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ABSTRACT 

It is generally agreed that the nuclei of eukaryotic cells at interphase are partitioned into 

disjointed territories, with distinct regions occupied by certain chromosomes. However, the 

underlying mechanism for such territorialization is still under debate. Here we model 

chromosomes as coarse-grained block copolymers and to investigate the effect of loop domains 

(LDs) on the formation of compartments and territories based on dissipative particle dynamics. A 

critical length of LDs, which depends sensitively on the length of polymeric blocks, is obtained 

to minimize the degree of phase separation. This also applies to the two-polymer system: The 

critical length not only maximizes the degree of territorialization but also minimizes the degree 

of phase separation. Interestingly, by comparing with experimental data, we find the critical 

length for LDs and the corresponding length of blocks to be respectively very close to the mean 

length of topologically associating domains (TADs) and chromosomal segments with different 

densities of CpG islands for human chromosomes. The results indicate that topological 

constraints with optimal length can contribute to the formation of territories by weakening the 

degree of phase separation, which likely promotes the chromosomal flexibility in response to 

genetic regulations. 
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Modeling for human chromosomes 

The human chromosome 1 (Chr1) and human chromosome 2 (Chr2) are modeled as chain of 

DPD beads of total length         Mb and        Mb. (in unit of bead number) 

respectively, with each bead representing    kb segment. The genome can be divided into two 

sequentially, epigenetically, and transcriptionally distinct regions, namely forest ( ) and prairie 

( ), based on its CGI (CpG island) density 
1–3

. The bead is then in type of   ( ), if more than half 

of the    kb segment of the bead belong to forests (prairies). Please note that in our model the 

centromeric regions for Chr1 and Chr2 are omitted, due to a lack of sequence information.  

Similar to the modeling of loop domains (LDs) for -50-50- polymers, LDs for Chr1 and Chr2 are 

modelled as loops of fixed size and position. The binding sites for LDs are derived from the 

position of TAD boundaries obtained from Ref.[4]. If there exists TAD boundary in one segment, 

the corresponding bead is deemed as a cross-linking bead for LDs. Harmonic bonds between 

adjacent cross-linking beads are introduced to mimic the TAD constraints, with spring constant 

and equilibrium bond length same to that for -50-50- polymers. 

We note that similar distributions of the length of the forest or prairie segments (F/P)      and  

TADs      are obtained for all human chromosomes. In Fig.S1 below, we compare the 

distributions of      and      for human chromosomes 1-5 (Chr1-Chr5). The distributions for F/P 

lengths can be well fitted by Gamma distributions ( ). The prediction of the peak position and 

the sharp decrease at very small Lf.p for the distribution of F/P lengths by   even outperforms the 

kernel density estimation (KDE). The distribution of TAD lengths Ltad also follows  . The full 

list of shape parameter   and the scale parameter   of   for Chr1-Chr5 are presented in Table.S1 

below. The mean length of consecutive forest and prairie beads      fluctuates from 1.60 Mb to 

2.72 Mb for Chr1-Chr5, thus in the main text we choose a polymer with            Mb to 

remove the effect of F/P lengths on phase behavior. The mean length of TADs      fluctuates 

within a small range (    kb-550 kb), which is very close to the critical LD length    
 =440 kb 

and    
 =520 kb measured in our main text. 
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Figure S1: Comparisons of the distributions of F/P lengths (a-e)      and TAD lengths (f-j)      

for human chromosomes 1-5 (Chr1-Chr5) derived from embryonic stem cells (H1). Solid lines 

are fitting curves of kernel density estimation (KDE) and Gamma distributions ( ). Dashed 

lines indicate the corresponding mean lengths of F/P segments      and TADs     . 
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Table S1: The full list of shape parameter α and the scale parameter β for Gamma 

distributions for Chr1-Chr5. 

# Chr αf p βf p α   β   

Chr1 1.33  0.83  2.94  6.43  
Chr2 1.54  0.76  3.21  6.30  
Chr3 1.26  0.47  3.43  6.72  
Chr4 1.39  0.57  4.03  7.29  
Chr5 1.40  0.72  2.97  5.54  

 

Note that the distributions of      may vary across chromosomes taken from different cell lines 

or tissues. For instance, in Fig.S2 we compare the distributions of      for Chr1 taken from H1 

(embryonic stem cells), LV (liver primary tissue) and HepG2 (liver cancer cells). We estimate 

the mean length of TADs                           and           Mb respectively for 

Chr1 taken from H1, LV and HepG2
4
. The largest variance of      is obtained for Chr1 taken 

from LV. 

