Supporting Information

Enantioselective Reductive Homocoupling of Allylic Acetates Enabled by Dual Photoredox/Palladium Catalysis: Access to C₂-Symmetrical 1,5-Dienes

Hong-Hao Zhang, Menghan Tang, Jia-Jia Zhao, Changhua Song, and Shouyun Yu*

State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 (China) E-mail: yushouyun@nju.edu.cn

Table of Contents

1.	General information	S3
2.	Numberings and structures of all compounds	S4
3.	Optimization of the conditions for 2a	S8
4.	General procedure for the synthesis of products 2 and 4	S12
	4.1 Synthesis of racemic products 2	S12
	4.2 Synthesis of chiral products 2	S13
	4.3 Synthesis of racemic products 4	S14
	4.4 Synthesis of chiral products 4	S15
5.	Product characterization	S18
6.	Mechanistic Studies	S105
	6.1 Stern-Volmer fluorescence quenching experiments	S105
	6.2 Preparation and homocoupling of π -allylpalladium complex 17	S106
	6.3 Radical trap experiments	S107
	6.4 Cyclic Voltammetry experiments	S110

	6.5 Proposed mechanism	S111
7.	Gram-scale preparation of 2s	.S114
8.	Derivatization of 2s	.S116
9.	Applications of 2t as chiral diene ligand	S133
10.	Attempt of enantioselective reductive cross-coupling	.S137
11.	Unsuccessful substrtates	S142
12.	References	.S143
13.	NMR spectra for all compounds	.S145
14.	X-ray single crystal data for compounds 2t	.S215

1. General information

Commercial reagents were purchased from Aldrich Chemical, Alfa Aesar, TCI, Strem, Acros, Energy Chemical, J&K Chemical, Innochem and were used as received. All catalytic reactions were run in dried glassware. Thin layer chromatography (TLC) was performed on EMD precoated plates (silica gel 60 F254, Art 5715) and visualized by fluorescence quenching under UV light and by staining with phosphomolybdic acid or potassium permanganate, respectively. Column chromatography was performed on EMD Silica Gel 60 (300-400 Mesh) using a forced flow of 0.5-1.0 bar. ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ¹⁹F (376 MHz) were measured on a Bruker AVANCE III-400 spectrometer. Chemical shifts are expressed in parts per million (ppm) with respect to the residual solvent peak. Coupling constants are reported as Hertz (Hz), signal shapes and splitting patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. GC-MS spectra were performed on Agilent 5977A Series (EI Source). High Resolution Mass spectra were performed on Agilent 1260 Series (ESI Source). High-pressure liquid chromatography (HPLC) was performed on Shimadzu SPD-20A and Agilent 1260 Series chromatographs using chiral columns as noted for each compound. Optical rotations were measured on an automatic polarimeter with $[\alpha]_D^{20}$ values reported in degrees; concentration (c) is in g/100 mL.

The allylic acetates (1 and 3) were prepared according to the literature procedure.¹

2. Numberings and structures of all compounds

 $R^{1} = CF_{3}; R^{2} = F, Ir(dFCF_{3}ppy)_{2}(dtbpy)PF_{6} (V)$ $R^{1} = CH_{3}; R^{2} = F, Ir(dFMeppy)_{2}(dtbpy)PF_{6} (V)$

 $R^1 = R^2 = H$, $Ir(ppy)_2(dtbbpy)PF_6$ (I)

NI

PhO

1j

F

ò

fac-lr(ppy)3 (II)

QAc

1n

MeO

/

1t

1у

QAc

/

<u></u>OAc

1m

QAc

/

/

QAc

1u

1v

1w

c

1s

Me ∠Me ,Me Me Ме DIPEA

2h

СІ

C

2р

2c

CF₃

PhO.

PhO

2g

2m

2s

MeO 2t

<u></u>QAc

Me

QAc

Me 3i

Ме

Me

Ö

11

14

10

3. Optimization of the conditions for 2a

Table S1. Screening of the chiral ligands^{*a*}

^{*a*}Reaction conditions: **1a** (0.2 mmol), HE (0.3 mmol), K₂CO₃ (0.3 mmol), Pd₂(dba)₃ (1.25 mol %), ligand (3 mol %), and photocatalyst **I** (1 mol %) in CH₃CN (4.0 mL) was irradiated by 45 W blue LEDs for 12 h. The yield, diastereoselectivity (*dr*), and regioselectivity (*rr*) were determined by GC. Enantiomeric excess (*ee*) values determined by HPLC on a chiral stationary phase. PMP = *para*-methoxyphenyl.

0 PMP (<u>+</u>)-'	Ac Ir(K ₂	[H] $ppy)_2(dtbbpy)PF_6$ $Pd_2(dba)_3$, L5 CO_3 , CH ₃ CN, N ₂ blue LED, 12 h	PMP PMP'' + BB (2a)	PMP + BB'	+ PMP ^{wr}	BL LI	,PMP ຳ PMP L
_			ee = (BB - BB')/(B	B + BB'), <i>dr</i> = (BB +	BB'):BB'';	+ BB' + BB"):(BL + LL)	ų.
_	entry	[H]	yield/% ^b	<i>ee</i> /% ^{<i>c</i>}	dr^b	rr ^b	
	1	HE	88	> 99	> 95:5	84:16	
	2	DIPEA	74	> 99	> 95:5	90:10	
	3	Et ₃ N	76	> 99	> 95:5	83:17	
	4	ⁿ Pr ₃ N	67	> 99	> 95:5	87:13	
	5	ⁿ Bu ₃ N	74	> 99	> 95:5	88:12	
	6	NMM	57	98	85:15	38:62	
	7	HCO ₂ H	71	72	74:26	30:70	
	8	HCO ₂ NH ₄	44	45	72:28	27:73	

Table S2. Screening of the reductant^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), reductant (0.3 mmol), K₂CO₃ (0.3 mmol), Pd₂(dba)₃ (1.25 mol %), ligand **L5** (3 mol %), and photocatalyst **I** (1 mol %) in the CH₃CN (4.0 mL) was irradiated by 45 W blue LEDs for 12 h. ^{*b*}Determined by GC. ^{*c*}Enantiomeric excess (*ee*) values determined by HPLC on a chiral stationary phase. PMP = *para*-methoxyphenyl.

Table S3. Optimization of the conditions for 2a	\mathbf{a}^{a}
---	------------------

OAc	DI Pd ₂	I PEA , PC 2(dba) ₃ , L5		/P/, PMP	↓ +	PMP	PMP
PMP	base	, solvent, N ₂		IP PMP'	PMF	BI	۳ PMP LL
(<u>+</u>)-1a	blue	; LED, 12 11	ee = (BB - BB')///	BB + BB'). <i>dr</i> = (BB +	BB'):BB'': <i>rr</i> = (B		 BL + LL) [‡]
				, (,,		/
entry	PC	solvent	base	yield/% ^b	<i>ee</i> /% ^{<i>c</i>}	dr^b	rr ^b
1	Ι	CH ₃ CN	K ₂ CO ₃	74	> 99	> 95:5	90:10
2	Π	CH ₃ CN	K_2CO_3	63	> 99	88:12	41:59
3	III	CH ₃ CN	K_2CO_3	49	> 99	> 95:5	48:52
4	IV	CH ₃ CN	K_2CO_3	50	> 99	94:6	34:66
5	V	CH ₃ CN	K_2CO_3	45	> 99	94:6	64:36
6	VI	CH ₃ CN	K_2CO_3	57	> 99	95:5	70:30
7	Ι	THF	K_2CO_3	71	> 99	> 95:5	87:13
8	I	DMF	K_2CO_3	68	> 99	> 95:5	86:14
9	I	DMAC	K_2CO_3	28	ND	ND	ND
10	Ι	DMSO	K_2CO_3	68	> 99	> 95:5	69:31
11	Ι	Tol	K_2CO_3	66	> 99	> 95:5	84:16
12	I	DCM	K_2CO_3	14	ND	ND	ND
13	Ι	CH ₃ CN	KHCO ₃	63	> 99	> 95:5	90:10
14	Ι	CH ₃ CN	K ₃ PO ₄	85	> 99	> 95:5	94:6
15	Ι	CH ₃ CN	K ₂ HPO ₄	50	> 99	> 95:5	93:7
16	Ι	CH ₃ CN	Na ₂ CO ₃	67	> 99	> 95:5	90:10
17	I	CH ₃ CN	Cs ₂ CO ₃	90	> 99	> 95:5	94:6
18	Ι	CH ₃ CN	Li ₂ CO ₃	41	> 99	> 95:5	91:9
19	Ι	CH ₃ CN	-	36	> 99	> 95:5	86:14
20^d	Ι	CH ₃ CN	Cs ₂ CO ₃	96 (92) ^e	> 99	> 95:5	> 95:5

^{*a*}Reaction conditions: **1a** (0.2 mmol), DIPEA (0.3 mmol), base (0.3 mmol), Pd₂(dba)₃ (1.25 mol %), ligand **L5** (3 mol %), and photocatalyst (1 mol %) in the indicated solvent (4.0 mL) was irradiated by 45 W blue LEDs for 12 h. ^{*b*}Determined by GC. ^{*c*}Enantiomeric excess (*ee*) values determined by

HPLC on a chiral stationary phase. ${}^{d}CH_{3}CN$ (2.0 mL) was used. ${}^{e}Isolated$ yields. PMP = *para*-methoxyphenyl.

Figure S1. GC spectrum of the reaction under initial condition and optimal condition.

4. General procedure for the synthesis of products 2

4.1 Synthesis of racemic products 2

General Procedure A: In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $Pd_2(dba)_3$ (2.3 mg, 0.0025 mmol, 1.25 mol%), (±)-BINAP (3.7 mg, 0.006 mmol, 3 mol%), anhydrous CH₃CN (1.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: $Ir(ppy)_2(dtbbpy)PF_6$ (2.0 mg, 0.002 mmol, 1.0 mol%), Cs₂CO₃ (97.8 mg, 0.3 mmol, 1.5 equiv), allylic acetates **1** (0.2 mmol, 1.0 equiv), DIPEA (40 mg, 0.3 mmol, 1.5 equiv) and anhydrous CH₃CN (1.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

General Procedure B: In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $Pd_2(dba)_3$ (2.3 mg, 0.0025 mmol, 1.25 mol%), (*R*)-2,2'-Bis[bis-(4-methoxy-3,5-di-*t*-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (*R*-L5) (3.7 mg, 0.003 mmol, 1.5 mol%), (*S*)-2,2'-Bis[bis(4-methoxy-3,5-di-*t*-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (*S*-L5) (3.7 mg, 0.003 mmol, 1.5 mol%), anhydrous CH₃CN (1.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: Ir(ppy)₂(dtbbpy)PF₆ (2.0 mg, 0.002 mmol, 2.0 mol%), Cs₂CO₃ (97.8 mg, 0.3 mmol, 1.5 equiv), allylic acetates **1** (0.2 mmol, 1.0 equiv), DIPEA (40 mg, 0.3 mmol, 1.5 equiv) and anhydrous CH₃CN (1.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted

with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

4.2 Synthesis of chiral products 2

General Procedure C (in-glovebox): In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $Pd_2(dba)_3$ (2.3 mg, 0.0025 mmol, 1.25 mol%), (*R*)-2,2'-Bis[bis(4-methoxy-3,5-di-*t*-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (L5) (7.3 mg, 0.006 mmol, 3 mol%), anhydrous CH₃CN (1.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: $Ir(ppy)_2(dtbbpy)PF_6$ (2.0 mg, 0.002 mmol, 1.0 mol%), Cs₂CO₃ (97.8 mg, 0.3 mmol, 1.5 equiv), allylic acetates **1** (0.2 mmol, 1.0 equiv), DIPEA (40 mg, 0.3 mmol, 1.5 equiv) and anhydrous CH₃CN (1.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

General Procedure C' (out-of-glovebox): In air, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, was charged with $Pd_2(dba)_3$ (2.3 mg, 0.0025 mmol, 1.25 mol%), (*R*)-2,2'-Bis-[bis(4-methoxy-3,5-di-*t*-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (L5) (7.3 mg, 0.006 mmol, 3 mol%). The tube was evacuated and backfilled with N₂ for 3 times (3 × 5 min). Degassed CH₃CN (1.0 mL) was added by syringe under N₂, and the mixture was stirred for 30 min. In air, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, was charged with Ir(ppy)₂(dtbbpy)PF₆ (2.0 mg, 0.002 mmol, 1.0 mol%), Cs₂CO₃ (97.8 mg, 0.3 mmol, 1.5 equiv), allylic acetates **1a** (0.2 mmol, 1.0 equiv), DIPEA (40 mg, 0.3 mmol, 1.5 equiv). The tube was evacuated and backfilled with N₂ for 3 times (3 × 5 min).

syringe under N_2 . Next, the Pd/ligand slurry was transferred via a syringe to the tube in a continuous flow over 10 seconds. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

4.3 Synthesis of racemic products 4

General Procedure D: In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $Pd_2(dba)_3$ (2.3 mg, 0.0025 mmol, 1.25 mol%), (±)-BINAP (3.7 mg, 0.006 mmol, 3 mol%), anhydrous CH₃CN (1.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: $Ir(ppy)_2(dtbbpy)PF_6$ (2.0 mg, 0.002 mmol, 1.0 mol%), Cs₂CO₃ (97.8 mg, 0.3 mmol, 1.5 equiv), allylic acetates **1** (0.2 mmol, 1.0 equiv), Hantzsch ester (HE) (76 mg, 0.3 mmol, 1.5 equiv) and anhydrous CH₃CN (1.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

