J=15.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.43(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H})$, $1.38-1.17(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.9,131.99$, 131.95, 128.2, 127.9, 125.6, 55.2, 32.6, 31.4, 29.1, 22.5, 14.1; HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{39}$ 375.3046; Found 375.3048.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD*2 hexane/isopropanol = 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=13.33 \mathrm{~min}$ (major). $(\pm)-\mathbf{4 m}$: According to

General Procedure D.

4n
(1R,2R)-1,2-di(cyclopent-1-en-1-yl)-1,2-diphenylethane (4n): According to General Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1 ;$ Reaction time $=12 \mathrm{~h}$; yield: $78 \%(24.5 \mathrm{mg})$; $>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=36.5$ (c 0.49 , CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12-7.01(\mathrm{~m}, 8 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{p}, J=2.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.05$ (s, 2H), 2.27 (dtt, $J=12.1,7.7,2.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 4 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.0,142.3,128.4,127.7$, 125.6, 124.7, 50.9, 32.8, 32.3, 23.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} 343.2420$; Found 343.2426.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD, hexane/ethanol = $99.9 / 0.1$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=7.08 \mathrm{~min}$ (major). $(\pm)-\mathbf{4 n}$: According to General Procedure D.

40
(1R,2R)-1,2-di(cyclohex-1-en-1-yl)-1,2-diphenylethane (4o): According to General Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1 ;$ Reaction time $=12 \mathrm{~h}$; yield: $68 \%(23.2 \mathrm{mg})$; $>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-98.8$ (c 0.58 , CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15-7.05(\mathrm{~m}, 8 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.74-5.67(\mathrm{~m}$, $2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 6 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.4,139.2,128.5,127.7,125.5,122.8,54.7,25.6,24.9,23.1,22.6$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{31}$ 343.2420; Found 343.2423.

Analysis of Stereochemistry:

Enantiomeric excess: 96\%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = $100 / 0$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=5.53 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=8.28 \mathrm{~min}$ (minor). $(\pm)-40$: According to General Procedure D.
VWD1 A, Wavelength=220 nm (D:ZZHH20210429YYH 2021-05-12 15-54-48lOnlineEdited-010.D)

VWD1 A, Wavelength $=220 \mathrm{~nm}$ (D:ZZHHT202104291YH 2021-05-12 15-54-481OnlineEdited--009.D)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.529	BV	0.2278	9060.80176	587.82245	98.2861
2	8. 285		0. 4617	157.99652	5. 70312	1. 71

(1S,2S)-1,2-bis(5,6-dihydro-2H-pyran-3-yl)-1,2-diphenylethane (4p): According to General
Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50 ; 1$; Reaction time $=12 \mathrm{~h}$; yield: $66 \%(22.8 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ 47.9 (c 0.61, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10-7.03(\mathrm{~m}, 4 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.99$ - 6.93 (m, 4H), 5.89 (tt, $J=3.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.06-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.72-3.62(\mathrm{~m}, 6 \mathrm{H}), 2.20$ (ddt, J $=8.2,5.4,2.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.1,138.2,128.2,128.0,126.1,119.5$, 66.7, 64.3, 51.8, 25.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{2}$ 347.2006; Found 347.2010.

Analysis of Stereochemistry:

Enantiomeric excess: 94\%, determined by HPLC (Daicel Chiralpak AD, hexane/ethanol = 95/5, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=20.78 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=7.46 \mathrm{~min}($ minor $) .(\pm)-\mathbf{4 p}$: According to General Procedure E.

4q
((3E,5R,6R,7E)-4,7-dimethyldeca-3,7-diene-5,6-diyl)dibenzene (4q): According to General
Procedure F Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1$;
Reaction time $=12 \mathrm{~h}$; yield: $60 \%(19.1 \mathrm{mg}) ;>95: 5 \mathrm{dr} ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=$ -117.4 (c 0.54, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.06(\mathrm{~m}, 8 \mathrm{H}), 7.06-6.95(\mathrm{~m}, 2 \mathrm{H})$, $5.55-5.43$ (m, 2H), 3.98 (s, 2H), 1.98 (dq, $J=15.1,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.48$ (s, 6H), $0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1,135.9,128.6,128.1,127.7,125.5,55.4,21.1,14.2,12.4$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{31}$ 319.2420; Found 319.2425.

Analysis of Stereochemistry:

Enantiomeric excess: 90\%, determined by HPLC (Daicel Chiralpak OJ*2, hexane/ethanol = 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=13.88 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=15.07 \mathrm{~min}($ minor $) .(\pm)-\mathbf{4 q}$:

According to General Procedure E.

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.869	BV	0.3366	1078.89075	48.86450	5. 0466
2	14.976	VB	0.4920	2. 02997 e 4	629. 7842	4.95

4r
((1E,3S,4S,5E)-hexa-1,5-diene-1,3,4,6-tetrayl)tetrabenzene (4r): According to General
Procedure \boldsymbol{F} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 1$ to $50 ; 1$; Reaction time $=6 \mathrm{~h}$; yield: $80 \%(30.9 \mathrm{mg}) ;>95: 5 \mathrm{dr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=58.5(\mathrm{c} 0.42$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.16(\mathrm{~m}$, $5 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 6 \mathrm{H}), 6.55(\mathrm{ddd}, J=15.7,5.7,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{dd}$, $J=5.7,2.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6,137.5,132.2,131.4,128.5,128.4,128.2$, 127.2, 126.3, 126.2, 55.3; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{27}$ 387.2107; Found 387.2103.

Analysis of Stereochemistry:

Enantiomeric excess: 92\%, determined by HPLC (Daicel Chiralpak IG, hexane/isopropanol = 99/1, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=7.44 \min ($ major $), \mathrm{t}_{\mathrm{R}}=5.37 \mathrm{~min}($ minor $) .(\pm)-4 \mathrm{r}$: According to General Procedure D.