TADs are of hierarchic structure with small loops forming inside bigger ones. These loops are 

dynamic, being generated and opened repeatedly in real time. In our coarse-grained simulations, 

both nested loops within TADs and the unfolding of TADs are neglected. This is because these 

loops are not forming consecutively, which shall exert limited influence on the equilibrium 

configurations of the entire chain (and thus the degree of phase separation). Additionally, the size 

of the nested loops can be smaller than the size of two beads (80 kb). The model provides no 

explanation for the formation of TADs in chromosomes, but rather serves as a tool to investigate 

the effect of topological constraints at length scales comparable with TADs (in form of 

consecutive loops) on phase separation and territory formation, simply based on polymer physics. 

In addition, our simulation results suggest that the degree of phase separation becomes stronger 

when loop domains are partially unfolded. This process could be compensated, to some extent, 

by the formation of smaller loops. The overall effect is the formation of the “average” TAD 

boundaries that are highly conserved across different cell lines and tissues. Nevertheless, we 

acknowledge that this is an idealized scenario, and the contact map of which could be quite 

different from experimental data.  
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Figure S2: the distributions of TAD lengths      for human chromosome 1 (chr1) taken from H1, 

LV and HepG2. 

 

Conversion of units 

In this section we present how reduced units can be converted into real units (with insufficient 

accuracy). By comparing the root mean squared end-to-end distance      measured from our 

simulations and that from recent experiments
6
, the unit length (i.e. cutoff for DPD interactions) 

 ̂  can be estimated as       in real unit. 

Given the mass density of water  ̂
 
              in simulations, the mass of the solvent 

beads corresponds to  ̂    ̂
 
     ̂ 

 
=             . The unit of time can then be 

estimated as  ̂    ̂   ̂ 
     ̂           , with  ̂          the system temperature and    

the Boltzmann constant. The time step used in the simulations then corresponds to   ̂       . 
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The simulated diffusion coefficient for free solvent beads         can be converted into 

 ̂      ̂ 
   ̂                , which is slightly lower than the diffusion coefficient of 

bulk water (              ). We note that such conversion shall only be taken as a rough 

guide.
7-8 

 

Analysis on polymers at swollen state 

 

Figure S3: (a) Sketch of the gyration radius    of a LD. (b) The dependence of average gyration 

radius,   , on     for LDs that are formed exclusively by   beads at   p      (black) and 

  p      (red). (c) The dependence of radial density of polymer beads    and (d) solvent beads 

   on radial distance from the backbone    at   p     . 

 

We measure the average gyration radius    of each loop formed by LD boundaries, as illustrated 

by Fig.S3(a), for polymer without hydrophobicity (i.e. polymer consists of exclusively f beads). 
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As shown in the inset of Fig.S3(b), at         the average gyration radius    of loops 

increases in power law of     with exponent        , which is slightly larger than the 

theoretical prediction   
      

      for a 3D ring of self-avoiding chain.
9
 As indicated by the 

dashed line for      in Fig. S3(b), there exists a critical length    
      kb above which 

solvent beads or polymer beads on neighboring LDs can go inside the loop without energy 

compensation. This length is very close to the critical LD length   
      kb for -50-50- 

polymer measured in our main text. In poor solvent with        ,    is barely changed for 

        kb due to tight compaction, but is of smaller value for         kb (in power law of 

    with        ). The result indicates LDs become loose enough to entrap solvent beads (or 

polymer beads from neighboring LDs) for         kb in our model. 

The infiltration of solvent beads can also be determined from the density distribution of polymer 

beads    and solvent beads    on radial distance from the backbone    at different    . To 

measure the cross-sectional density distributions, we define a backbone that indicates the 

alignment of the polymer, as presented in Fig.1(d) of the main text. The backbone is of coarse-

grained degree             kb): the first point of the backbone chain is the center of mass of 

beads           , and the second point of the backbone is the center of mass of beads 

            , and so forth. The radial density perpendicular to the backbone can then be 

estimated. As illustrated in Fig. S3(c-d),    close to the polymer backbone (i.e.     ) 

decreases significantly with the increase of    . The solvent density in bulk   
        . Here 

       is reached at around     520 kb, which indicates the polymer becomes loose enough 

to entrap solvent beads for           . Fig. S3(d) also indicates that solvent beads has 

infiltrated inside the loops for           . 

 

Measuring compartmentalization based on graph theory 

To measure compartmentalization of chromosome based on graph theory
10

, first let each prairie 

bead   on the polymer represent a node. Edges are created between nodes in close contact 

(      
 , with cutoff   

     ). The graph is then denoted as         , with    and    
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respectively representing the set of edges and nodes. Louvain algorithm
11

 is implemented to 

determine the communities (i.e. sub-clusters) of         , with the average size of communities 

denoted as   . The modularity    measures the relative density of edges inside communities 

with respect to edges outside communities, which indicates the robustness of the division of the 

communities. To check whether    or    better describes the degree of phase separation, in 

Fig. S4 we compare    and    for three -50-50- polymers with different values of   p and    . 