General Procedure E: In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $Pd_2(dba)_3$ (2.3 mg, 0.0025 mmol, 1.25 mol%), (*R*)-2,2'-Bis[bis-(4-methoxy-3,5-di-*t*-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (*R*-L5) (3.7 mg, 0.003 mmol, 1.5 mol%), (*S*)-2,2'-Bis[bis(4-methoxy-3,5-di-*t*-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (*S*-L5) (3.7 mg, 0.003 mmol, 1.5 mol%), anhydrous CH₃CN (1.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: Ir(ppy)₂(dtbbpy)PF₆ (2.0 mg, 0.002 mmol, 2.0 mol%), Cs₂CO₃ (97.8 mg, 0.3 mmol, 1.5 equiv),

allylic acetates **1** (0.2 mmol, 1.0 equiv), Hantzsch ester (HE) (40 mg, 0.3 mmol, 1.5 equiv) and anhydrous CH_3CN (1.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

4.4 Synthesis of chiral products 4

General Procedure F: In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $Pd_2(dba)_3$ (2.3 mg, 0.0025 mmol, 1.25 mol%), (*R*)-2,2'-Bis[bis(4-methoxy-3,5-di-*t*-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (L5) (7.3 mg, 0.006 mmol, 3 mol%), anhydrous CH₃CN (1.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: $Ir(ppy)_2(dtbbpy)PF_6$ (2.0 mg, 0.002 mmol, 1.0 mol%), Cs₂CO₃ (97.8 mg, 0.3 mmol, 1.5 equiv), allylic acetates **1** (0.2 mmol, 1.0 equiv), Hantzsch ester (HE) (40 mg, 0.3 mmol, 1.5 equiv) and anhydrous CH₃CN (1.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

Reaction Setup

Medium-sized screw-cap test tubes (8 mL) were used for all 0.1 mmol scale reactions: Fisher13 x 100 mm tubes (Cat. No. 14-959-35C)

Cap with Septa: Thermo Scientific ASM PHN CAP w/PTFE/SIL (Cat. No. 03378316)

Figure S1. Spectrum of the blue LEDs source and absorption spectra of Ru(bpy)₃Cl₂ and Eosin Y

5. Product characterization

4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(methoxybenzene) (**2a):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50;1; Reaction time = 12 h; yield: 92% (27.1 mg); > 95:5 *dr*; >95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -57.5$ (c 3.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.02 – 6.86 (m, 2H), 6.78 – 6.63 (m, 2H), 6.23 – 5.87 (m, 1H), 5.07 (dd, *J* = 10.2, 1.7 Hz, 1H), 5.04 – 4.96 (m, 1H), 3.55 (dd, *J* = 5.8, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 141.0, 134.8, 129.1, 115.3, 113.5, 55.1, 54.9; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₃O₂ 295.1693; Found 295.1683; According to *General Procedure C*': **3aa** 90% GC yield, > 99% *ee*, > 95:5 *dr*, > 95:5 *rr*.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OJ, hexane/ethanol = 99/1, flow rate 0.8 mL/min, T = 25 °C, 220 nm): $t_R = 15.63 \text{ min (major)}, t_R = 17.56 \text{ min (minor)}. (\pm)-2a$: According to *General Procedure B*.

((3*S*,4*S*)-hexa-1,5-diene-3,4-diyl)dibenzene (2b)²: According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100;0 to 100:1; Reaction time = 12 h; yield: 84% (19.7 mg); 93:7 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -50.1$ (c 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.10 (m, 4H), 7.10 – 6.98 (m, 6H), 6.19 – 6.02 (m, 2H), 5.10 (dd, *J* = 10.2, 1.7 Hz, 2H), 5.04 (dd, *J* = 17.0, 1.6 Hz, 2H), 3.67 – 3.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 140.6, 140.1, 128.2, 128.1, 126.0, 115.8, 55.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₉ 235.1481; Found 235.1489.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OJ, hexane/ethanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 12.68 \text{ min (major)}, t_R = 14.25 \text{ min (minor)}. (\pm)-2b$: According to *General Procedure A*.

4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(methylbenzene) (**2c):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 94% (24.6 mg); 94:6 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -38.6$ (c 1.04, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.06 – 6.88 (m, 8H), 6.06 (dddd, *J* = 16.9, 10.2, 5.9, 2.4 Hz, 2H), 5.06 (dd, *J* = 10.2, 1.7 Hz, 2H), 5.01 (dd, *J* = 17.0, 1.7 Hz, 2H), 3.61 (dd, *J* = 5.9, 2.4 Hz, 2H), 2.24 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 139.7, 135.4, 128.9, 128.0, 115.4, 55.2, 21.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₃ 263.1794; Found 263.1786.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 14.12 min (major), t_R = 15.98 min (minor).

4,4''-((3*S***,4***S***)-hexa-1,5-diene-3,4-diyl)di-1,1'-biphenyl (2d):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100;0 to 100:1; Reaction time = 12 h; yield: 90% (34.7 mg); 91:9 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -22.7$ (c 0.79, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 4H), 7.45 – 7.35 (m, 8H), 7.33 – 7.27 (m, 2H), 7.18 – 7.12 (m, 4H), 6.22 – 6.10 (m, 2H), 5.17 – 5.06 (m, 4H), 3.73 (dd, *J* = 5.9, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 140.8, 140.4, 138.8, 128.6, 128.6, 127.0, 126.9, 126.9, 116.0, 55.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₇ 387.2108; Found 387.2116.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak AD-H, hexane/ethanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 12.44 \text{ min (major)}, t_R = 11.41 \text{ min (minor)}.$

4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(phenoxybenzene) (**2e):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100;1 to 50:1; Reaction time = 12 h; yield: 92% (38.5 mg); 93:7 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20}$ = -24.3 (c 0.76, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 4H), 7.10 – 7.04 (m, 2H), 7.03 – 6.94 (m, 5H), 6.94 – 6.89 (m, 3H), 6.87 – 6.80 (m, 4H), 6.19 – 6.05 (m, 2H), 5.14 (dd, J = 10.2, 1.6 Hz, 2H), 5.11 – 5.05 (m, 2H), 3.58 (dd, *J* = 5.7, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 155.1, 140.3, 137.7, 129.6, 129.5, 122.9, 118.9, 118.4, 116.0, 55.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₇O₂ requires m/z 419.2006, found m/z 419.1998.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OJ, hexane/ethanol = 95/5, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 19.48 \text{ min (major)}, t_R = 13.18 \text{ min (minor)}. (\pm)-2e$: According to *General Procedure A*.

4,4'-((3*S***,4***S***)-hexa-1,5-diene-3,4-diyl)bis((trifluoromethoxy)benzene) (2f):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100;0 to 100:1; Reaction time = 12 h; yield: 56% (22.5 mg); 92:8 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20}$ = -11.6 (c 0.55, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.05 – 6.91 (m, 8H), 6.13 – 6.00 (m, 2H), 5.15 (dd, *J* = 10.2, 1.4 Hz, 2H), 5.08 – 5.01 (m, 2H), 3.59 (dd, *J* = 5.7, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 140.9, 139.4, 129.3, 120.7, 120.40 (q, *J* = 256.9 Hz), 116.8, 55.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -58.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₇F₆O₂ requires m/z 403.1127, found m/z 403.1136.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 17.64$ min (major).

4,4'-((3*S***,4***S***)-hexa-1,5-diene-3,4-diyl)bis(fluorobenzene) (2g):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100;0 to 100:1; Reaction time = 12 h; yield: 86% (23.3 mg); 90:10 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -23.8$ (c 0.61, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.97 – 6.90 (m, 4H), 6.89 – 6.78 (m, 4H), 6.05 (dddd, *J* = 17.0, 10.2, 5.6, 2.4 Hz, 2H), 5.10 (dd, *J* = 10.2, 1.5 Hz, 2H), 5.01 (dd, *J* = 17.1, 1.5 Hz, 2H), 3.55 (dd, *J* = 5.7, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.2 (d, *J* = 244.2 Hz), 140.1, 138.0 (d, *J* = 3.3 Hz), 129.5 (d, *J* = 7.7 Hz), 116.2, 115.1(d, *J* = 21.3 Hz), 55.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.9; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₇F₂ requires m/z 271.1293, found m/z 271.1296. *Analysis of Stereochemistry:*

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 12.73 min (major).

4,4'-((*3S*,4*S***)-hexa-1,5-diene-3,4-diyl)bis(chlorobenzene)** (**2h**): According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100;0 to 100:1; Reaction time = 12 h; yield: 61% (18.5 mg); 92:8 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -17.4$ (c 0.53, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.09 (m, 4H), 6.96 – 6.91 (m, 4H), 6.11 – 5.94 (m, 2H), 5.11 (dd, *J* = 10.2, 1.5 Hz, 2H), 5.05 – 4.99 (m, 2H), 3.58 – 3.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 139.7, 131.9, 129.5, 128.4, 116.5, 116.5, 55.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₇Cl₂ requires m/z 303.0703, found m/z 303.0709.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 16.98 min (major), t_R = 15.65 min (minor).

4,4'-((3*S***,4***S***)-hexa-1,5-diene-3,4-diyl)bis((trifluoromethyl)benzene) (2i):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 58% (21.5 mg); 88:12 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20}$ = -13.7 (c 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 4H), 7.21 – 7.08 (m, 4H), 6.15 – 5.96 (m, 2H), 5.16 (dd, *J* = 10.2, 1.3 Hz, 2H), 5.09 – 5.01 (m, 2H), 3.74 – 3.68 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 139.0, 128.4, 125.3 (q, *J* = 3.8 Hz), 117.2, 55.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5; HRMS (ESI) m/z: [M+H]+ Calcd for C₂₀H₁₇F₆ requires m/z 371.1230, found m/z 371.1227.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 47.33 min (major).

3,3'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(methoxybenzene) (**2j):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50:1; Reaction time = 12 h; yield: 90% (26.5 mg); > 95:5 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} =$ -10.0 (c 0.56, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.04 (m, 2H), 6.72 – 6.52 (m, 6H), 6.15 – 6.01 (m, 2H), 5.09 (dd, *J* = 10.2, 1.7 Hz, 2H), 5.05 (dd, *J* = 17.0, 1.6 Hz, 2H), 3.70 (s, 6H), 3.59 (dd, *J* = 5.8, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 144.2, 140.3, 129.1, 120.6, 115.9, 114.1, 111.3, 55.7, 55.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₃O₂ requires m/z 295.1693, found m/z 295.1697.

Analysis of Stereochemistry:

Enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak OJ, hexane/isopropanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 22.89 \text{ min (major)}, t_R = 21.15 \text{ min (minor)}. (\pm)-2j$: According to *General Procedure A*.

3,3'-((35,45)-hexa-1,5-diene-3,4-diyl)bis(fluorobenzene) (2k): According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 66% (17.9 mg); 89:11 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -22.8$ (c 0.54, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.06 (m, 2H), 6.86 – 6.68 (m, 6H), 6.12 – 5.95 (m, 2H), 5.13 (dd, *J* = 10.2, 1.5 Hz, 2H), 5.08 – 5.02 (m, 2H), 3.61 – 3.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (d, *J* = 245.3 Hz), 144.8 (d, *J* = 7.1 Hz), 139.4, 129.6 (d, *J* = 8.4 Hz), 123.8 (d, *J* = 2.7 Hz), 116.7, 114.9 (d, *J* = 21.5 Hz), 113.1 (d, *J* = 20.9 Hz), 55.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₇F₂ requires m/z 271.1294, found m/z 271.1299. *Analysis of Stereochemistry:*

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: 99%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 14.06 \text{ min (major)}, t_R = 16.71 \text{ min (minor)}.$

2.63059 0.5127

2 16.709 FM

0.6787 107.13025

3,3'-((35,4S)-hexa-1,5-diene-3,4-diyl)bis((trifluoromethyl)benzene) (2l): According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 45% (16.7 mg); 85:15 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20}$ = -12.0 (c 0.36, CHCl₃); ¹¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.31 (m, 2H), 7.28 – 7.23 (m, 2H), 7.22 – 7.19 (m, 2H), 7.19 – 7.11 (m, 2H), 6.18 – 6.02 (m, 2H), 5.19 (dd, *J* = 10.1, 1.2 Hz, 2H), 5.08 (dd, *J* = 17.0, 1.2 Hz, 2H), 3.67 (dd, *J* = 5.6, 2.3 Hz, 2H); ¹¹³C NMR (100 MHz, CDCl₃) δ 142.9, 138.8, 131.5, 128.7, 124.9 (q, *J* = 3.4 Hz), 1231 (q, *J* = 3.5 Hz), 117.3, 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₇F₆ requires m/z 371.1230, found m/z 371.1235.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 7.97 \text{ min (major)}, t_R = 6.56 \text{ min (minor)}.$

2,2'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(methoxybenzene) (**2m):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50:1; Reaction time = 12 h; yield: 95% (27.9 mg); > 95:5 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} =$ -124.8 (c 1.88, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.08 (dd, *J* = 7.5, 1.8 Hz, 2H), 7.01 – 6.95 (m, 2H), 6.75 – 6.69 (m, 2H), 6.64 (dd, *J* = 8.2, 1.1 Hz, 2H), 6.19 – 6.05 (m, 2H), 5.05 – 5.03 (m, 2H), 5.02 – 4.98 (m, 2H), 4.24 (dd, *J* = 5.4, 2.5 Hz, 2H), 3.71 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 141.0, 131.3, 128.7, 126.7, 120.1, 115.1, 110.5, 55.4, 47.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₃O₂ requires m/z 295.1693, found m/z 295.1680.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 15.18 min (major).

 $1 \quad 15. \ 180 \ BB \qquad 0. \ 8189 \ \ 2. \ 45954e4 \qquad 420. \ 21155 \ \ 100. \ 0000$

2,2'-((3*S***,4***S***)-hexa-1,5-diene-3,4-diyl)bis(fluorobenzene) (2n):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 91% (24.6 mg); 94:6 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -21.0$ (c 0.34, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.09 (m, 2H), 7.02 (dddd, *J* = 8.2, 7.1, 5.2, 1.8 Hz, 2H), 6.97 – 6.89 (m, 2H), 6.88 – 6.79 (m, 2H), 6.18 – 6.03 (m, 2H), 5.15 – 5.05 (m, 4H), 4.06 (dd, *J* = 5.5, 2.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4 (d, *J* = 244.8 Hz), 139.1, 129.4 (d, *J* = 5.1 Hz), 127.7 (d, *J* = 8.5 Hz), 123.8 (d, *J* = 3.2 Hz), 116.6, 115.2 (d, *J* = 23.3 Hz), 47.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₇F₂ requires m/z 271.1294, found m/z 271.1300.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 12.58 min (major).