6. Mechanistic Studies

6.1 Stern-Volmer fluorescence quenching experiments

A Hitachi F-7000 fluoresence spectrometer was used to record the emission intensities. All $\operatorname{Ir}(\text { ppy })_{2}$ (dtbbpy) PF_{6} solutions were excited at 400 nm and the emission intensity at 553 nm was observed. $\mathrm{CH}_{3} \mathrm{CN}$ was degassed with a stream of Ar for 30 min . In a typical experiment, the emission spectrum of a $2 \times 10^{-5} \mathrm{M}$ solution of $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ in $\mathrm{CH}_{3} \mathrm{CN}$ was collected. Then, appropriate amount of quencher was added to the measured solution in a quartz cuvette and the emission spectrum of the sample was collected. I_{0} and I represent the intensities of the emission in the absence and presence of the quencher at 553 nm .

Figure S2. Emission spectra of $2 \times 10^{-5} \mathrm{M} \operatorname{Ir}(\mathrm{ppy}) 2$ (dtbbpy)PF6 at $\lambda \mathrm{ex}=400 \mathrm{~nm}$ showing the quenching effect of increasing of DIPEA.

Figure S3. Emission spectra of $2 \times 10^{-5} \mathrm{M} \operatorname{Ir}(\mathrm{ppy}) 2(\mathrm{dtbbpy}) \mathrm{PF} 6$ at $\lambda \mathrm{ex}=400 \mathrm{~nm}$ showing the quenching effect of increasing of 1a.

Figure S4. The Stern-Volmer plot.

Stern-Volmer quenching experiments indicate that DIPEA quenches photoexcited catalyst \mathbf{I}.

6.2 Preparation and homocoupling of π-allylpalladium complex 17

In a glove box, to a 50 mL of seal tube equipped with a stir bar was added Silver tetrafluoroborate ($277 \mathrm{mg}, 1.43 \mathrm{mmol}$). The seal tube was screw septum and brought out of the glove box. $\mathrm{CH} 2 \mathrm{Cl} 2(10 \mathrm{~mL})$ and $[\mathrm{Pd}(1-\mathrm{Phenylallyl}) \mathrm{C} 1]_{2}(300 \mathrm{mg}, 0.57 \mathrm{mmol})$ were added to the seal tube at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 h at this temperature, a solution of $\mathrm{PPh}_{3}(600 \mathrm{mg}, 2.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$. The paleyellow suspension was centrifugalized, and the solution was transferred to another seal tube followed by concentration under reduced pressure to give 17 ($361 \mathrm{mg}, 76 \%$) as a pale yellow powder. This compound is known. ${ }^{3}{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.47-6.72(\mathrm{~m}, 35 \mathrm{H}), 6.48-6.28(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.38(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$.

In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\operatorname{Ir}(\text { ppy })_{2}($ dtbbpy $) \mathrm{PF}_{6}(1.0 \mathrm{mg}, 0.001 \mathrm{mmol}, 1.0 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(48.9 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.5 equiv), π-allylpalladium complex 17 ($83.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv), DIPEA ($20 \mathrm{mg}, 0.15$ mmol, 1.5 equiv) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$. The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45 W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography. Flash column chromatography eluent, petroleum ether/ethyl acetate $=100 ; 0$ to 100:1; yield: 53\% (6.2 mg); 50:50 dr; 18:82 rr.

This result demonstrates that π-allylpalladium complex might be the key intermediate of this reaction.

6.3 Radical trap experiments

In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}, 1.25 \mathrm{~mol} \%),(R)-2,2^{\prime}-\operatorname{Bis}[$ bis(4-methoxy-3,5-di-t-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (L5) ($7.3 \mathrm{mg}, 0.006 \mathrm{mmol}, 3$ $\mathrm{mol} \%$), anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol}, 1.0 \mathrm{~mol} \%)$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($97.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), allylic acetates $\mathbf{1 a}(41.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), DIPEA ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), 2,2,6,6-tetramethylpiperidine- N-oxyl radical (TEMPO, x equiv, $\mathrm{x}=1$, $2,3)$ and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$. The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.
when the radical trapping reagent TEMPO was added to the model reaction of 1a, the reaction efficiency decreased dramatically, and the allyl-TEMPO adduct $\mathbf{1 8}$ was isolated. This compound is known. ${ }^{4}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{dt}, J=16.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dt}, J=15.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=6.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.31$ (m, 6H), $1.22(\mathrm{~s}, 6 \mathrm{H}), 1.14(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.1, 131.2, 129.9, 127.6, $123.3,113.9,78.3,59.8,55.3,39.7,33.1,20.3,17.2$.

In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}, 1.25 \mathrm{~mol} \%),(R)-2,2^{\prime}-\operatorname{Bis}[\operatorname{bis}(4-m e t h o x y-$ 3,5-di-t-butylphenyl)phosphino]-4,4’,6,6'-tetramethoxy)-1,1'-biphenyl (L5) ($7.3 \mathrm{mg}, 0.006 \mathrm{mmol}, 3$ $\mathrm{mol} \%$), anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\mathrm{Cs}_{2} \mathrm{CO}_{3}(97.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), allylic acetates $\mathbf{1 a}$ ($41.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), 2,2,6,6-tetramethylpiperidine- N-oxyl radical (TEMPO, 93.6 mg , $0.6 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$. The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously at room temperature for 12 h .

The allyl-TEMPO adduct $\mathbf{1 8}$ could not be detected in the absence of reductive photocatalysis conditions, which revealed that the radical trapping product was not formed through the directly nucleophilic addition of TEMPO to the formed π-allylpalladium complex.

In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(1.0 \mathrm{mg}, 0.001 \mathrm{mmol}, 1.0 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(49.8 \mathrm{mg}, 1.5 \mathrm{mmol}$, 1.5 equiv), π-allylpalladium complex 17 ($83.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv), DIPEA ($20 \mathrm{mg}, 1.5 \mathrm{mmol}$, 1.5 equiv), 2,2,6,6-tetramethylpiperidine- N-oxyl radical (TEMPO, $46.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$. The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100
mL brine. The organic phase was concentrated under vacuum and purified by chromatography.
In the presence of TEMPO, allyl radical trapping 19 was also observed in the reaction of π-allylpalladium complex 17. This compound is known. ${ }^{5}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dt}, J=16.0$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=6.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.41-$ $1.31(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.1,131.4,128.5,127.5$, $126.5,125.6,78.1,59.8,39.7,33.1,20.3,17.2$.

These results suggest that allylic radical might be generated from π-allylpalladium complex in the assistance of light and photocatalyst.