(S,S)-**2n'**

20

300 -200 -

100 0

[min]

Peak RetTime Type

Width

[min]

Area

[mAU*s]

10

Area

%

Height

[mAU]

15

20

2,2'-((35,4S)-hexa-1,5-diene-3,4-diyl)bis((trifluoromethyl)benzene) (20): According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 60% (22.2 mg); > 95:5 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} =$ -53.6 (c 0.42, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, *J* = 8.0, 1.3 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.36 – 7.29 (m, 2H), 7.17 – 7.07 (m, 2H), 6.11 – 5.94 (m, 2H), 5.14 (dd, *J* = 10.2, 1.2 Hz, 2H), 4.99 (d, *J* = 17.1 Hz, 2H), 4.34 – 4.23 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 140.1, 131.6, 129.5, 128.2 (q, *J* = 29.4 Hz), 126.1, 125.9 (q, *J* = 6.4 Hz), 124.5 (q, *J* = 274.4 Hz), 116.7, 49.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.9; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₇F₆ requires m/z 371.1230, found m/z 371.1238.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 8.97 min (major).

4,4'-((3S,4S)-hexa-1,5-diene-3,4-diyl)bis(benzo[*d*][**1,3**]**dioxole)** (**2p**): According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50:1; Reaction time = 12 h; yield: 93% (30.0 mg); 93:7 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20}$ = -26.8 (c 0.81, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.65 – 6.59 (m, 2H), 6.59 – 6.53 (m, 4H), 6.20 – 6.06 (m, 2H), 5.84 (d, *J* = 1.5 Hz, 2H), 5.78 (d, *J* = 1.5 Hz, 2H), 5.13 – 5.11 (m, 2H), 5.10 – 5.06 (m, 2H), 3.91 – 3.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 144.8, 138.8, 124.3, 121.6, 121.2, 116.2, 106.6, 100.3, 49.3; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉O₄ requires m/z 323.1279, found m/z 323.1273.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OJ, hexane/ethanol = 99/1, flow rate 0.8 mL/min, T = 25 °C, 220 nm): $t_R = 9.92 \text{ min (major)}, t_R = 11.63 \text{ min (minor)}. (\pm)-2p$: According to *General Procedure B*.

5,5'-((35,4S)-hexa-1,5-diene-3,4-diyl)bis(2,2-difluorobenzo[*d*][**1,3**]**dioxole**) (**2q**): According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 60% (23.6 mg); 85:15 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D{}^{20} = -13.1$ (c 1.21, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.86 – 6.83 (m, 2H), 6.81 – 6.77 (m, 2H), 6.74 – 6.67 (m, 2H), 6.00 (dddd, *J* = 16.9, 10.2, 5.6, 2.4 Hz, 2H), 5.14 (dd, *J* = 10.2, 1.4 Hz, 2H), 5.07 – 4.99 (m, 2H), 3.57 (dd, *J* = 5.6, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 142.1, 139.4, 138.3, 131.6 (t, *J* = 254.8 Hz), 123.2, 116.9, 109.2, 109.0, 55.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -49.87, -49.95; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₅F₄O₄ requires m/z 395.0901, found m/z 395.0911.

Analysis of Stereochemistry:

Enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 11.49 \text{ min (major)}, t_R = 8.68 \text{ min (minor)}.$

5,5'-((35,4S)-hexa-1,5-diene-3,4-diyl)bis(2,3-dihydrobenzofuran) (**2r):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50:1; Reaction time = 12 h; yield: 90% (28.6 mg); 91:9 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20}$ = -25.5 (c 0.47, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.86 (d, *J* = 1.7 Hz, 2H), 6.77 (dd, *J* = 8.2, 1.9 Hz, 2H), 6.58 (d, *J* = 8.2 Hz, 2H), 6.04 (dddd, *J* = 16.9, 10.1, 5.9, 2.4 Hz, 2H), 5.05 (dd, *J* = 10.2, 1.8 Hz, 2H), 5.00 (dd, *J* = 17.0, 1.7 Hz, 2H), 4.53 – 4.44 (m, 4H), 3.52 (dd, *J* = 5.9, 2.4 Hz, 2H), 3.14 – 3.05 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 134.8, 127.7, 126.6, 124.6, 115.1, 108.7, 71.1, 55.3, 29.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₃O₂ requires m/z 319.1693, found m/z 319.1699.

Analysis of Stereochemistry:

Enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak OJ, hexane/ethanol = 95/5, flow rate 0.8 mL/min, T = 25 °C, 220 nm): $t_R = 17.25$ min (major), $t_R = 20.92$ min (minor). (±)-2r: According to *General Procedure B*.

1,1'-((35,4S)-hexa-1,5-diene-3,4-diyl)dinaphthalene (2s): According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 94% (31.4 mg); > 95:5 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -121.2$ (c 1.48, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.5 Hz, 2H), 7.77 (dd, *J* = 8.1, 1.4 Hz, 2H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.53 – 7.47 (m, 2H), 7.47 – 7.41 (m, 2H), 7.36 – 7.29 (m, 2H), 7.17 (t, *J* = 7.7 Hz, 2H), 6.30 (dddd, *J* = 17.5, 10.2, 5.5, 2.3 Hz, 2H), 5.17 (dd, *J* = 10.2, 1.5 Hz, 2H), 5.07 (dd, *J* = 17.2, 1.5 Hz, 2H), 4.85 (dd, *J* = 5.4, 2.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 138.5, 134.0, 131.7, 129.1, 126.7, 125.9, 125.4, 125.3, 124.8, 123.3, 116.6, 48.3; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₃ requires m/z 335.1794, found m/z 335.1791.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD, hexane/ethanol = 95/5, flow rate 0.8 mL/min, T = 25 °C, 220 nm): $t_R = 8.04$ min (major), $t_R = 5.88$ min (minor). (±)-2s: According to *General Procedure B*.

4,4'-((35,4S)-hexa-1,5-diene-3,4-diyl)bis(1-methoxynaphthalene) (**2t):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50:1; Reaction time = 12 h; yield: 89% (35.1 mg); > 95:5 *dr*; > 95:5 *rr*; colorless solid, m.p. 168.4-169.7 $^{\circ}$ C; [α] $_{D}^{20}$ = -118.5 (c 2.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (ddd, *J* = 8.3, 1.5, 0.6 Hz, 2H), 8.20 - 8.11 (m, 2H), 7.54 (ddd, *J* = 8.4, 6.7, 1.5 Hz, 2H), 7.45 (ddd, *J* = 8.1, 6.8, 1.2 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 6.50 (d, *J* = 8.1 Hz, 2H), 6.30 - 6.16 (m, 2H), 5.13 (dd, *J* = 10.2, 1.6 Hz, 2H), 5.08 - 4.97 (m, 2H), 4.71 (dd, *J* = 5.4, 2.2 Hz, 2H), 3.83 (s, 6H); ¹¹³C NMR (101 MHz, CDCl₃) δ 153.7, 141.1, 132.5, 130.3, 126.3, 125.9, 124.55, 124.50, 123.0, 122.6, 115.9, 103.5, 55.2, 47.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₂₇O₂ requires m/z 395.2006, found m/z 395.2017.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 10.16 min (major), t_R = 17.69 min (minor).

2,2'-((35,4S)-hexa-1,5-diene-3,4-diyl)dinaphthalene (2u): According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 60% (20.1 mg); 91:9 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -38.4$ (c 0.86, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.65 (m, 4H), 7.64 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 1.7 Hz, 2H), 7.40 – 7.32 (m, 4H), 7.28 (dd, *J* = 8.5, 1.8 Hz, 2H), 6.24 (dddd, *J* = 17.0, 10.2, 5.7, 2.4 Hz, 2H), 5.16 (dd, *J* = 10.2, 1.6 Hz, 2H), 5.11 (dd, *J* = 17.0, 1.5 Hz, 2H), 3.98 (dd, *J* = 5.7, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 140.0, 133.4, 132.1, 127.8, 127.6, 127.5, 126.9, 126.6, 125.7, 125.2, 116.1, 55.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₃ requires m/z 335.1794, found m/z 335.1787.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OJ, pentane/ethanol = 95/5, flow rate 0.8 mL/min, T = 25 °C, 220 nm): $t_R = 14.89$ min (major). (±)-**2u**: According to *General Procedure A*.

6,6'-((35,4S)-hexa-1,5-diene-3,4-diyl)bis(2-methoxynaphthalene) (**2v):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50:1; Reaction time = 12 h; yield: 94% (37.1 mg); > 95:5 *dr*; > 95:5 *rr*; olorless solid, m.p. 179.2-180.4 $^{\circ}$ C; [α]_D²⁰ = -36.4 (c 1.76, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 9.0 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.49 – 7.44 (m, 2H), 7.24 (dd, *J* = 8.5, 1.7 Hz, 2H), 7.05 (dd, *J* = 8.9, 2.5 Hz, 2H), 7.00 (d, *J* = 2.5 Hz, 2H), 6.31 – 6.17 (m, 2H), 5.15 (dd, *J* = 10.3, 1.6 Hz, 2H), 5.10 (dd, *J* = 17.0, 1.5 Hz, 2H), 3.93 (dd, *J* = 5.8, 2.3 Hz, 2H), 3.85 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 140.8, 137.8, 133.1, 129.1, 128.9, 127.2, 126.7, 126.6, 118.5, 115.9, 105.5, 55.4, 55.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₂₇O₂ requires m/z 395.2006, found m/z 395.2019.

Analysis of Stereochemistry:

Enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak AD-H*2, hexane/ethanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 35.36 \text{ min (major)}, t_R = 34.41 \text{ min (minor)}. (\pm)-2v$: According to *General Procedure B*.

5,5'-((3*S***,4***S***)-hexa-1,5-diene-3,4-diyl)bis(benzofuran) (2w):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50:1; Reaction time = 12 h; yield: 94% (29.5 mg); 93:7 *dr*; >95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -27.7$ (c 1.11, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 2.2 Hz, 2H), 7.28 – 7.22 (m, 4H), 6.99 (dd, *J* = 8.6, 1.8 Hz, 2H), 6.60 (dd, *J* = 2.2, 0.9 Hz, 2H), 6.23 – 6.09 (m, 2H), 5.09 (dd, *J* = 10.3, 1.7 Hz, 2H), 5.07 – 5.01 (m, 2H), 3.79 (dd, *J* = 5.8, 2.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 144.9, 141.3, 137.2, 127.3, 124.6, 120.5, 115.5, 110.9, 106.5, 55.9; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₉O₂ requires m/z 315.1380, found m/z 315.1385.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OJ, hexane/ethanol = 95/5, flow rate 0.8 mL/min, T = 25 °C, 220 nm): $t_R = 17.58 \text{ min (major)}, t_R = 25.43 \text{ min (minor)}. (\pm)-3hh$: According to *General Procedure A*.

3,3'-((3*S***,4***S***)-hexa-1,5-diene-3,4-diyl)bis(benzo[***b***]thiophene) (2x): According to** *General**Procedure C* **Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50:1; Reaction time = 12 h; yield: 81% (28.1 mg); 92:8** *dr***; >95:5** *rr***; a colourless sticky oil; [\alpha]_D^{20} = -44.6 (c 1.34, CHCl₃); ¹H NMR (400 MHz, CDCl₃) \delta 7.86 – 7.77 (m, 4H), 7.39 – 7.31 (m, 4H), 7.11 – 7.06 (m, 2H), 6.24 – 6.09 (m, 2H), 5.19 (dd,** *J* **= 10.2, 1.5 Hz, 2H), 5.13 – 5.07 (m, 2H), 4.37 – 4.32 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) \delta 140.3, 138.5, 138.3, 136.8, 124.2, 123.8, 122.9, 122.2, 121.8, 117.1, 47.3; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₉S₂ requires m/z 347.0923, found m/z 347.0910.**

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 12.10 min (major), t_R = 10.74 min (minor).

2,2'-((3S,4S)-hexa-1,5-diene-3,4-diyl)didibenzo[*b,d*]**furan (2y):** According to *General Procedure C* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50:1; Reaction time = 12 h; yield: 91% (37.7 mg); 87:13 *dr*; > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -29.9$ (c 1.77, CHCl₃); ¹H NMR (400 MHz, Acetone-*d*₆) δ 8.00 – 7.93 (m, 4H), 7.53 – 7.47 (m, 2H), 7.41 (ddd, *J* = 8.3, 7.2, 1.3 Hz, 2H), 7.36 – 7.32 (m, 4H), 7.32 – 7.27 (m, 2H), 6.36 – 6.23 (m, 2H), 5.16 – 5.07 (m, 4H), 4.09 (dd, *J* = 5.8, 2.6 Hz, 2H); ¹³C NMR (100 MHz, Acetone-*d*₆) δ 157.1, 155.4, 142.7, 138.9, 128.8, 128.0, 125.0, 124.8, 123.6, 121.5, 121.2, 115.8, 112.3, 111.8, 56.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₃O₂ requires m/z 415.1693, found m/z 415.1683.

Analysis of Stereochemistry:

Enantiomeric excess: 96%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = 99/1, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 8.26 \text{ min (major)}, t_R = 7.11 \text{ min (minor)}. (\pm)-3hj$: According to *General Procedure B*.

4,4'-((2*E***,4***S***,5***S***,6***E***)-octa-2,6-diene-4,5-diyl)bis(methoxybenzene) (4a): According to** *General**Procedure F* **Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50;1; Reaction time = 12 h; yield: 64% (20.6 mg); 89:11** *dr***; >95:5** *rr***; a colourless sticky oil; [\alpha]_D^{20} = -36.5 (c 0.58, CHCl₃); ¹H NMR (400 MHz, CDCl₃) \delta 6.95 – 6.88 (m, 4H), 6.73 – 6.65 (m, 4H), 5.66 (ddt,** *J* **= 15.2, 5.9, 1.7 Hz, 2H), 5.44 – 5.29 (m, 2H), 3.72 (s, 6H), 3.44 (dd,** *J* **= 5.8, 2.3 Hz, 2H), 1.65 (dd,** *J* **= 6.4, 1.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta 157.4, 136.0, 133.7, 129.1, 125.8, 113.4, 55.1, 54.2, 18.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₇O₂ requires m/z 323.2006, found m/z 323.2013.**

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OJ*2, hexane/ethanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 25.50$ min (major. (±)-4a: According to *General Procedure E*.

((2*E*,4*S*,5*S*,6*E*)-octa-2,6-diene-4,5-diyl)dibenzene (4b): According to *General Procedure F* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; Reaction time = 12 h; yield: 87% (22.8 mg); > 95:5 *dr*; >95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -54.3$ (c 0.89, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.10 (m, 4H), 7.08 – 7.03 (m, 2H), 7.03 – 6.98 (m, 4H), 5.78 – 5.64 (m, 2H), 5.40 (dq, *J* = 15.2, 6.4 Hz, 2H), 3.53 (dd, *J* = 5.9, 2.3 Hz, 2H), 1.67 (dd, *J* = 6.4, 1.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 133.4, 128.2, 127.9, 126.3, 125.7, 55.1, 18.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₃ 263.1794; Found 263.1799.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OJ*2, hexane/ethanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 16.18$ min (major. (±)-4b: According to *General Procedure E*.

4,4'-((2*E***,4***S***,5***S***,6***E***)-octa-2,6-diene-4,5-diyl)bis(fluorobenzene) (4c): According to** *General**Procedure F* **Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; Reaction time = 12 h; yield: 82% (24.4 mg); > 95:5** *dr***; >95:5** *rr***; a colourless sticky oil; [\alpha]_D^{20} = -38.7 (c 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) \delta 6.95 – 6.88 (m, 4H), 6.87 – 6.79 (m, 4H), 5.73 – 5.58 (m, 2H), 5.38 (dq,** *J* **= 15.1, 6.4 Hz, 2H), 3.45 (dd,** *J* **= 5.8, 2.3 Hz, 2H), 1.67 (dd,** *J* **= 6.4, 1.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta 161.0 (d,** *J* **= 243.8 Hz), 139.2 (d,** *J* **= 2.6 Hz), 132.9, 129.4 (d,** *J* **= 7.8 Hz), 126.7, 114.8 (d,** *J* **= 21.0 Hz), 54.4, 18.0; ¹⁹F NMR (376 MHz, CDCl₃) \delta -117.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁F₂ 299.1606; Found 299.1602.**

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD*3, hexane/isopropanol = 99/1, flow rate 0.4 mL/min, T = 25 °C, 220 nm): $t_R = 25.92$ min (major). (±)-4c: According to *General Procedure E*.

4,4'-((2*E***,4***S***,5***S***,6***E***)-octa-2,6-diene-4,5-diyl)bis(chlorobenzene) (4d): According to** *General**Procedure F* **Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; Reaction time = 12 h; yield: 67% (22.1 mg); > 95:5** *dr***; >95:5** *rr***; a colourless sticky oil; [\alpha]_D^{20} = -58.3 (c 0.82, CHCl₃); ¹H NMR (400 MHz, CDCl₃) \delta 7.17 – 7.11 (m, 2H), 7.10 – 7.03 (m, 2H), 7.01 – 6.96 (m, 2H), 6.94 – 6.89 (m, 2H), 5.75 – 5.60 (m, 2H), 5.47 – 5.31 (m, 2H), 3.54 – 3.42 (m, 2H), 1.66 (dd,** *J* **= 6.5, 1.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta 143.4, 142.3, 133.0, 132.9, 129.5, 128.10, 128.08, 128.06, 126.8, 126.6, 125.9, 55.0, 54.3, 18.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁Cl₂ 331.1015; Found 331.1010.**

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak AD*2, hexane/isopropanol = 100/0, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 20.2 \text{ min (major) } (\pm)-4d$: According to *General Procedure E*.

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	20.208	VB	0.5667	4195.69580	110.31971	100.0000	

3,3'-((2*E***,4***S***,5***S***,6***E***)-octa-2,6-diene-4,5-diyl)bis(methoxybenzene) (4e): According to** *General**Procedure F* **Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50;1; Reaction time = 12 h; yield: 72% (23.2 mg); > 95:5** *dr***; >95:5** *rr***; a colourless sticky oil; [\alpha]_D^{20} = -43.7 (c 0.59, CHCl₃); ¹H NMR (400 MHz, CDCl₃) \delta 7.13 – 7.02 (m, 2H), 6.68 – 6.58 (m, 4H), 6.58 – 6.54 (m, 2H), 5.76 – 5.61 (m, 2H), 5.41 (dq,** *J* **= 15.1, 6.4 Hz, 2H), 3.70 (s, 6H), 3.53 – 3.45 (m, 2H), 1.67 (dd,** *J* **= 6.4, 1.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta 159.2, 145.4, 133.1, 128.9, 126.4, 120.7, 114.0, 111.1, 55.1, 55.0, 18.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₇O₂ 323.2006; Found 323.2009.**

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OJ*2, hexane/ethanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 20.81$ min (major. (±)-4e: According to *General Procedure E*.

3,3'-((2*E***,4***S***,5***S***,6***E***)-octa-2,6-diene-4,5-diyl)bis(fluorobenzene) (4f): According to** *General**Procedure F* **Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; Reaction time = 12 h; yield: 63% (18.8 mg); > 95:5** *dr***; >95:5** *rr***; a colourless sticky oil; [\alpha]_D^{20} = -50.2 (c 0.70, CHCl₃); ¹H NMR (400 MHz, CDCl₃) \delta 7.15 – 7.05 (m, 2H), 6.88 – 6.69 (m, 6H), 5.71 – 5.58 (m, 2H), 5.41 (dq,** *J* **= 15.2, 6.4 Hz, 2H), 3.53 – 3.45 (m, 2H), 1.68 (dd,** *J* **= 6.4, 1.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta 162.6 (d,** *J* **= 245.2 Hz), 146.1 (d,** *J* **= 6.8 Hz), 132.3, 129.4 (d,** *J* **= 8.3 Hz), 127.3, 123.8 (d,** *J* **= 2.7 Hz), 114.8 (d,** *J* **= 21.2 Hz), 112.8 (d,** *J* **= 21.1 Hz), 54.7 (d,** *J* **= 1.8 Hz), 18.0; ¹⁹F NMR (376 MHz, CDCl₃) \delta -113.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁F₂ 299.1606; Found 299.1610.**

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD*2, hexane/isopropanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 14.66$ min (major). (<u>+</u>)-**4f**: According to *General Procedure E*.

3,3'-((2E,4S,5S,6E)-octa-2,6-diene-4,5-diyl)bis(methylbenzene) (**4g):** According to *General Procedure F* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; Reaction time = 12 h; yield: 71% (20.6 mg); > 95:5 *dr*; >95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -52.1$ (c 0.38, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.08 – 6.99 (m, 2H), 6.91 – 6.75 (m, 6H), 5.76 – 5.61 (m, 2H), 5.38 (dq, *J* = 15.2, 6.4 Hz, 2H), 3.52 – 3.45 (m, 2H), 2.24 (s, 6H), 1.67 (dd, *J* = 6.4, 1.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 137.3, 133.4, 129.0, 127.7, 126.4, 126.1, 125.2, 54.9, 21.4, 18.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₇ 291.2107; Found 291.2103. *Analysis of Stereochemistry:*

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol = 100/0, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 12.23$ min (major). (±)-4g: According to *General Procedure D*.

2,2'-((2*E***,4***S***,5***S***,6***E***)-octa-2,6-diene-4,5-diyl)bis(methoxybenzene) (4h): According to** *General**Procedure F* **Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50;1; Reaction time = 12 h; yield: 80% (25.8 mg); > 95:5** *dr***; >95:5** *rr***; a colourless sticky oil; [\alpha]_D^{20} = -97.0 (c 0.84, CHCl₃); ¹H NMR (400 MHz, CDCl₃) \delta 7.08 (dd,** *J* **= 7.6, 1.7 Hz, 2H), 6.96 (ddd,** *J* **= 8.2, 7.4, 1.8 Hz, 2H), 6.77 – 6.68 (m, 2H), 6.63 (dd,** *J* **= 8.2, 1.1 Hz, 2H), 5.72 (ddq,** *J* **= 12.8, 5.4, 1.7 Hz, 2H), 5.39 (dq,** *J* **= 15.2, 6.4 Hz, 2H), 4.13 (dd,** *J* **= 5.4, 2.4 Hz, 2H), 3.70 (s, 6H), 1.65 (dd,** *J* **= 6.4, 1.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta 156.7, 133.8, 132.5, 128.7, 126.4, 125.6, 120.0, 110.4, 55.4, 46.1, 18.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₇O₂ 323.2006; Found 323.2001.** *Analysis of Stereochemistry:*

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD*3, hexane/ethanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 22.59$ min (major). (<u>+</u>)-**4h**: According to *General Procedure E*.

2,2'-((2*E***,4***S***,5***S***,6***E***)-octa-2,6-diene-4,5-diyl)bis(methylbenzene) (4i): According to** *General**Procedure F* **Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; Reaction time = 12 h; yield: 81% (23.5 mg); > 95:5** *dr***; >95:5** *rr***; a colourless sticky oil; [\alpha]_D^{20} = -170.2 (c 0.47, CHCl₃); ¹H NMR (400 MHz, CDCl₃) \delta 7.09 (dd,** *J* **= 7.7, 1.3 Hz, 2H), 7.05 – 6.98 (m, 2H), 6.98 – 6.86 (m, 4H), 5.62 (dddd,** *J* **= 15.1, 7.3, 3.3, 1.5 Hz, 2H), 5.35 (dq,** *J* **= 15.2, 6.4 Hz, 2H), 3.90 (dd,** *J* **= 5.4, 2.4 Hz, 2H), 2.22 (s, 6H), 1.66 (dd,** *J* **= 6.4, 1.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) \delta 133.9, 130.0, 126.8, 125.7, 125.6, 125.4, 48.6, 19.7, 18.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₇ 291.2107; Found 291.2108.**

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD*2, hexane/isopropanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 13.89$ min (major). (±)-4i: According to *General Procedure D*.

2,2'-((2*E***,4***S***,5***S***,6***E***)-octa-2,6-diene-4,5-diyl)bis(chlorobenzene) (4j): According to** *General**Procedure F* **Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50;1; Reaction time = 12 h; yield: 60% (19.9 mg); > 95:5** *dr***; >95:5** *rr***; a colourless sticky oil; [\alpha]_D^{20} = -172.2 (c 0.46, CHCl₃); ¹H NMR (400 MHz, CDCl₃) \delta 7.21 (dd,** *J* **= 7.8, 1.7 Hz, 2H), 7.16 (dd,** *J* **= 7.9, 1.4 Hz, 2H), 7.09 – 7.02 (m, 2H), 6.97 – 6.90 (m, 2H), 5.64 – 5.52 (m, 2H), 5.46 (dq,** *J* **= 15.2, 6.2 Hz, 2H), 4.30 (dd,** *J* **= 5.0, 2.4 Hz, 2H), 1.66 (dd,** *J* **= 6.2, 1.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta 140.5, 133.6, 132.4, 129.2, 128.7, 127.1, 126.9, 126.6, 48.3, 18.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁Cl₂ 331.1015; Found 331.1017.**

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OJ*3, hexane/ethanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 21.84$ min (major). (±)-4j: According to *General Procedure E*.

((**3E**,**5S**,**6S**,**7E**)-**deca-3**,**7**-**diene-5**,**6**-**diyl**)**dibenzene** (**4k**): According to *General Procedure F* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; Reaction time = 12 h; yield: 83% (24.1 mg); > 95:5 *dr*; >95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -42.3$ (c 0.53, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.09 (m, 4H), 7.09 – 6.97 (m, 6H), 5.74 – 5.60 (m, 2H), 5.44 (dt, *J* = 15.2, 6.3 Hz, 2H), 3.52 (dd, *J* = 6.0, 2.4 Hz, 2H), 2.07 – 1.96 (m, 4H), 0.97 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 133.4, 131.1, 128.2, 127.9, 125.7, 55.2, 25.6, 13.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₇ 291.2107; Found 291.2109.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak IG*2, hexane/isopropanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 13.11$ min (major). (±)-4k: According to *General Procedure D*.

((4*E*,6*S*,7*S*,8*E*)-dodeca-4,8-diene-6,7-diyl)dibenzene (4l): According to *General Procedure F* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50;1; Reaction time = 12 h; yield: 81% (25.8 mg); > 95:5 *dr*; >95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -33.0$ (c 0.74, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.08 (m, 4H), 7.07 – 6.95 (m, 6H), 5.76 – 5.61 (m, 2H), 5.39 (dt, *J* = 15.2, 6.8 Hz, 2H), 3.53 (dd, *J* = 6.0, 2.4 Hz, 2H), 2.04 – 1.91 (m, 4H), 1.43 – 1.30 (m, 4H), 0.87 (t, *J* = 7.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 132.3, 131.7, 128.2, 127.9, 125.6, 55.2, 34.7, 22.5, 13.7; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₃₁ 319.2420; Found 319.2424.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD*2, hexane/isopropanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 13.51$ min (major). (±)-4l: According to *General Procedure D*.