6.4 Cyclic Voltammetry experiments

Cyclic Voltammetry were collected using CHI660E from Shanghai Chenhua Instruments Limited (SCHI). A solution of the sample in $\mathrm{MeCN}(0.001 \mathrm{M})$ was tested with $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as the supporting electrolyte, using a glassy carbon as the working electrode, a Pt as the counter electrode, and a saturated calomel electrode reference electrode. Scan rate $=0.1 \mathrm{~V} / \mathrm{s}$.

Figure S5. Cyclic Voltammogram of $\mathbf{1 b}, E_{1 / 2}=-1.43 \mathrm{~V}$ vs SCE .

Figure S6. Cyclic Voltammogram of $\mathbf{1 7}, E_{1 / 2}=-0.95 \mathrm{~V}$ vs SCE.
The redox potentials indicate that the allyl radical is more likely generated from π-allylpalladium complex 17, which is more easily reduced than allylic acetate $\mathbf{1 b}$ by $\operatorname{Ir}(\mathrm{II})$ complex $\left(E_{1 / 2}\left(\mathrm{Ir}^{\mathrm{II} /} / \mathrm{Ir}^{\mathrm{II}}\right)=\right.$ -1.51 V vs SCE) to give the allylic radical.

6.5 Proposed mechanism

Based on the abovementioned results and previous published work on photoredox/Pd cocatalysis, plausible mechanisms are depicted in Figure S6 and Figure S7.

Figure S7. $\mathrm{Pd}(0 / \mathrm{II} / \mathrm{III} / \mathrm{I})$ mechanism.
$\operatorname{DIPEA}\left(E_{1 / 2}=+0.68 \mathrm{~V}\right.$ vs $\left.\operatorname{SCE}\right)$ quenches visible-light excited $\operatorname{Ir}(\mathrm{III})^{*}\left(E_{1 / 2}\left(\operatorname{Ir}^{\mathrm{III} *} / \mathrm{Ir}^{\mathrm{II}}\right)=+0.66 \mathrm{~V}\right.$
vs SCE) to generate low-valent $\operatorname{Ir}(\mathrm{II})$ complex and the radical cation DIPEA $^{+\cdot}$. Meanwhile, $\operatorname{Pd}(0)$ oxidatively adds to the allylic acetate $\mathbf{1}$ to give a π-allyl- $\mathrm{Pd}(\mathrm{II})$ complex \mathbf{A}. The single-electron reduction of \mathbf{A} by $\operatorname{Ir}(\mathrm{II})$ complex can generate a π-allyl-Pd(I) complex \mathbf{B}, which can equilibrate with an allylic radical species \mathbf{C} and a $\operatorname{Pd}(0)$ species. The second oxidative addition of another allylic acetate $\mathbf{1}$ to \mathbf{B} would give the $\operatorname{bis}\left(\pi\right.$-allyl) $-\operatorname{Pd}(I I I)$ complex \mathbf{D} equilibrated with $\operatorname{bis}\left(\eta^{1}-\operatorname{allyl}\right)-\operatorname{Pd}(I I I)$ complex \mathbf{D}^{\prime} (Path a). Alternatively, allylic radical species \mathbf{C} is trapped by π-allyl-Pd(II) complex \mathbf{A} to generate $\mathbf{D} / \mathbf{D}{ }^{\prime}($ Path b). Reductive elimination from \mathbf{D} / \mathbf{D} ' yields the homocoupling product $\mathbf{2}$ and a $\operatorname{Pd}(\mathrm{I})$ species \mathbf{E}. Finally single-electron reduction of \mathbf{E} more likely by $\operatorname{Ir}(\mathrm{II})$ complex would regenerate $\operatorname{Pd}(0)$.

Figure S8. $\operatorname{Pd}(0 / \mathrm{II} / \mathrm{III} / \mathrm{II})$ mechanism.

The $\operatorname{Pd}\left(\right.$ III) intermediate $\mathbf{D} / \mathbf{D}^{\prime}$ could also be reduced to a bis(allyl)-Pd(II) species \mathbf{F} / \mathbf{F} ', and then undergo a reductive elimination to deliver the final product 2 .

Figure S9. Proposed asymmetric induction model.

7. Gram-scale preparation of 2 s

In a nitrogen-filled glovebox, a 500 mL round bottom flask, equipped with a magnetic stir bar, charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.25 \mathrm{~mol} \%, 4 \mathrm{mmol}$ scale: $46 \mathrm{mg}, 0.05 \mathrm{mmol} ; 10 \mathrm{mmol}$ scale: 115 mg , $0.125 \mathrm{mmol}),(R)-2,2^{\prime}$-Bis[bis(4-methoxy-3,5-di-t-butylphenyl)phosphine]-4,4’,6,6'-tetramethoxy)-1,1'-biphenyl (L5) ($3 \mathrm{~mol} \%, 4 \mathrm{mmol}$ scale: $146 \mathrm{mg}, 0.12 \mathrm{mmol} ; 10 \mathrm{mmol}$ scale: $365 \mathrm{mg}, 0.3 \mathrm{mmol}$), anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ (4 mmol scale: 20.0 mL ; 10 mmol scale: 50.0 mL) was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(1.0$ $\mathrm{mol} \%$, 4 mmol scale: $40 \mathrm{mg}, 0.04 \mathrm{mmol} ; 10 \mathrm{mmol}$ scale: $100 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv, 4 mmol scale: $1.956 \mathrm{~g}, 6 \mathrm{mmol} ; 10 \mathrm{mmol}$ scale: $4.89 \mathrm{~g}, 15 \mathrm{mmol}$), allylic acetates 1 s (1.0 equiv, 4 mmol scale: $0.904 \mathrm{~g}, 4.0 \mathrm{mmol}$; 10 mmol scale: $2.26 \mathrm{~g}, 10.0 \mathrm{mmol}$), DIPEA (1.5 equiv, 4 mmol scale: $0.8 \mathrm{~g}, 6 \mathrm{mmol} ; 10 \mathrm{mmol}$ scale: $2.0 \mathrm{~g}, 15 \mathrm{mmol}$) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{mmol}$ scale: 20.0 $\mathrm{mL} ; 10 \mathrm{mmol}$ scale: 50.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45 W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 500 mL separatory funnel, rinsed/diluted with 200 mL ether, and washed with 200 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography to 2 s (4 mmol scale: $0.52 \mathrm{~g}, 78 \% ; 10 \mathrm{mmol}$ scale: $1.10 \mathrm{~g}, 66 \%$).