((*6E*,8*S*,9*S*,10*E*)-hexadeca-6,10-diene-8,9-diyl)dibenzene (4m): According to *General Procedure F* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50;1; Reaction time = 12 h; yield: 85% (31.8 mg); > 95:5 *dr*; >95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -50.9$ (c 0.94, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.07 (m, 4H), 7.07 – 6.94 (m, 6H), 5.67 (ddd, *J* = 15.3, 6.1, 2.2 Hz, 2H), 5.38 (dt, *J* = 15.1, 6.7 Hz, 2H), 3.61 – 3.43 (m, 2H), 1.98 (q, *J* = 7.0 Hz, 4H), 1.38 – 1.17 (m, 12H), 0.87 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 131.99, 131.95, 128.2, 127.9, 125.6, 55.2, 32.6, 31.4, 29.1, 22.5, 14.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₃₉ 375.3046; Found 375.3048.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD*2 hexane/isopropanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 13.33$ min (major). (<u>+</u>)-**4m**: According to *General Procedure D*.

(1*R*,2*R*)-1,2-di(cyclopent-1-en-1-yl)-1,2-diphenylethane (4n): According to *General Procedure F* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; Reaction time = 12 h; yield: 78% (24.5 mg); > 95:5 *dr*; >95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20}$ = 36.5 (c 0.49, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.12 – 7.01 (m, 8H), 7.01 – 6.95 (m, 2H), 5.60 (p, *J* = 2.1 Hz, 2H), 4.05 (s, 2H), 2.27 (dtt, *J* = 12.1, 7.7, 2.2 Hz, 6H), 2.20 – 2.10 (m, 2H), 1.82 – 1.69 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 142.3, 128.4, 127.7, 125.6, 124.7, 50.9, 32.8, 32.3, 23.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₇ 343.2420; Found 343.2426.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD, hexane/ethanol = 99.9/0.1, flow rate 0.8 mL/min, T = 25 °C, 220 nm): $t_R = 7.08$ min (major). (±)-4n: According to *General Procedure D*.

(1*R*,2*R*)-1,2-di(cyclohex-1-en-1-yl)-1,2-diphenylethane (4o): According to *General Procedure F* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; Reaction time = 12 h; yield: 68% (23.2 mg); > 95:5 *dr*; >95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20}$ = -98.8 (c 0.58, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.05 (m, 8H), 7.04 – 6.94 (m, 2H), 5.74 – 5.67 (m, 2H), 3.92 (s, 2H), 2.08 – 2.00 (m, 6H), 1.73 – 1.62 (m, 2H), 1.53 – 1.43 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 139.2, 128.5, 127.7, 125.5, 122.8, 54.7, 25.6, 24.9, 23.1, 22.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₃₁ 343.2420; Found 343.2423.

Analysis of Stereochemistry:

Enantiomeric excess: 96%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 5.53$ min (major), $t_R = 8.28$ min (minor). (±)-40: According to *General Procedure D*.

(1*S*,2*S*)-1,2-bis(5,6-dihydro-2*H*-pyran-3-yl)-1,2-diphenylethane (4p): According to *General Procedure F* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50;1; Reaction time = 12 h; yield: 66% (22.8 mg); > 95:5 *dr*; >95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20}$ = 47.9 (c 0.61, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.10 – 7.03 (m, 4H), 7.03 – 6.99 (m, 2H), 6.99 – 6.93 (m, 4H), 5.89 (tt, *J* = 3.9, 1.8 Hz, 2H), 4.06 – 3.91 (m, 4H), 3.72 – 3.62 (m, 6H), 2.20 (ddt, *J* = 8.2, 5.4, 2.8 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 138.2, 128.2, 128.0, 126.1, 119.5, 66.7, 64.3, 51.8, 25.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₇O₂ 347.2006; Found 347.2010. *Analysis of Stereochemistry:*

Enantiomeric excess: 94%, determined by HPLC (Daicel Chiralpak AD, hexane/ethanol = 95/5, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 20.78 \text{ min (major)}, t_R = 7.46 \text{ min (minor)}. (\pm)-4p$: According to *General Procedure E*.

#	[mīu]		[min]	[mau*s]	[mau]	70	
1	7.455	FM	0.1911	458.71402	40.01353	2.9150	
2	20.781	BB	1.0216	1.52774e4	240.34894	97.0850	

2 20.683 MF 1.0078 462.16476 7.64327 2.8639

((*3E*,5*R*,6*R*,7*E*)-4,7-dimethyldeca-3,7-diene-5,6-diyl)dibenzene (4q): According to *General Procedure F* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; Reaction time = 12 h; yield: 60% (19.1 mg); > 95:5 *dr*; >95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20}$ = -117.4 (c 0.54, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.06 (m, 8H), 7.06 – 6.95 (m, 2H), 5.55 – 5.43 (m, 2H), 3.98 (s, 2H), 1.98 (dq, *J* = 15.1, 7.5 Hz, 4H), 1.48 (s, 6H), 0.95 (t, *J* = 7.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 135.9, 128.6, 128.1, 127.7, 125.5, 55.4, 21.1, 14.2, 12.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₃₁ 319.2420; Found 319.2425.

Analysis of Stereochemistry:

Enantiomeric excess: 90%, determined by HPLC (Daicel Chiralpak OJ*2, hexane/ethanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 13.88 \text{ min (major)}, t_R = 15.07 \text{ min (minor)}. (\pm)-4q$: According to *General Procedure E*.

((1*E*,3*S*,4*S*,5*E*)-hexa-1,5-diene-1,3,4,6-tetrayl)tetrabenzene (4r): According to *General Procedure F* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:1 to 50;1; Reaction time = 6 h; yield: 80% (30.9 mg); > 95:5 *dr*; a colourless sticky oil; $[\alpha]_D^{20} = 58.5$ (c 0.42, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.30 (m, 4H), 7.29 – 7.24 (m, 5H), 7.22 – 7.16 (m, 5H), 7.15 – 7.07 (m, 6H), 6.55 (ddd, *J* = 15.7, 5.7, 2.3 Hz, 2H), 6.41 (d, *J* = 15.8 Hz, 2H), 3.90 (dd, *J* = 5.7, 2.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 137.5, 132.2, 131.4, 128.5, 128.4, 128.2, 127.2, 126.3, 126.2, 55.3; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₇ 387.2107; Found 387.2103. *Analysis of Stereochemistry:*

Enantiomeric excess: 92%, determined by HPLC (Daicel Chiralpak IG, hexane/isopropanol = 99/1, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 7.44$ min (major), $t_R = 5.37$ min (minor). (<u>+</u>)-**4r**: According to *General Procedure D*.

6. Mechanistic Studies

6.1 Stern-Volmer fluorescence quenching experiments

A Hitachi F-7000 fluoresence spectrometer was used to record the emission intensities. All $Ir(ppy)_2(dtbbpy)PF_6$ solutions were excited at 400 nm and the emission intensity at 553 nm was observed. CH₃CN was degassed with a stream of Ar for 30 min. In a typical experiment, the emission spectrum of a 2×10^{-5} M solution of $Ir(ppy)_2(dtbbpy)PF_6$ in CH₃CN was collected. Then, appropriate amount of quencher was added to the measured solution in a quartz cuvette and the emission spectrum of the sample was collected. I₀ and I represent the intensities of the emission in the absence and presence of the quencher at 553 nm.

Figure S2. Emission spectra of 2×10^{-5} M Ir(ppy)2(dtbbpy)PF6 at $\lambda ex = 400$ nm showing the quenching effect of increasing of DIPEA.

Figure S3. Emission spectra of 2×10^{-5} M Ir(ppy)2(dtbbpy)PF6 at $\lambda ex = 400$ nm showing the quenching effect of increasing of **1a**.

Figure S4. The Stern–Volmer plot.

Stern–Volmer quenching experiments indicate that DIPEA quenches photoexcited catalyst I.

6.2 Preparation and homocoupling of π -allylpalladium complex 17

In a glove box, to a 50 mL of seal tube equipped with a stir bar was added Silver tetrafluoroborate (277 mg, 1.43 mmol). The seal tube was screw septum and brought out of the glove box. CH2Cl2 (10 mL) and [Pd(l-Phenylallyl)C1]₂ (300 mg, 0.57 mmol) were added to the seal tube at 0 °C. After stirring for 1 h at this temperature, a solution of PPh₃ (600 mg, 2.28 mmol) in CH₂Cl₂ (10 mL) was added at 0 °C. The paleyellow suspension was centrifugalized, and the solution was transferred to another seal tube followed by concentration under reduced pressure to give **17** (361 mg, 76%) as a pale yellow powder. This compound is known.^{3 1}H NMR (400 MHz, CDCl₃) δ 7.47 – 6.72 (m, 35H), 6.48 – 6.28 (m, 1H), 5.49 – 5.38 (m, 1H), 3.79 (t, *J* = 11.3 Hz, 1H), 3.68 (t, *J* = 6.8 Hz, 1H).

In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $Ir(ppy)_2(dtbbpy)PF_6$ (1.0 mg, 0.001 mmol, 1.0 mol%), Cs₂CO₃ (48.9 mg, 0.15 mmol, 1.5 equiv), π -allylpalladium complex **17** (83.5 mg, 0.1 mmol, 1.0 equiv), DIPEA (20 mg, 0.15 mmol, 1.5 equiv) and anhydrous CH₃CN (1.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography. Flash column chromatography eluent, petroleum ether/ethyl acetate = 100;0 to 100:1; yield: 53% (6.2 mg); 50:50 dr; 18:82 rr.

This result demonstrates that π -allylpalladium complex might be the key intermediate of this reaction.

6.3 Radical trap experiments

In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $Pd_2(dba)_3$ (2.3 mg, 0.0025 mmol, 1.25 mol%), (*R*)-2,2'-Bis[bis(4-methoxy-3,5-di-*t*-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (**L5**) (7.3 mg, 0.006 mmol, 3 mol%), anhydrous CH₃CN (1.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: $Ir(ppy)_2(dtbbpy)PF_6$ (2.0 mg, 0.002 mmol, 1.0 mol%), Cs₂CO₃ (97.8 mg, 0.3 mmol, 1.5 equiv), allylic acetates **1a** (41.2 mg, 0.2 mmol, 1.0 equiv), DIPEA (40 mg, 0.3 mmol, 1.5 equiv), 2,2,6,6-tetramethylpiperidine-*N*-oxyl radical (TEMPO, x equiv, x = 1, 2, 3) and anhydrous CH₃CN (1.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

when the radical trapping reagent TEMPO was added to the model reaction of **1a**, the reaction efficiency decreased dramatically, and the allyl-TEMPO adduct **18** was isolated. This compound is known.⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.31 (m, 2H), 6.91 – 6.82 (m, 2H), 6.55 (dt, *J* = 16.0, 1.5 Hz, 1H), 6.17 (dt, *J* = 15.9, 6.1 Hz, 1H), 4.43 (dd, *J* = 6.1, 1.5 Hz, 2H), 3.81 (s, 3H), 1.63 – 1.31 (m, 6H), 1.22 (s, 6H), 1.14 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 131.2, 129.9, 127.6, 123.3, 113.9, 78.3, 59.8, 55.3, 39.7, 33.1, 20.3, 17.2.

In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $Pd_2(dba)_3$ (2.3 mg, 0.0025 mmol, 1.25 mol%), (*R*)-2,2'-Bis[bis(4-methoxy-3,5-di-*t*-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (**L5**) (7.3 mg, 0.006 mmol, 3 mol%), anhydrous CH₃CN (1.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: Cs₂CO₃ (97.8 mg, 0.3 mmol, 1.5 equiv), allylic acetates **1a** (41.2 mg, 0.2 mmol, 1.0 equiv), 2,2,6,6-tetramethylpiperidine-*N*-oxyl radical (TEMPO, 93.6 mg, 0.6 mmol, 3 equiv) and anhydrous CH₃CN (1.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously at room temperature for 12 h.

The allyl-TEMPO adduct **18** could not be detected in the absence of reductive photocatalysis conditions, which revealed that the radical trapping product was not formed through the directly nucleophilic addition of TEMPO to the formed π -allylpalladium complex.

In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $Ir(ppy)_2(dtbbpy)PF_6$ (1.0 mg, 0.001 mmol, 1.0 mol%), Cs₂CO₃ (49.8 mg, 1.5 mmol, 1.5 equiv), π -allylpalladium complex **17** (83.5 mg, 0.1 mmol, 1.0 equiv), DIPEA (20 mg, 1.5 mmol, 1.5 equiv), 2,2,6,6-tetramethylpiperidine-*N*-oxyl radical (TEMPO, 46.8 mg, 0.3 mmol, 3 equiv) and anhydrous CH₃CN (1.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100

mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

In the presence of TEMPO, allyl radical trapping **19** was also observed in the reaction of π -allylpalladium complex **17.** This compound is known.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.1 Hz, 2H), 7.37 – 7.29 (m, 2H), 7.26 – 7.18 (m, 1H), 6.61 (d, J = 16.0 Hz, 1H), 6.31 (dt, J = 16.0, 5.9 Hz, 1H), 4.47 (dd, J = 6.0, 1.6 Hz, 2H), 1.71 – 1.55 (m, 1H), 1.50 (d, J = 4.3 Hz, 4H), 1.41 – 1.31 (m, 1H), 1.23 (s, 6H), 1.16 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 131.4, 128.5, 127.5, 126.5, 125.6, 78.1, 59.8, 39.7, 33.1, 20.3, 17.2.

These results suggest that allylic radical might be generated from π -allylpalladium complex in the assistance of light and photocatalyst.

6.4 Cyclic Voltammetry experiments

Cyclic Voltammetry were collected using CHI660E from Shanghai Chenhua Instruments Limited (SCHI). A solution of the sample in MeCN (0.001 M) was tested with 0.1 M Bu_4NPF_6 as the supporting electrolyte, using a glassy carbon as the working electrode, a Pt as the counter electrode, and a saturated calomel electrode reference electrode. Scan rate = 0.1 V/s.

Figure S5. Cyclic Voltammogram of 1b, $E_{1/2} = -1.43$ V vs SCE.

Figure S6. Cyclic Voltammogram of 17, $E_{1/2} = -0.95$ V vs SCE.

The redox potentials indicate that the allyl radical is more likely generated from π -allylpalladium complex **17**, which is more easily reduced than allylic acetate **1b** by Ir(II) complex ($E_{1/2}$ (Ir^{III}/Ir^{II}) = -1.51 V vs SCE) to give the allylic radical.

6.5 Proposed mechanism

Based on the abovementioned results and previous published work on photoredox/Pd cocatalysis, plausible mechanisms are depicted in Figure S6 and Figure S7.

DIPEA ($E_{1/2} = +0.68$ V vs SCE) quenches visible-light excited Ir(III)* ($E_{1/2}$ (Ir^{III}*/Ir^{II}) = +0.66 V

vs SCE) to generate low-valent Ir(II) complex and the radical cation DIPEA⁺⁺. Meanwhile, Pd(0) oxidatively adds to the allylic acetate 1 to give a π -allyl-Pd(II) complex **A**. The single-electron reduction of **A** by Ir(II) complex can generate a π -allyl-Pd(I) complex **B**, which can equilibrate with an allylic radical species **C** and a Pd(0) species. The second oxidative addition of another allylic acetate 1 to **B** would give the bis(π -allyl)-Pd(III) complex **D** equilibrated with bis(η^1 -allyl)-Pd(III) complex **D**' (Path a). Alternatively, allylic radical species **C** is trapped by π -allyl-Pd(II) complex **A** to generate **D**/**D**' (Path b). Reductive elimination from **D**/**D**' yields the homocoupling product 2 and a Pd(I) species **E**. Finally single-electron reduction of **E** more likely by Ir(II) complex would regenerate Pd(0).

Figure S8. Pd(0/II/III/II) mechanism.

The Pd(III) intermediate D/D' could also be reduced to a bis(allyl)-Pd(II) species F/F', and then undergo a reductive elimination to deliver the final product **2**.

Figure S9. Proposed asymmetric induction model.

7. Gram-scale preparation of 2s

In a nitrogen-filled glovebox, a 500 mL round bottom flask, equipped with a magnetic stir bar, charged with Pd₂(dba)₃ (1.25 mol%, 4 mmol scale: 46 mg, 0.05 mmol; 10 mmol scale: 115 mg, 0.125 mmol), (R)-2,2'-Bis[bis(4-methoxy-3,5-di-t-butylphenyl)phosphine]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (L5) (3 mol%, 4 mmol scale: 146 mg, 0.12 mmol; 10 mmol scale: 365 mg, 0.3 mmol), anhydrous CH₃CN (4 mmol scale: 20.0 mL; 10 mmol scale: 50.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: Ir(ppy)₂(dtbbpy)PF₆ (1.0 mol%, 4 mmol scale: 40 mg, 0.04 mmol; 10 mmol scale:100 mg, 0.1 mmol), Cs₂CO₃ (1.5 equiv, 4 mmol scale: 1.956 g, 6 mmol; 10 mmol scale: 4.89 g, 15 mmol), allylic acetates 1s (1.0 equiv, 4 mmol scale: 0.904 g, 4.0 mmol; 10 mmol scale: 2.26 g, 10.0 mmol), DIPEA (1.5 equiv, 4 mmol scale: 0.8 g, 6 mmol; 10 mmol scale: 2.0 g, 15 mmol) and anhydrous CH₃CN (4 mmol scale: 20.0 mL; 10 mmol scale: 50.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45 W blue LED lights at room temperature for 12 h. Next, the reaction mixture was transferred to a 500 mL separatory funnel, rinsed/diluted with 200 mL ether, and washed with 200 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography to 2s (4 mmol scale: 0.52 g, 78%; 10 mmol scale: 1.10 g, 66%).

8. Derivatization of 2s

Hydrogenation of 2s

In an oven and vacuum-dried 10 mL two-necked round-bottom flask, a solution of **2s** (0.2 mmol, 1.0 equiv) in EtOH (2 mL), 10% Pd/C (0.01 mmol, 5 mol%) was added. The resulting mixture was degassed and stirred under H₂ balloon pressure for 12 h at room temperature. The reaction mixture was filtered and washed with CH_2Cl_2 . The filtrate was concentrated under reduced pressure and the residue was purified by chromatography on silica gel to afford compound **5**.

1,1'-((35,4S)-hexane-3,4-diyl)dinaphthalene (5): Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; yield: 98% (66.2 mg); a colourless sticky oil; $[\alpha]_D^{20} = -171.5$ (c 1.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.3 Hz, 2H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.58 – 7.45 (m, 4H), 7.45 – 7.38 (m, 2H), 7.34 – 7.15 (m, 4H), 4.20 – 3.80 (m, 2H), 2.27 – 2.11 (m, 2H), 2.03 – 1.90 (m, 2H), 0.73 (t, *J* = 7.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 133.7, 132.8, 128.8, 126.0, 125.3, 125.0, 124.9, 123.6, 44.3, 25.9, 11.7; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₇ 339.2107; Found 339.2110.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): $t_R = 17.91 \text{ min (major)}, t_R = 17.45 \text{ min (minor)}.$

 $1 \quad 17.\ 346\ VB \qquad 0.\ 3299\ 3.\ 36495e4 \quad 1528.\ 30640\ 100.\ 0000$

Hydroboration/Suzuki cross-coupling of 2s

To the dry 25 mL flask with a magnetic stirring bar was added 2s (0.2 mmol, 1.0 equiv.) and dry THF (2.0 mL) and then added the solution of 9-BBN (1.0 mL, 0.5 M, 0.5 mmol, 2.5 equiv) at 0 °C under N₂ atmosphere. After 12 h at rt, Pd(dppf)Cl₂ (10 mol%), iodobenzene (4.0 equiv) and aqueous NaOH (3.0 mL, 3 M) were added successively to the above mixture at rt and then reacted 16 h under reflux. The reaction mixture was diluted with hexane (10.0 mL), and the residual borane was oxidized by addition of H₂O₂ (30%, 2.0 mL) at rt. The mixture was extracted with CH₂Cl₂ (3 × 5.0 mL). The residue was purified by chromatography on silica gel to afford compound **6**.

1,1'-((*3S*,*4S***)-1,6-diphenylhexane-3,4-diyl)dinaphthalene (6):** Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; yield: 76% (74.5 mg); a colourless sticky oil; $[\alpha]_D^{20} = -118.9$ (c 1.37, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.25 – 8.01 (m, 2H), 7.85 – 7.72 (m, 2H), 7.60 (d, *J* = 8.1 Hz, 2H), 7.53 – 7.37 (m, 6H), 7.31 (d, *J* = 7.2 Hz, 2H), 7.25 – 7.20 (m, 4H), 7.19 – 7.14 (m, 2H), 7.05 – 6.94 (m, 4H), 4.30 – 3.88 (m, 2H), 2.62 – 2.46 (m, 2H), 2.45 – 2.25 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 139.8, 133.8, 132.7, 128.8, 128.4, 128.3, 126.5, 125.7, 125.3, 125.1, 125.0, 123.7, 43.7, 35.1, 33.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₈H₃₅ 491.2733;

Found 491.2738.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak OD, hexane/isopropanol = 99/1, flow rate 0.8 mL/min, T = 25 °C, 220 nm): $t_R = 6.19 \text{ min (major)}$.

Synthesis of chiral 1,6-diphosphine ligands 8

Hydroboration and oxidation: To a suspension of **2s** (1.0 mmol, > 99% *ee*) in dry THF (10 mL) 9-BBN in THF (0.5 M, 5 mmol, 5 equiv) was added and the mixture was stirred at room temperature for 4 h. Thenan aqueous solution of NaOH (6.0 M, 4.0 mL) and H₂O₂ (30 % in water, 10 mL) were added at 0 °C over and the reaction mixture was stirred for 2 h. The reaction was quenched with brine and the mixture extracted with ethyl acetate (3 x 10 mL). The organic layer was dried with anhydrous Na₂SO₄, filtered and the solvent evaporated in vacuo. The crude product was purified by flash chromatography on silica gel (acetate/dichloromethane = 2:1 to 5:1) to afford compound **7**.

(3*S*,4*S*)-3,4-di(naphthalen-1-yl)hexane-1,6-diol (7): 88% yield (326 mg); colorless solid, m.p. 103.7-105.0 °C; [α]_D²⁰ = -69.7 (c 1.04, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.35 – 8.11 (m, 2H), 7.79 – 7.60 (m, 2H), 7.58 – 7.26 (m, 8H), 7.24 – 7.05 (m, 2H), 4.22 (s, 2H), 3.45 (ddd, J = 11.1, 7.1, 4.4 Hz, 2H), 3.32 – 3.18 (m, 2H), 2.58 – 2.39 (m, 2H), 2.24 – 2.05 (m, 2H), 1.53 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 133.7, 132.4, 128.8, 126.5, 125.6, 125.1, 125.0, 124.7, 123.3, 61.0, 40.2, 36.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₇O₂ requires m/z 371.2006, found m/z 371.1997. *Analysis of Stereochemistry:*

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol =

80/20, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 11.20$ min (major).

Tosylation and phosphorylation: Under argon atmosphere at 0 °C, 7 (1.0 mmol, > 99% ee) was dissolved in dichloromethane (10 mL), which was added DMAP (0.2 mmol) and Et₃N (2.5 mmol). Then, TsCl (2.4 mmol) was added dropwise to the reaction mixture, which was further stirred at room temperature. After the completion of the reaction indicated by TLC, the reaction mixture was diluted by dichloromethane and quenched by hydrochloric acid (1 M). The resultant mixture was extracted by dichloromethane, and the organic layer was washed successively by saturated NaHCO3 aqueous solution and saturated NaCl aqueous solution. The crude was used for the next synthetic step. Diphenylphosphine (2.5 mmol) was dissolved in THF (10 mL), cooled down to -78 °C and ⁿBuLi (2.4 M in hexane, 3.0 mmol) was carefully added. The yellow reaction mixture was allowed to come to room temperature and stirred for 2 h while a color change to orange and finally ruby red was observed. Then, crude product from previous step in THF (5 mL) was added and the mixture was stirred at room temperature over night. MeOH (1 mL) and dest. H₂O (1 mL) were added and the reaction mixture was concentrated under reduced pressure to remove THF. The residue was extracted with DCM (3 x 100 mL), the combined organic layers were washed with brine. Subsequently, the resultant organic layer was dried by anhydrous Na₂SO₄ and purified by flash column chromatography (petroleum ether/ethyl acetate = 50/1) to afford compound 8.

((3*S*,4*S*)-3,4-di(naphthalen-1-yl)hexane-1,6-diyl)bis(diphenylphosphane) (8): 57% yield (403 mg); white solid, m.p. 106.5-107.2 °C [α]_D²⁰ = -84.0 (c 0.60, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 – 8.03 (m, 2H), 7.80 – 7.71 (m, 2H), 7.61 – 7.53 (m, 2H), 7.48 – 7.37 (m, 4H), 7.34 – 7.26 (m, 4H), 7.25 – 7.11 (m, 16H), 7.11 – 7.04 (m, 4H), 4.16 – 3.85 (m, 2H), 2.27 – 2.08 (m, 2H), 2.06 – 1.92 (m, 2H), 1.80 – 1.74 (m, 2H), 1.68 – 1.59 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 138.71 (d, *J* = 12.4 Hz), 137.9 (d, *J* = 12.8 Hz), 133.9, 133.1 (d, *J* = 18.6 Hz), 132.6, 132.2 (d, *J* = 17.7 Hz), 128.9, 128.7, 128.4 (d, *J* = 6.9 Hz), 128.2 (d, *J* = 6.7 Hz), 128.17, 126.6, 125.5, 125.1 (d, *J* = 6.5 Hz), 124.6, 123.6, 44.6 (d, *J* = 9.5 Hz), 27.8 (d, *J* = 13.8 Hz), 25.4 (d, *J* = 11.1 Hz); ³¹P NMR (162 MHz, CDCl₃) δ -15.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₅₀H₄₅P₂ requires m/z 707.2992, found m/z 707.2993.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 5.32 \text{ min (major)}, t_R = 7.85 \text{ min (minor)}.$

Synthesis of chiral 1,4-diphosphine ligands 10

Ozonolysis and reduction: Ozone was bubbled for 15 min through a solution of **2s** (1.0 mmol, > 99% *ee*) in a mixture of DCM (10 mL) and MeOH (10 mL) at -78°C. After stirring for 15 minutes (solution stays blue) the reaction mixture was purged with nitrogen. Sodium borohydride (5.0 mmol) was added and the mixture was warmed to room temperature and stirred for 6 h. The reaction was quenched by addition of a 1M aqueous HCl solution. The layers were separated and the aqueous layer was extracted with DCM twice. The combined organic layers were dried with sodium sulfate and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (ethyl acetate/dichloromethane = 2:1 to 5:1) to afford compound **9**.

(2*S*,3*S*)-2,3-di(naphthalen-1-yl)butane-1,4-diol (9): 54% yield (185 mg); colorless solid, m.p. 94.6-95.7 °C; $[\alpha]_D^{20} = -91.0$ (c 0.42, CHCl₃); ¹H NMR (400 MHz, Acetone-*d*₆) δ 8.46 (d, *J* = 8.6 Hz, 2H), 7.75 (dd, *J* = 8.2, 1.3 Hz, 2H), 7.59 – 7.53 (m, 2H), 7.49 (d, *J* = 8.2 Hz, 2H), 7.46 – 7.38 (m, 2H), 7.32 (dd, *J* = 7.3, 1.2 Hz, 2H), 7.14 – 6.98 (m, 2H), 4.73 – 4.62 (m, 2H), 4.62 – 4.46 (m, 2H), 4.14 – 4.01 (m, 4H); ¹³C NMR (101 MHz, Acetone-*d*₆) δ 138.8, 133.9, 132.1, 128.7, 126.2, 125.7, 125.0, 124.9, 124.8, 123.3, 65.7, 44.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₃O₂ requires m/z 343.1693, found m/z 343.1699.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak AD-H, pentane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 13.70 min (major), t_R = 16.53 min (minor).