8. Derivatization of 2 s

Hydrogenation of 2s

In an oven and vacuum-dried 10 mL two-necked round-bottom flask, a solution of $\mathbf{2 s}(0.2 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{EtOH}(2 \mathrm{~mL}), 10 \% \mathrm{Pd} / \mathrm{C}(0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ was added. The resulting mixture was degassed and stirred under H_{2} balloon pressure for 12 h at room temperature. The reaction mixture was filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated under reduced pressure and the residue was purified by chromatography on silica gel to afford compound 5 .

5
1,1'-((3S,4S)-hexane-3,4-diyl)dinaphthalene (5): Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1 ;$ yield: $98 \%(66.2 \mathrm{mg})$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-171.5(\mathrm{c}$ $1.15, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ $-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.15(\mathrm{~m}, 4 \mathrm{H}), 4.20-3.80(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.11(\mathrm{~m}, 2 \mathrm{H})$, $2.03-1.90(\mathrm{~m}, 2 \mathrm{H}), 0.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.2,133.7,132.8$, $128.8,126.0,125.3,125.0,124.9,123.6,44.3,25.9,11.7$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{27}$ 339.2107; Found 339.2110.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=17.91 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=17.45 \mathrm{~min}$ (minor).
VWD1 A, Wavelength=220 nm (D:ZHHT20210425IYH 2021-04-28 21-28-261083-0101.D)

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.448		0.2121	39.01491	2. 20864	0.1481
2	17.907		0. 2576	2. 63083 e 4	1577. 32166	99.85

Hydroboration/Suzuki cross-coupling of 2s

To the dry 25 mL flask with a magnetic stirring bar was added $2 \mathrm{~s}(0.2 \mathrm{mmol}, 1.0$ equiv.) and dry THF (2.0 mL) and then added the solution of 9-BBN ($1.0 \mathrm{~mL}, 0.5 \mathrm{M}, 0.5 \mathrm{mmol}, 2.5$ equiv) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 12 h at $\mathrm{rt}, \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$, iodobenzene (4.0 equiv) and aqueous $\mathrm{NaOH}(3.0 \mathrm{~mL}, 3 \mathrm{M})$ were added successively to the above mixture at rt and then reacted 16 h under reflux. The reaction mixture was diluted with hexane $(10.0 \mathrm{~mL})$, and the residual borane was oxidized by addition of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 2.0 \mathrm{~mL})$ at rt . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5.0$ $\mathrm{mL})$. The residue was purified by chromatography on silica gel to afford compound 6 .

6
1,1'-((3S,4S)-1,6-diphenylhexane-3,4-diyl)dinaphthalene (6): Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1$; yield: $76 \%(74.5 \mathrm{mg})$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-118.9\left(\mathrm{c} 1.37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.72(\mathrm{~m}$, 2H), 7.60 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.37$ (m, 6H), 7.31 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 4 \mathrm{H})$, $7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.94(\mathrm{~m}, 4 \mathrm{H}), 4.30-3.88(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.25(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.5,139.8,133.8,132.7,128.8,128.4,128.3,126.5,125.7$, 125.3, 125.1, 125.0, 123.7, 43.7, 35.1, 33.8; HRMS (ESI) m/z: [M+H]+ Calcd for $\mathrm{C}_{38} \mathrm{H}_{35} 491.2733$;

Found 491.2738.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = $99 / 1$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=6.19 \mathrm{~min}$ (major).

Synthesis of chiral 1,6-diphosphine ligands 8

Hydroboration and oxidation: To a suspension of $\mathbf{2 s}(1.0 \mathrm{mmol},>99 \% e e)$ in dry THF (10 mL) 9-BBN in THF ($0.5 \mathrm{M}, 5 \mathrm{mmol}$, 5 equiv) was added and the mixture was stirred at room temperature for 4 h . Thenan aqueous solution of $\mathrm{NaOH}(6.0 \mathrm{M}, 4.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ in water, 10 mL) were added at $0{ }^{\circ} \mathrm{C}$ over and the reaction mixture was stirred for 2 h . The reaction was quenched with brine and the mixture extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated in vacuo. The crude product was purified by flash chromatography on silica gel (acetate/dichloromethane $=2: 1$ to $5: 1$) to afford compound 7.

7
(3S,4S)-3,4-di(naphthalen-1-yl)hexane-1,6-diol (7): 88% yield (326 mg); colorless solid, m.p. 103.7-105.0 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-69.7\left(\mathrm{c} 1.04, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35-8.11(\mathrm{~m}, 2 \mathrm{H})$, $7.79-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.24-7.05(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 3.45$ (ddd, $J=11.1,7.1$, $4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 139.4,133.7,132.4,128.8,126.5,125.6,125.1,125.0,124.7,123.3,61.0,40.2$, 36.4; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{2}$ requires $\mathrm{m} / \mathrm{z} 371.2006$, found $\mathrm{m} / \mathrm{z} 371.1997$.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol =
$80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=11.20 \mathrm{~min}$ (major).
mV

mV

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	11.205	2226289	89560	100.000	100.000
Totail		2226289	89560	100.000	100.000

mV

Tosylation and phosphorylation: Under argon atmosphere at $0^{\circ} \mathrm{C}$, $7(1.0 \mathrm{mmol},>99 \% \mathrm{ee})$ was dissolved in dichloromethane (10 mL), which was added DMAP (0.2 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(2.5 \mathrm{mmol})$. Then, $\mathrm{TsCl}(2.4 \mathrm{mmol})$ was added dropwise to the reaction mixture, which was further stirred at room temperature. After the completion of the reaction indicated by TLC, the reaction mixture was diluted by dichloromethane and quenched by hydrochloric acid (1 M). The resultant mixture was extracted by dichloromethane, and the organic layer was washed successively by saturated NaHCO_{3} aqueous solution and saturated NaCl aqueous solution. The crude was used for the next synthetic step. Diphenylphosphine (2.5 mmol) was dissolved in THF (10 mL), cooled down to $-78{ }^{\circ} \mathrm{C}$ and ${ }^{n} \mathrm{BuLi}(2.4 \mathrm{M}$ in hexane, 3.0 mmol) was carefully added. The yellow reaction mixture was allowed to come to room temperature and stirred for 2 h while a color change to orange and finally ruby red was observed. Then, crude product from previous step in THF (5 mL) was added and the mixture was stirred at room temperature over night. $\mathrm{MeOH}(1 \mathrm{~mL})$ and dest. $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ were added and the reaction mixture was concentrated under reduced pressure to remove THF. The residue was extracted with DCM (3 x 100 mL), the combined organic layers were washed with brine. Subsequently, the resultant organic layer was dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by flash column chromatography (petroleum ether/ethyl acetate $=50 / 1$) to afford compound $\mathbf{8}$.