Tosylation and phosphorylation: Under argon atmosphere at 0 °C, 9 (1.0 mmol, > 99% ee) was dissolved in dichloromethane (10 mL), which was added DMAP (0.2 mmol) and Et₃N (2.5 mmol). Then, TsCl (2.4 mmol) was added dropwise to the reaction mixture, which was further stirred at room temperature. After the completion of the reaction indicated by TLC, the reaction mixture was diluted by dichloromethane and quenched by hydrochloric acid (1 M). The resultant mixture was extracted by dichloromethane, and the organic layer was washed successively by saturated NaHCO3 aqueous solution and saturated NaCl aqueous solution. The crude was used for the next synthetic step. Diphenylphosphine (2.5 mmol) was dissolved in THF (10 mL), cooled down to -78 °C and ⁿBuLi (2.4 M in hexane, 3.0 mmol) was carefully added. The yellow reaction mixture was allowed to come to room temperature and stirred for 2 h while a color change to orange and finally ruby red was observed. Then, crude product from previous step in THF (5 mL) was added and the mixture was stirred at room temperature over night. MeOH (1 mL) and dest. H₂O (1 mL) were added and the reaction mixture was concentrated under reduced pressure to remove THF. The residue was extracted with DCM (3 x 100 mL), the combined organic layers were washed with brine. Subsequently, the resultant organic layer was dried by anhydrous Na₂SO₄ and purified by flash column chromatography (petroleum ether/ethyl acetate = 50/1) to afford compound **10**.

((2*S*,3*S*)-2,3-di(naphthalen-1-yl)butane-1,4-diyl)bis(diphenylphosphane) (10): 44% yield (299 mg); white solid, m.p. 101.1-102.4 °C [α]_D²⁰ = -28.6 (c 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.84 (m, 2H), 7.80 – 7.72 (m, 2H), 7.66 – 7.56 (m, 2H), 7.44 – 7.31 (m, 5H), 7.25 – 7.14 (m, 16H), 7.11 – 6.98 (m, 7H), 4.32 – 4.09 (m, 2H), 2.97 – 2.74 (m, 2H), 2.67 – 2.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 139.4 (d, *J* = 13.7 Hz), 138.5, 138.0 (d, *J* = 12.5 Hz), 133.8, 133.0 (d, *J* = 19.5 Hz), 132.5 (d, *J* = 18.6 Hz), 128.8, 128.5, 128.31, 128.25, 128.2, 127.0, 126.4, 125.4, 125.1, 124.7, 123.7, 41.28 (d, *J* = 10.8 Hz), 32.39 (d, *J* = 9.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ -19.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₁NNaO₂ requires m/z 679.2679, found m/z 679.2677.

Analysis of Stereochemistry:

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak AD-H, pentane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 4.07 \text{ min (major)}, t_R = 6.71 \text{ min (minor)}.$

Preliminary synthetic application of 8 and 10

Lithium acetate (5 mol %), *N*,*O*-bistrimethylsilyl acetamide (BSA, 0.6 mmol, 3 equiv), (*E*)-1,3-diphenylallyl acetate **3r** (0.2 mmol, 1 equiv), and dimethyl malonate **20** (0.6 mmol, 3 equiv) were added to a solution of allylpalladium dichloride dimer (5 mol %) and phosphine **8** or **10** (12 mol %) in CH₃CN (2 mL) under nitrogen. The mixture was stirred at room temperature for 6 h, poured into water, extracted into dichloromethane, dried over magnesium sulfate, and concentrated under reduced pressure to give the crude product oil. The crude product was purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to give the substitution product **21**.

dimethyl (*E*)-2-(1,3-diphenylallyl)malonate (21): > 99% yield (64.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 8H), 7.26 – 7.18 (m, 2H), 6.48 (d, *J* = 15.7 Hz, 1H), 6.33 (dd, *J* = 15.7, 8.6 Hz, 1H), 4.27 (dd, *J* = 10.9, 8.6 Hz, 1H), 3.96 (d, *J* = 10.9 Hz, 1H), 3.71 (s, 3H), 3.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 167.8, 140.2, 136.8, 131.9, 129.1, 128.7, 128.5, 127.9, 127.6, 127.2, 126.4, 57.7, 52.7, 52.5, 49.2. Spectral data is in accordance with the literature.⁶

Analysis of Stereochemistry:

Enantiomeric excess: 46% (with **8**), determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 14.30$ min (major), $t_R = 10.58$ min (minor).

Enantiomeric excess: -34% (with **10**), determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 10.58$ min (major), $t_R = 14.38$ min (minor).

9. Applications of 2t as chiral diene ligand

Procedure for Rh(I)/2t-catalyzed asymmetric 1,4-addition of 2-cyclohexenone

To a Schlenk tube charged with phenylboronic acid **12** (73.2 mg, 0.6 mmol), $[Rh(C_2H_4)_2Cl]_2$ (3.9 mg, 0.01 mmol, 2.5 mol %), and chiral diene ligand (*S*,*S*)-**2t** (9.6 mg, 0.024 mmol, 6.0 mol %) was added degassed dioxane (0.8 mL) under Argon. The resulting mixture was heated to 50 °C and stirred for 15 min. 2-Cyclohexenone **11** (38.4 mg, 0.4 mmol) and KOH (0.03 mmol, 0.075 M in MeOH, 0.4 mL, 7.5 mol %) was added sequentially. Upon stirring at 10 °C for 12 h, the reaction mixture was concentrated, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) to give conjugated addition adduct **13**.

(*R*)-3-phenylcyclohexan-1-one (13): 86% yield (59.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 2H), 7.29 – 7.19 (m, 3H), 3.08 – 2.93 (m, 1H), 2.65 – 2.57 (m, 1H), 2.57 – 2.43 (m, 2H), 2.43 – 2.33 (m, 1H), 2.19 – 2.05 (m, 2H), 1.91 – 1.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 211.0, 144.3, 128.7, 126.7, 126.6, 49.0, 44.8, 41.2, 32.8, 25.6. Spectral data is in accordance with the literature.⁷

Analysis of Stereochemistry:

Enantiomeric excess: 90%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 6.04$ min (major), $t_R = 5.43$ min (minor).

Procedure for Rh(I)/2t-catalyzed asymmetric arylation of N-tosyl imines 14

To a Schlenk tube charged with phenylboronic acid **15** (61 mg, 0.4 mmol), $[Rh(C_2H_4)_2Cl]_2$ (1.9 mg, 0.005 mmol, 2.5 mol %), and chiral diene ligand (*S*,*S*)-**2t** (4.8 mg, 0.012 mmol, 6.0 mol %) was added degassed dioxane (0.8 mL) under Argon. The resulting mixture was heated to 50 °C and stirred for 15 min. *N*-tosyl imines 14 (51.8 mg, 0.2 mmol) and TEA (40 mg, 0.4 mmol) was added sequentially. Upon stirring at 0 °C for 24 h, the reaction mixture was concentrated, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) to give conjugated addition adduct **16**.

(*S*)-*N*-((4-methoxyphenyl)(phenyl)methyl)-4-methylbenzenesulfonamide (16): 58% yield (42.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.53 (m, 2H), 7.25 – 7.17 (m, 3H), 7.15 – 7.08 (m, 4H), 7.04 – 6.96 (m, 2H), 6.77 – 6.68 (m, 2H), 5.52 (d, *J* = 7.0 Hz, 1H), 5.15 (dd, *J* = 7.1, 4.0 Hz, 1H), 3.75 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 143.1, 140.7, 137.4, 132.8, 129.3, 128.6, 128.5, 127.5, 127.3, 127.2, 113.9, 60.8, 55.3, 21.5. Spectral data is in accordance with the literature.⁸

Analysis of Stereochemistry:

Enantiomeric excess: 82%, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 9.46 min (major), t_R = 15.04 min (minor).

1	9.589	BB	0.3658	3743. 20654	157.20418	49.8471
2	15.326	BB	0.5821	3766, 16675	97,83757	50, 1529

#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.460	VB	0.3572	1.39974e4	595. 52740	91.2946
2	15.038	BB	0.5464	1334.73096	35.76049	8.7054

In a nitrogen-filled glovebox, a 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with Pd₂(dba)₃ (4.6 mg, 0.005 mmol, 2.5 mol%), (*R*)-2,2'-Bis[bis(4-methoxy-3,5-di-*t*-butylphenyl)phosphino]-4,4',6,6'-tetramethoxy)-1,1'-biphenyl (**L5**) (14.6 mg, 0.012 mmol, 6 mol%), anhydrous CH₃CN (2.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: $Ir(ppy)_2(dtbbpy)PF_6$ (4.0 mg, 0.004 mmol, 2.0 mol%), Cs₂CO₃ (195.6 mg, 0.6 mmol, 3.0 equiv), allylic acetates **1a** (0.2 mmol, 1.0 equiv), DIPEA (80 mg, 0.6 mmol, 3.0 equiv), **1b** or **1i** (0.2 mmol, 1.0 equiv) and anhydrous CH₃CN (2.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

Preliminary attempt of the enantioselective reductive cross-coupling was also made, affording the desired cross-coupling product **2ab** and **2ai** in excellent diastereo-, regio- and enantioselectivities (> 95:5 dr, > 95:5 rr, > 99 ee), but in poor yields (42% for **2ab**, 29% for **2ai**). Homocoupling by-products **2a**, **2b** and **2i** could also be observed. Photoredox/Pd-cocatalyzed enantioselective reductive cross-coupling is underway in our laboratory.

1-methoxy-4-(4-phenylhexa-1,5-dien-3-yl)benzene (2ab): Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 42% (22.2 mg); > 95:5 *dr*; > 95:5 *rr*, a colourless sticky oil; $[\alpha]_D{}^{20} = -44.3$ (c 0.66, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.14 (m, 2H), 7.12 – 7.07 (m, 1H), 7.07 – 7.02 (m, 2H), 7.00 – 6.93 (m, 2H), 6.75 – 6.66 (m, 2H), 6.18 – 6.02 (m, 2H), 5.13 – 5.00 (m, 4H), 3.72 (s, 3H), 3.64 – 3.58 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 142.7, 140.9, 140.7, 134.7, 129.1, 128.2, 128.1, 126.0, 115.7, 115.5, 113.5, 55.9, 55.1, 54.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₁O requires m/z 265.1588, found m/z 265.1582.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 23.84 \text{ min (major)}, t_R = 26.17 \text{ min (minor)}.$

1-methoxy-4-(4-(4-(trifluoromethyl)phenyl)hexa-1,5-dien-3-yl)benzene (**2ai**): Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 29% (19.4 mg); a colourless sticky oil; $[α]_D^{20} = -26.3$ (c 0.83, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.38 (m, 2H), 7.14 (d, J = 8.1 Hz, 2H), 6.98 – 6.89 (m, 2H), 6.73 – 6.68 (m, 2H), 6.07 (dddd, J = 16.9, 10.2, 8.2, 3.3 Hz, 2H), 5.15 – 5.08 (m, 2H), 5.06 – 4.99 (m, 2H), 3.72 (s, 3H), 3.69 – 3.64 (m, 1H), 3.62 – 3.55 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 146.9, 140.3, 139.8, 134.0, 129.0, 128.5, 125.05 (q, J = 3.7 Hz), 122.9, 116.5, 115.9, 113.7, 55.7, 55.1, 54.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀F₃O requires m/z 333.1462 found m/z 333.1458.

Analysis of Stereochemistry:

The title compound and the analogous racemic material were subjected to hydroboration and oxidation for HPLC analysis as shown below.

Enantiomeric excess: > 99%, determined by HPLC (Daicel Chiralpak IA, hexane/ethanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 18.45 \text{ min (major)}, t_R = 17.44 \text{ min (minor)}.$

11. Unsuccessful substrtates

12. References

(1) (a) Serra-Muns, A.; Guérinot, A.; Reymond, S.; Cossy, J. Silica Gel-Mediated Rearrangement of Allylic Acetates. Application to the Synthesis of 1,3-Enynes. *Chem. Commun.* **2010**, *46*, 4178. (b) Marion, N.; Gealageas, R.; Nolan S. P. [(NHC)Au^I]-Catalyzed Rearrangement of Allylic Acetates. *Org. Lett.* **2007**, *9*, 2653.

(2) Brozek, L. A.; Ardolino, M. J.; Morken, J. P. Diastereocontrol in Asymmetric Allyl–Allyl Cross-Coupling: Stereocontrolled Reaction of Prochiral Allylboronates with Prochiral Allyl Chlorides. *J. Am. Chem. Soc.* **2011**, *133*, 16778.

(3) (a) Osborn, J. A.; Schrock, R. R. Coordinatively Unsaturated Cationic Complexes of Rhodium(I), Iridium(I), Palladium(II), and Platinum(II). Generation, Synthetic Utility, and some Catalytic Studies. *J. Am. Chem. Soc.* **1971**, *93*, 3089. (b) Aakermark, B.; Krakenberger, B.; Hansson, S.; Vitagliano, A. Ligand Effects and Nucleophilic Addition to (η^3 -Allyl)palladium Complexes. A Carbon-13 NMR Study. *Organometallics* **1987**, *6*, 620. (c) Fan, S.; Chen, F.; Zhang, X. Direct Palladium-Catalyzed Intermolecular Allylation of Highly Electron-Deficient Polyfluoroarenes. *Angew. Chem. Int. Ed.* **2011**, *50*, 5918.

(4) (a) Lv, Y.; Sun, K.; Wang, T.; Wu, Y.; Li, G.; Pu, W.; Mao, S. Intermolecular C–N Cross-Coupling Reactions Catalyzed by Tetra-n-butylammonium Iodide: Synthesis of Allylic *N*-Heterocycles. *Asian J. Org. Chem. 2016*, **5**, 325. (b) Zhang, H.-Y.; Ge, C.; Zhao, J.; Zhang, Y. Cobalt-Catalyzed Trifluoromethylation–Peroxidation of Unactivated Alkenes with Sodium Trifluoromethanesulfinate and Hydroperoxide. *Org. Lett.* **2017**, *19*, 5260.