8
((3S,4S)-3,4-di(naphthalen-1-yl)hexane-1,6-diyl)bis(diphenylphosphane) (8): 57\% yield (403 mg); white solid, m.p. $106.5-107.2{ }^{\circ} \mathrm{C}[\alpha]_{\mathrm{D}}{ }^{20}=-84.0\left(\mathrm{c} 0.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, Chloroform-d) $\delta 8.22-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 4 \mathrm{H})$, $7.34-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 16 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 4 \mathrm{H}), 4.16-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.08(\mathrm{~m}$, $2 \mathrm{H}), 2.06-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $139.0,138.71(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 137.9(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 133.9,133.1(\mathrm{~d}, J=18.6 \mathrm{~Hz}), 132.6,132.2(\mathrm{~d}$, $J=17.7 \mathrm{~Hz}), 128.9,128.7,128.4(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 128.2(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 128.17,126.6,125.5,125.1$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}), 124.6,123.6,44.6(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 27.8(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 25.4(\mathrm{~d}, J=11.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) $\delta-15.1$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{50} \mathrm{H}_{45} \mathrm{P}_{2}$ requires m/z 707.2992, found $\mathrm{m} / \mathrm{z} 707.2993$.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = $95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=5.32 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=7.85 \mathrm{~min}$ (minor).

From (S,S)-2S

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	5.320	18560061	1754706	99.899	99.944
2	7.850	18777	976	0.101	0.056
Total		18578838	1755682	100.000	100.000

mV

Synthesis of chiral 1,4-diphosphine ligands 10

Ozonolysis and reduction: Ozone was bubbled for 15 min through a solution of $\mathbf{2 s}(1.0 \mathrm{mmol}$, > $99 \% e e)$ in a mixture of $\mathrm{DCM}(10 \mathrm{~mL})$ and $\mathrm{MeOH}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 15 minutes (solution stays blue) the reaction mixture was purged with nitrogen. Sodium borohydride (5.0 mmol) was added and the mixture was warmed to room temperature and stirred for 6 h . The reaction was quenched by addition of a 1 M aqueous HCl solution. The layers were separated and the aqueous layer was extracted with DCM twice. The combined organic layers were dried with sodium sulfate and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (ethyl acetate/dichloromethane $=2: 1$ to 5:1) to afford compound 9 .

9
(2S,3S)-2,3-di(naphthalen-1-yl)butane-1,4-diol (9): 54% yield (185 mg); colorless solid, m.p. 94.6-95.7 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-91.0\left(\mathrm{c} 0.42, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 8.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H), 7.75 (dd, $J=8.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.53$ (m, 2H), 7.49 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.46-7.38$ (m, $2 \mathrm{H}), 7.32$ (dd, $J=7.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.62(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.46(\mathrm{~m}, 2 \mathrm{H})$, 4.14 - 4.01 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone- d_{6}) δ 138.8, 133.9, 132.1, 128.7, 126.2, 125.7, 125.0, 124.9, 124.8, 123.3, 65.7, 44.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{2}$ requires m / z 343.1693, found $m / z 343.1699$.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak AD-H, pentane/isopropanol = $90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=13.70 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=16.53 \mathrm{~min}$ (minor).

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	13.699	31349353	1478420	99.794	99.834
2	16.534	64857	2464	0.206	0.166
Total		31414210	1480884	100.000	100.000

Tosylation and phosphorylation: Under argon atmosphere at $0^{\circ} \mathrm{C}, 9(1.0 \mathrm{mmol},>99 \% \mathrm{ee})$ was dissolved in dichloromethane (10 mL), which was added DMAP (0.2 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(2.5 \mathrm{mmol})$. Then, $\mathrm{TsCl}(2.4 \mathrm{mmol})$ was added dropwise to the reaction mixture, which was further stirred at room temperature. After the completion of the reaction indicated by TLC, the reaction mixture was diluted by dichloromethane and quenched by hydrochloric acid (1 M). The resultant mixture was extracted by dichloromethane, and the organic layer was washed successively by saturated NaHCO_{3} aqueous solution and saturated NaCl aqueous solution. The crude was used for the next synthetic step. Diphenylphosphine (2.5 mmol) was dissolved in THF (10 mL), cooled down to $-78{ }^{\circ} \mathrm{C}$ and ${ }^{n} \mathrm{BuLi}(2.4 \mathrm{M}$ in hexane, 3.0 mmol) was carefully added. The yellow reaction mixture was allowed to come to room temperature and stirred for 2 h while a color change to orange and finally ruby red was observed. Then, crude product from previous step in THF (5 mL) was added and the mixture was stirred at room temperature over night. $\mathrm{MeOH}(1 \mathrm{~mL})$ and dest. $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ were added and the reaction mixture was concentrated under reduced pressure to remove THF. The residue was extracted with DCM (3 x 100 mL), the combined organic layers were washed with brine. Subsequently, the resultant organic layer was dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by flash column chromatography (petroleum ether/ethyl acetate $=50 / 1$) to afford compound $\mathbf{1 0}$.

10
((2S,3S)-2,3-di(naphthalen-1-yl)butane-1,4-diyl)bis(diphenylphosphane) (10): 44% yield (299 mg); white solid, m.p. $101.1-102.4^{\circ} \mathrm{C}[\alpha]_{\mathrm{D}}{ }^{20}=-28.6\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.91-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.14(\mathrm{~m}$, $16 \mathrm{H}), 7.11-6.98(\mathrm{~m}, 7 \mathrm{H}), 4.32-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.4(\mathrm{~d}, J=13.7 \mathrm{~Hz}), 138.5,138.0(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 133.8,133.0(\mathrm{~d}, J=19.5$ Hz), 132.5 ($\mathrm{d}, ~ J=18.6 \mathrm{~Hz}$), 128.8, 128.5, 128.31, 128.25, 128.2, 127.0, 126.4, 125.4, 125.1, 124.7, 123.7, $41.28(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 32.39(\mathrm{~d}, J=9.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-19.9$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNaO}_{2}$ requires $\mathrm{m} / \mathrm{z} 679.2679$, found m / z 679.2677.