(5) (a) Song, F.; Wang, F.; Guo, L.; Feng, X.; Zhang, Y.; Chu, L. Visible-Light-Enabled Stereodivergent Synthesis of *E*- and *Z*-Configured 1,4-Dienes by Photoredox/Nickel Dual Catalysis. *Angew. Chem. Int. Ed.* 2020, *59*, 177. (b)Xuan, J.; Zeng, T.-T.; Feng, Z.-J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J.; Alper, H. Redox-Neutral α-Allylation of Amines by Combining Palladium Catalysis and Visible-Light Photoredox Catalysis. *Angew. Chem. Int. Ed.* 2015, *54*, 1625.

(6) Breeden, S.; Wills, M. ESPHOS and SEMI-ESPHOS: A New Family of Mono- and Bidentate Diazaphospholidine Ligands for Asymmetric Catalysis. *J. Org. Chem.* **1999**, *64*, 9735.

(7) Hu, X.; Zhuang, M.; Cao, Z.; Du, H. Simple Chiral Chain Dienes as Ligands for Rh(I)-Catalyzed Conjugated Additions. *Org. Lett.* **2009**, *11*, 4744.

(8) Yasukawa, T.; Kuremoto, T.; Miyamura, H.; Kobayashi, S. Asymmetric Arylation of Imines Catalyzed by Heterogeneous Chiral Rhodium Nanoparticles. *Org. Lett.* **2016**, *18*, 2716.
13. NMR spectra for all compounds

fl (ppm)

100 fl (ppm)

120 110 fl (ppm) ő

$\begin{array}{c} 7.7114\\ 7.7112\\ 7.7112\\ 7.7112\\ 7.7112\\ 7.7112\\ 7.7112\\ 7.7112\\ 7.7112\\ 7.7112\\ 7.7112\\ 7.7112\\ 7.7112\\ 7.7112\\ 7.7112\\ 7.712\\ 7$

110 100 fl (ppm)

7,429 7,426 7,427 7,140 7,140 7,140 7,140 7,140 7,140 7,140 6,0124 6,009 6,009 6,007 6,000

100 90 fl (ppm)

$\begin{array}{c} 7.090 \\ 7.000 \\ 6.975 \\ 6.975 \\ 6.977 \\ 6.979 \\ 6.979 \\ 6.977 \\ 6.971 \\ 6.721 \\ 6.721 \\ 6.721 \\ 6.721 \\ 6.721 \\ 6.721 \\ 6.721 \\ 6.721 \\ 6.721 \\ 6.721 \\ 6.721 \\ 6.721 \\ 6.721 \\ 6.722 \\ 6.713 \\ 6.672 \\ 6.721 \\ 6.722 \\ 6.713 \\ 6.672 \\ 6.722 \\ 6.722 \\ 6.199 \\ 6.199 \\ 6.100 \\ 6.122 \\ 6.003 \\ 4.999 \\ 6.100 \\ 6.122 \\ 5.001 \\ 6.199 \\$

7.1138 7.7.114 7.7.114 7.7.113 7.7.095 7.7.095 7.7.029 7.7.027 7.7.027 7.7.029

100 fl (ppm)

fl (ppm) ő

6.860 6.785 6.785 6.785 6.785 6.785 6.037 6.012 6.013 6.013 6.012 6.037 6.023 6.037 6.023 6.037 6.023 6.037 6.012 6.012 6.037 6.012 6.037 6.023 6.037 6.023 6.037 6.023 6.037 6.023 6.037 6.023 6.037 6.023 6.037 6.023 6.037 6.023 6.037 6.023 6.0376 6.0376 6.0376 6.0376 6.0376 6.03776 6.0376 6.0376 6.0376 6.0376 6

100 fl (ppm) 0 200 30 20 10 190 180 170 160 150 140 130 120 110 90 80 70 60 50 40

6.865 6.865 6.779 6.779 6.779 6.779 6.779 6.779 6.779 6.779 6.779 6.779 6.779 6.779 6.779 6.030 6.037 6.061 6.061 6.061 6.012 6.012 6.0027

6.865 6.861 6.779 6.779 6.779 6.779 6.779 6.779 6.779 6.574 6.574 6.061 6.080 6.061 6.030 6.034 6.012 6.037 6.032

8.265 8.265 8.265 8.262 8.262 8.264 8.165 8.165 8.165 8.165 8.165 8.165 8.165 8.165 8.165 17.469 17.451 17.451 17.451 17.451 17.451 17.451 17.451 17.451 17.451 17.451 17.451 17.451 17.55156 5.114 5.114 5.1156 5.114 5.1156 5.116

100 fl (ppm) 200 80 70 10 ò 190 180 170 160 130 120 110 90 60 50 40 30 20 150 140

7.710 7.770 7.770 7.770 7.770 7.770 7.770 7.770 7.682 7.682 7.682 7.682 7.682 7.688 7.688 7.688 7.688 7.688 7.688 7.688 7.688 7.688 7.688 7.688 7.688 7.688 7.688 7.688 7.533 7.534 7.533 7.534 7.533 7.534 7.533 7.534 7.533 7.534 7.533 7.5347 7.5347 7.5447 7.5447 7.555

S175

S176

7.282 7.5978 7.5978 7.5979 7.5979 7.5979 7.5969 7.5969 7.5959 7.5393 7.5393 7.5393 7.5314 7.55114 7

$\begin{array}{c} 7.982\\ -7.982\\ -7.976\\ -7.976\\ -7.976\\ -7.976\\ -7.976\\ -7.996\\ -7.956\\ -7.956\\ -7.956\\ -7.956\\ -7.482\\ -7.482\\ -7.482\\ -7.432\\ -7.432\\ -7.432\\ -7.333\\ -7.432\\ -7.333\\ -7.432\\ -7.333\\$

(* 6.6.9) (* 6.6.9) (* 6.6.9) (* 6.6.9) (* 6.6.9) (* 6.6.9) (* 6.6.9) (* 6.6.9) (* 6.6.9) (* 6.6.9) (* 6.6.70)

-6.933 -6.926 (6.918 (6.912) (6.926) (6.926) (6.926) (6.633) (6.673) (6.673) (6.667) (6.67)

7.153 7.153 7.154 7.155 7.155 7.156 7.157 7.157 7.157 7.157 7.157 7.157 7.157 7.157 7.157 7.157 7.157 7.157 7.157 7.117 7.117 7.112 7.117 7.112 7.117 7.112 7.117 7.112 7.117 7.112 7.117 7.112 7.117 7.112 7.117 7.112 7.117 7.112 7.117 7.112 7.117 7.112 7.117 7.112 7.117 7.112 7.117 7.112 7.117 7.112 7.118 7.1168 7.119 7.112 7.111 7.113 7.111 7.113 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7

																· · · ·		· · · ·	· · · ·	<u> </u>	<u> </u>	<u> </u>
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
fl (ppm)																						

_

---117.422

7.1159 7.1157 7.1124 7.1124 7.1124 7.1124 7.1124 7.1126 7.11128 7.1126 7

-7.157-7.157-7.1339-7.1339-7.1097-7.1097-7.0070-7.007

$\begin{array}{c} 7.7.08\\ -7.065\\ -7.065\\ -7.065\\ -6.630\\ -6.630\\ -6.630\\ -6.630\\ -6.630\\ -6.630\\ -6.630\\ -6.630\\ -6.661\\ -6.661\\ -6.561\\ -6.560\\ -6.560\\ -5.560\\ -5.60\\ -5.60$

7.118 7.103

$\begin{array}{c} 7.087\\ 7.083\\ 6.979\\ 6.979\\ 6.974\\ 6.979\\ 6.979\\ 6.979\\ 6.979\\ 6.979\\ 6.976\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.996\\ 6.936\\ 6.639\\ 6.649\\ 6.$

7.102 7.102 7.1099 7.1070 7.1099 7.1070 7.1099 7.1070 7.1099 7.1070 7.5073 7.50

7.11537.11537.11537.11537.11537.11537.11207.11207.11207.11207.11207.11147.11147.11147.11207.10507.10507.10507.10107.10107.10107.10107.10107.10107.10107.10107.10107.10107.10107.10107.10107.10107.10107.10107.00527

2.200 2.229 2.

PPh₂

ويتمارها وارد أمراص أسرامه وعلالي وليشرقوهم بالبراسانية فأطلا والمتنابع وبالقاطين والقرق فكالا أحديثه فالكريب	أسأفره بالفسيس والتسبير وال	والمتعادية والاستعاد ومعاد المعام والمتعادية والمتعادية والمتعاد المتعاد المتعاد المتعاد المتعاد المتعاد المتعا	ومعرابه اجتمع فأسماه والمراجع والمحمولات والمتنا المتناب وأساد أستعدته فالأل السن	ويهديه أرابة فقاغا أوراعا وتقريها والالابني ترجي والمهاد ويهارهه
والمراجع				

---19.892

																	T . T .		
140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240
									fl	(ppm)									

$\left[\begin{array}{c} 7.339\\ 7.330\\ 7.330\\ 7.330\\ 7.330\\ 7.330\\ 7.330\\ 7.233\\ 7.728\\$

4.295 4.274 4.268 4.268 3.971 3.708 3.708 3.522

MeO₂C _Ph 21 μu 02-63-2 -00 7.3 <u>ci</u> .6 7.5 6.9 6.8 6.7 6.6 fl (ppm) 6.2 7.2 7.1 7.0 7.4 6.3 6.5 6.4 1. ji 7.63¥ 1.00-f 1.02-f 1.00 Å 0.94 ¥ 2.98 ₹ 3.00 Å 6.5 4.0 6.0 5.5 5.0 fl (ppm) 10.0 9.5 9.0 8.5 8.0 7.5 7.0 4.5 3.5 3.0 2.5 2.0 1.0 0.5 1.5 0.0 -168.219 -167.803 140.184 136.839 131.852 131.852 129.127 128.497 128.497 128.497 128.497 127.192 127.192 126.408 57.667 52.655 52.655 52.479 49.210 CO₂Me ,Ph MeO₂C1 21 100 90 fl (ppm) 0 -10 -20 -30 -40 -50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 80 70 60 50 30 20 10 40

7.171 7.132 7.171 7.152 7.7.152 7.7.151 7.7.153 7.7.151 7.7.156 7.7.151 7.7.157 7.7.151 7.7.156 7.7.151 7.7.157 7.7.151 7.7.158 7.7.151 7.7.157 7.7.151 7.7.158 7.7.151 7.7.157 7.7.152 7.7.158 7.7.151 7.7.157 7.7.152 7.7.158 7.7.151 7.7.158 7.7.152 7.7.158 7.7.151 7.7.158 7.7.151 6.070 7.0056 6.070 7.0056 6.714 7.056 6.703 7.7.105 6.714 7.056 6.704 7.7.051 5.013 6.070 5.014 7.7.051 5.015 6.070 5.016 6.070 5.017 6.019 5.018 6.0104 5.017 6.0104 5.018 6.0102 5.017 6.0103 5.018 6.0103 5.019 5.0105 5.010 5.0105 5.0114 5.0105

$\begin{array}{c} 7.421\\ 7.7418\\ 7.7421\\ 7.7418\\ 7.7421\\ 7.7418\\$ $\begin{array}{c} 7.421\\ 7.421\\ 7.496\\ 7.145\\ 7.145\\ 7.145\\ 7.145\\ 7.1125\\ 7.1125\\ 7.1125\\ 7.1125\\ 7.1125\\ 7.1125\\ 7.1125\\ 7.1125\\ 7.1125\\ 7.1125\\ 7.114\\ 7.1125\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125\\ 7.114\\ 7.1125$ MeC 2ai <u>HARA</u>II £9.1-7.4 82-76 8 7.3 7.2 7.1 7.0 6.9 6.6 6.5 6.4 6.1 6.0 6.3 6.2 W 翥 1.93¥ 1.63∱ 1.76∢ 1.82∢ 1.65∧ 1.82-12.781.01 1.00 10.0 7.5 7.0 5.0 fl (ppm) 9.5 9.0 6.5 6.0 4.0 3. 5 3. 0 2.5 2.0 1. 5 1. 0 0.5 0.0 8.5 8.0 5.5 4.5 $-146.864 \\ -140.260 \\ -139.814 \\ -139.814 \\ -128.976 \\ -125.110 \\ -125.110 \\ -125.072 \\ -125.072 \\ -125.033$ -157.897<u>55.656</u> 55.115 54.674 MeO 2ai

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

14. X-ray single crystal data for compounds 2t

Table S4. Crystal data and structure refinement for 2t.	
Identification code	2t
Empirical formula	C28 H26 O2
Formula weight	394.49
Temperature	293(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	P 21 21 21
Unit cell dimensions	a = 10.5359(5) Å α = 90°.
	$b = 13.4642(6) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 15.7362(6) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	2232.30(17) Å ³
Z	4
Density (calculated)	1.174 Mg/m ³
Absorption coefficient	0.563 mm ⁻¹
F(000)	840
Crystal size	0.200 x 0.160 x 0.140 mm ³
Theta range for data collection	5.052 to 67.485°.
Index ranges	-12<=h<=12, -16<=k<=16, -18<=l<=18
Reflections collected	21085
Independent reflections	3966 [R(int) = 0.0360]
Completeness to theta = 67.679°	97.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7533 and 0.5537
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3966 / 43 / 292
Goodness-of-fit on F ²	1.075
Final R indices [I>2sigma(I)]	R1 = 0.0399, $wR2 = 0.1089$
R indices (all data)	R1 = 0.0418, $wR2 = 0.1111$
Absolute structure parameter	-0.08(9)
Extinction coefficient	0.022(4)
Largest diff. peak and hole	0.221 and -0.144 e.Å ⁻³