Analysis of Stereochemistry:

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak AD-H, pentane/isopropanol = $95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=4.07 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=6.71 \mathrm{~min}$ (minor).

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	4.071	8203959	901922	99.909	99.951
2	6.709	7491	443	0.091	0.049
Total		8211450	902365	100.000	100.000

mV

Preliminary synthetic application of 8 and 10

Lithium acetate ($5 \mathrm{~mol} \%$), N, O-bistrimethylsilyl acetamide (BSA, $0.6 \mathrm{mmol}, 3$ equiv), (E)-1,3-diphenylallyl acetate $\mathbf{3 r}$ ($0.2 \mathrm{mmol}, 1$ equiv), and dimethyl malonate $\mathbf{2 0}$ ($0.6 \mathrm{mmol}, 3$ equiv) were added to a solution of allylpalladium dichloride dimer ($5 \mathrm{~mol} \%$) and phosphine $\mathbf{8}$ or $\mathbf{1 0}$ (12 mol \%) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ under nitrogen. The mixture was stirred at room temperature for 6 h , poured into water, extracted into dichloromethane, dried over magnesium sulfate, and concentrated under reduced pressure to give the crude product oil. The crude product was purified by column chromatography (petroleum ether/ethyl acetate $=10 / 1$) to give the substitution product 21.

21
dimethyl (E)-2-(1,3-diphenylallyl)malonate (21): > 99\% yield (64.2 mg); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=15.7$, $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=10.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 168.2,167.8,140.2,136.8,131.9,129.1,128.7,128.5,127.9,127.6$, $127.2,126.4,57.7,52.7,52.5,49.2$. Spectral data is in accordance with the literature. ${ }^{6}$

Analysis of Stereochemistry:

Enantiomeric excess: 46\% (with 8), determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=14.30 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=$ 10.58 min (minor).

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.668	22902418	1590369	49.683	56.686
2	14.483	23194697	1215200	50.317	43.314
Totai		46097116	2805569	100.000	100.000

Enantiomeric excess: -34\% (with 10), determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=10.58 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=$ 14.38 min (minor).

9. Applications of $2 t$ as chiral diene ligand

Procedure for $\mathbf{R h}(\mathbf{I}) / 2 t$-catalyzed asymmetric 1,4-addition of 2-cyclohexenone

To a Schlenk tube charged with phenylboronic acid $12(73.2 \mathrm{mg}, 0.6 \mathrm{mmol}),\left[\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{Cl}\right]_{2}(3.9$ $\mathrm{mg}, 0.01 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, and chiral diene ligand (S, S)-2t ($9.6 \mathrm{mg}, 0.024 \mathrm{mmol}, 6.0 \mathrm{~mol} \%$) was added degassed dioxane (0.8 mL) under Argon. The resulting mixture was heated to $50{ }^{\circ} \mathrm{C}$ and stirred for 15 min . 2-Cyclohexenone $11(38.4 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{KOH}(0.03 \mathrm{mmol}, 0.075 \mathrm{M}$ in $\mathrm{MeOH}, 0.4 \mathrm{~mL}, 7.5 \mathrm{~mol} \%$) was added sequentially. Upon stirring at $10^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was concentrated, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$) to give conjugated addition adduct 13.

13
(R)-3-phenylcyclohexan-1-one (13): 86% yield (59.8 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 3 \mathrm{H}), 3.08-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.43(\mathrm{~m}, 2 \mathrm{H})$, $2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $211.0,144.3,128.7,126.7,126.6,49.0,44.8,41.2,32.8,25.6$. Spectral data is in accordance with the literature. ${ }^{7}$

Analysis of Stereochemistry:

Enantiomeric excess: 90\%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = $90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=6.04 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=5.43 \mathrm{~min}$ (minor).
VWD1 A, Wavelength $=220 \mathrm{~nm}$ (D:IZHHL20210425IYH 2021-04-28 21-28-261OnlineEdited--005.D)

VWD1 A, Wavelength=220 nm (D:Izyi202104291YH 2021-04-29 14-44-55\OnlineEdited--009.D)

	velength= ith (S,	$220 \mathrm{~nm}(\mathrm{D}: \mathrm{lzy} \mathrm{y} 2 \mathrm{Cl}$ $\text { S) }-2 t$	$2104291 \mathrm{YH} 202$	$-04-29 \text { 14-44 }$	9		
		1		4	6	8	min
Peak RetTime Type \# [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%			
15.428 FM	0. 1713	223.60545	21. 75413	5. 3048			
26.039 BB	0. 2215	3991.55762	286.55457	94.6952			

Procedure for $\mathbf{R h}(\mathbf{I}) / 2 t$-catalyzed asymmetric arylation of N-tosyl imines 14

To a Schlenk tube charged with phenylboronic acid $15(61 \mathrm{mg}, 0.4 \mathrm{mmol}),\left[\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{Cl}\right]_{2}(1.9$ $\mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$), and chiral diene ligand (S, S) $\mathbf{2 t}(4.8 \mathrm{mg}, 0.012 \mathrm{mmol}, 6.0 \mathrm{~mol} \%$) was added degassed dioxane (0.8 mL) under Argon. The resulting mixture was heated to $50{ }^{\circ} \mathrm{C}$ and stirred for 15 min . N-tosyl imines $14(51.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and TEA ($40 \mathrm{mg}, 0.4 \mathrm{mmol}$) was added sequentially. Upon stirring at $0{ }^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was concentrated, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$) to give conjugated addition adduct 16.

16
(S)-N-((4-methoxyphenyl)(phenyl)methyl)-4-methylbenzenesulfonamide (16): 58\% yield (42.6 $\mathrm{mg})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 4 \mathrm{H})$, $7.04-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=7.1,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,143.1,140.7,137.4,132.8,129.3$, $128.6,128.5,127.5,127.3,127.2,113.9,60.8,55.3,21.5$. Spectral data is in accordance with the literature. ${ }^{8}$

Analysis of Stereochemistry:

Enantiomeric excess: 82\%, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=$ $80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=9.46 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=15.04 \mathrm{~min}$ (minor).

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]		$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9. 589		0. 3658	3743. 20654	157.20418	49.8471
2	15. 326		0. 58	66. 16	97.837	0.

| Peak
 $\#$
 $\#$[min] | Width
 [min] | Area
 [mAU*s] | Height
 [mAU] | Area
 $\%$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 9.460 VB | 0.3572 | 1.39974 e 4 | 595.52740 | 91.2946 |
| 2 | 15.038 BB | 0.5464 | 1334.73096 | 35.76049 | 8.7054 |

10. Attempt of enantioselective reductive cross-coupling

2b, 3.2 mg
14\%, >99\% ee
94:6 dr, >95:5 rr

2ab, 22.2 mg 42\%, >99\% ee, $>95: 5 d r,>95: 5 r r$

2a, 12 mg
$41 \%,>99 \%$ ee,
$>95: 5 d r,>95: 5 r r$

In a nitrogen-filled glovebox, a 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, (R)-2,2'-Bis[bis(4-methoxy-3,5-di- t-butylphenyl)phosphino]-4, ${ }^{\prime}$, $6,6^{\prime}$ 'tetramethoxy)-1,1'-biphenyl (L5) ($14.6 \mathrm{mg}, 0.012 \mathrm{mmol}, 6$ $\mathrm{mol} \%$), anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(4.0 \mathrm{mg}, 0.004 \mathrm{mmol}, 2.0 \mathrm{~mol} \%)$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($195.6 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv), allylic acetates $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0$ equiv), DIPEA (80 mg ,. $0.6 \mathrm{mmol}, 3.0$ equiv), $\mathbf{1 b}$ or $\mathbf{1 i}\left(0.2 \mathrm{mmol}, 1.0\right.$ equiv) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$. The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45 W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

Preliminary attempt of the enantioselective reductive cross-coupling was also made, affording the desired cross-coupling product 2ab and 2ai in excellent diastereo-, regio- and enantioselectivities (> 95:5 dr, > 95:5 rr, > $99 e e$), but in poor yields (42% for 2ab, 29\% for 2ai). Homocoupling by-products $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{2 i}$ could also be observed. Photoredox/Pd-cocatalyzed enantioselective reductive cross-coupling is underway in our laboratory.

1-methoxy-4-(4-phenylhexa-1,5-dien-3-yl)benzene (2ab): Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $42 \%(22.2 \mathrm{mg}) ;>95: 5$ $d r,>95: 5 r r$, a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-44.3\left(\mathrm{c} 0.66, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.66(\mathrm{~m}$, $2 \mathrm{H}), 6.18-6.02(\mathrm{~m}, 2 \mathrm{H}), 5.13-5.00(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7,142.7,140.9,140.7,134.7,129.1,128.2,128.1,126.0,115.7,115.5,113.5$, 55.9, 55.1, 54.8; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}$ requires $\mathrm{m} / \mathrm{z} 265.1588$, found m / z 265.1582.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol $=$ $95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=23.84 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=26.17 \mathrm{~min}$ (minor).
mV

mV

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	23.837	30013907	758382	99.911	99.906
2	26.170	26628	714	0.089	0.094
Totai		30040536	759096	100.000	100.000

mV

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	23.848	56624	1493	0.135	0.153
2	26.017	41958659	974252	99.865	99.847
Total		42015284	975745	100.000	100.000

2ai
1-methoxy-4-(4-(4-(trifluoromethyl)phenyl)hexa-1,5-dien-3-yl)benzene (2ai): Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $29 \%(19.4 \mathrm{mg})$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-26.3\left(\mathrm{c} 0.83, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.07$ (dddd, $J=16.9,10.2,8.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), $5.15-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.69$ - $3.64(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,146.9,140.3,139.8$, $134.0,129.0,128.5,125.05(\mathrm{q}, J=3.7 \mathrm{~Hz}), 122.9,116.5,115.9,113.7,55.7,55.1,54.7 ;{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.3; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}$ requires $\mathrm{m} / \mathrm{z} 333.1462$ found $\mathrm{m} / \mathrm{z} 333.1458$.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99\%, determined by HPLC (Daicel Chiralpak IA, hexane/ethanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=18.45 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=17.44 \mathrm{~min}$ (minor).

mV

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	17.444	24472	967	0.271	0.330
2	18.450	9017938	291598	99.729	99.670
Total		9042410	292565	100.000	100.000

mV

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	17.282	12516663	434348	95.223	96.023
2	18.162	627910	17990	4.777	3.977
Total		13144572	452338	100.000	100.000

11. Unsuccessful substrtates

DIPEA
$\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$

12. References

(1) (a) Serra-Muns, A.; Guérinot, A.; Reymond, S.; Cossy, J. Silica Gel-Mediated Rearrangement of Allylic Acetates. Application to the Synthesis of 1,3-Enynes. Chem. Commun. 2010, 46, 4178. (b) Marion, N.; Gealageas, R.; Nolan S. P. [(NHC)Au $\left.{ }^{\mathrm{I}}\right]$-Catalyzed Rearrangement of Allylic Acetates. Org. Lett. 2007, 9, 2653.
(2) Brozek, L. A.; Ardolino, M. J.; Morken, J. P. Diastereocontrol in Asymmetric Allyl-Allyl Cross-Coupling: Stereocontrolled Reaction of Prochiral Allylboronates with Prochiral Allyl Chlorides. J. Am. Chem. Soc. 2011, 133, 16778.
(3) (a) Osborn, J. A.; Schrock, R. R. Coordinatively Unsaturated Cationic Complexes of Rhodium(I), Iridium(I), Palladium(II), and Platinum(II). Generation, Synthetic Utility, and some Catalytic Studies. J. Am. Chem. Soc. 1971, 93, 3089. (b) Aakermark, B.; Krakenberger, B.; Hansson, S.; Vitagliano, A. Ligand Effects and Nucleophilic Addition to (η^{3}-Allyl)palladium Complexes. A Carbon-13 NMR Study. Organometallics 1987, 6, 620. (c) Fan, S.; Chen, F.; Zhang, X. Direct Palladium-Catalyzed Intermolecular Allylation of Highly Electron-Deficient Polyfluoroarenes. Angew. Chem. Int. Ed. 2011, 50, 5918.
(4) (a) Lv, Y.; Sun, K.; Wang, T.; Wu, Y.; Li, G.; Pu, W.; Mao, S. Intermolecular C-N Cross-Coupling Reactions Catalyzed by Tetra-n-butylammonium Iodide: Synthesis of Allylic N-Heterocycles. Asian J. Org. Chem. 2016, 5, 325. (b) Zhang, H.-Y.; Ge, C.; Zhao, J.; Zhang, Y. Cobalt-Catalyzed Trifluoromethylation-Peroxidation of Unactivated Alkenes with Sodium Trifluoromethanesulfinate and Hydroperoxide. Org. Lett. 2017, 19, 5260.
(5) (a) Song, F.; Wang, F.; Guo, L.; Feng, X.; Zhang, Y.; Chu, L. Visible-Light-Enabled Stereodivergent Synthesis of E - and Z-Configured 1,4-Dienes by Photoredox/Nickel Dual Catalysis. Angew. Chem. Int. Ed. 2020, 59, 177. (b)Xuan, J.; Zeng, T.-T.; Feng, Z.-J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J.; Alper, H. Redox-Neutral α-Allylation of Amines by Combining Palladium Catalysis and Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2015, 54, 1625.
(6) Breeden, S.; Wills, M. ESPHOS and SEMI-ESPHOS: A New Family of Mono- and Bidentate Diazaphospholidine Ligands for Asymmetric Catalysis. J. Org. Chem. 1999, 64, 9735.
(7) Hu, X.; Zhuang, M.; Cao, Z.; Du, H. Simple Chiral Chain Dienes as Ligands for Rh(I)-Catalyzed Conjugated Additions. Org. Lett. 2009, 11, 4744.
(8) Yasukawa, T.; Kuremoto, T.; Miyamura, H.; Kobayashi, S. Asymmetric Arylation of Imines Catalyzed by Heterogeneous Chiral Rhodium Nanoparticles. Org. Lett. 2016, 18, 2716.

13. NMR spectra for all compounds

2a

웅

2b

$\widetilde{\infty}$
$\underset{\sim}{n}$
$\stackrel{1}{n}$

 \pm
i
i
i
i

[^0]

2g

2h

ぶ

2h

2k

2k

[^1]

䈁
$\tilde{\omega}$
i

21

[^2]

$$
\begin{aligned}
& \text { ঢin } \quad \underset{\sim}{\sim}
\end{aligned}
$$

$\underset{\underset{\sim}{\star}}{\stackrel{\Sigma}{\sim}}$

2n

そた

2q

[^3]

2s

2s

8 ® \sim		$\stackrel{\infty}{\sim}$

2t

$\underset{\sim}{i n}$

${ }^{1}$	190	180	17	160	150	140	1	1	110		90	80	70	60						
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ (\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

4b

$$
-54.415
$$

$$
\begin{gathered}
\underset{\sim}{O} \\
\stackrel{\infty}{1} \\
\stackrel{1}{2}
\end{gathered}
$$

∞
∞
∞
$\underset{\sim}{=}$
$=$

4c

4 e

N	\cdots	MN:
$\stackrel{1}{0}$	~	m凶in ${ }^{\circ}$
	\bigcirc	-

$4 e$

[^4]

4 f

									$$				$\begin{aligned} & \text { T' } \\ & \text { N } \\ & \text { Ni } \end{aligned}$							
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6. 0	5.5	$\begin{gathered} 5.0 \\ f 1(p) \end{gathered}$	4. 5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0. 0

$\begin{array}{ll}\infty & \bar{\omega} \\ \stackrel{\omega}{\infty} & \frac{\overline{0}}{\infty} \\ \stackrel{\infty}{\infty}\end{array}$

4 j

1		1		1	1	1	1		1	1										
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

(

$4 n$

$\begin{aligned} & n \underset{\sim}{w} \\ & \text { a } \\ & \underset{J}{\sim} \end{aligned}$	
	が心
	）

4p

$\stackrel{e}{m}$
i
i

4 r

5

10

18

$\begin{aligned} & \stackrel{\infty}{2} \\ & \stackrel{n}{1} \end{aligned}$		$\begin{aligned} & \text { m} \\ & \stackrel{\alpha}{l} \\ & \stackrel{m}{l} \end{aligned}$	$\begin{gathered} \stackrel{\circ}{\mathrm{o}} \\ \infty \\ \infty \\ \stackrel{\infty}{\mid} \end{gathered}$			$\begin{aligned} & \frac{0}{2} \\ & \underset{1}{i} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{i}{m} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { N } \\ & \text { in } \\ & \text { il } \end{aligned}$

18

19

[^5]

[^6]14. X-ray single crystal data for compounds $2 t$

Table S4. Crystal data and structure refinement for $\mathbf{2 t}$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

$2 t$

C28 H26 O2
394.49

293(2) K
$1.54178 \AA$
Orthorhombic
P 212121
$\mathrm{a}=10.5359(5) \AA \quad \alpha=90^{\circ}$.
$b=13.4642(6) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=15.7362(6) \AA \quad \gamma=90^{\circ}$.
2232.30(17) \AA^{3}

4
$1.174 \mathrm{Mg} / \mathrm{m}^{3}$
$0.563 \mathrm{~mm}^{-1}$
840
$0.200 \times 0.160 \times 0.140 \mathrm{~mm}^{3}$
5.052 to 67.485°.
$-12<=\mathrm{h}<=12,-16<=\mathrm{k}<=16,-18<=1<=18$
21085
$3966[\mathrm{R}(\mathrm{int})=0.0360]$
97.9 \%

Semi-empirical from equivalents
0.7533 and 0.5537

Full-matrix least-squares on F^{2}
3966 / 43/292
1.075
$\mathrm{R} 1=0.0399, \mathrm{wR} 2=0.1089$
$R 1=0.0418, w R 2=0.1111$
-0.08(9)
0.022(4)

Largest diff. peak and hole
0.221 and -0.144 e. \AA^{-3}

[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