Both    and    depend sensitively on    . When TADs with     520 kb are added at fixed 

  p     , the configuration of the polymer changes from a fully-segregated globule of   beads 

to a less-segregated "rod". This leads to about     increase of   . However,    is almost 

unchanged by adding TADs. We thus choose    as an order parameter for phase separation. 

 

Figure S4: The (a) average size of communities    and (b) modularity    for three -50-50- 

polymers at different   p and    . 

 

Fig. S5 presents the dependence of modularity     of the same -50-50- polymer on   p at 

different    . Different from       obtained at   p      for any given    , here    slightly 

decreases with     at   p      when     80 kb. For        ,    depends also non-

monotonically on    . As shown in Fig. S5(b), the maximum value of    at   p      shall 
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locate at around 320 kb          kb, which is in consistency with the critical length    
  

    kb that minimizes   measured in the main text. 

 

Figure S5: (a) The dependence of modularity    of the community generated by Louvain 

algorithm on   p at different     for a -50-50- polymer. (b) The dependence of    on     at 

  p     . 

 

Effect of interaction parameters 

 

Figure S6: The dependence of the (a) order parameter   and (b) difference in order parameter 

between systems with and without LD,        on      for phase separation of a -50-50- 

polymer driven by either hydrophobicity (black) or effective attraction between p beads (red). 

Results for    =   =150 (blue) are also presented for reference. 
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Fig. S6 compares the order parameter   for phase separation driven either by 

hydrophobicity (with         and        ) or by effective attraction between p beads 

(with         and        ). Based on the  -parameter theory for polymer solutions, the 

Flory–Huggins parameter for s and p beads   p can be approximated as: 

   p          
       

 
                                                     (1) 

with   depending on the pair correlation function and   the average bead-density. If we roughly 

assume   as a constant and         under segregation, the above two systems are of the 

same   p. Indeed, very similar       relations are obtained. For both systems, the minimum 

values of    are within the range 320 kb     520 kb. This indicates the change of repulsive 

parameters   p and  pp exert very limited impact on the position of critical LD length    
 . Since 

the cutoff radius for measuring contact pairs      is invariant,   at the same     is larger for 

system with effective attraction between p beads. By comparing the variation      (   

denoting the degree of phase separation at      ), as shown in Fig. S6(b), we find   is slightly 

more sensitively dependent on     for phase separation driven by hydrophobicity of p beads. 

In this work, we fix all repulsive parameters at Aij=150 and exclusively vary the prairie-solvent 

repulsion Asp. The phase separation is thus driven by the hydrophobicity of the prairie beads. If 

Asf is also varied, the effective Flory-Huggins parameter   ff for f and p beads
12-13

 can be 

estimated as: 

  ff  
            

  
                                                               (2) 

where      denotes the average molar volume of the beads,    and    denote the Hildebrand 

solubility parameter for f and p beads respectively. We thus expect larger degree of phase 

separation   for larger difference in repulsive parameter |Asp-Asf|. Fig.S7(a-b) below presents the 

dependence of   on Asf for a single -50-50- polymer. For any given Lld,   decreases with Asf at 

fixed Asp=160, which is in accord with the prediction of Eq.2. Additionally, the critical loop 

length Lld
*
=440 kb is unchanged for Asf=140, as shown in Fig.S7(b). This again indicates that Lld

*
 

is an intrinsic feature of the polymer determined by the length of F/P segments rather than 

interaction parameters. For the two-polymer system, as illustrated by Fig.10(g-h), Ω also 
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decreases with Asf at fixed Asp. For Asf<150, f beads tend to extend within the solvent. This 

creates an effective “repulsion” between f beads that prevents inter-polymeric contacts of p beads. 

For Asf>150, both f and p beads are collapsed so that Ω gets much smaller. Very similar Ω- Lld 

relation is also observed for both Asf=140 and Asf=150, with the same critical length obtained at 

around Lld
*
=520 kb. 

 

Fig.S7: (a-b) The dependence of   on (a) Asf and (b) Lld for a single -50-50- polymer. The 

prairie-solvent repulsion is fixed at Asp=160. (c-h) The dependence of Ω,       and      on (c,e,g) 

Asf and (d,f,h) Lld for two -50-50- polymers at fixed Asp=170.  



S13 

 

 

Fig.S8 below presents the local densities of forest,   , prairie,   , and solvent beads,   , as 

functions of genomic distance S for a single -50-50- polymer at various Lld. The phase separation 

is driven either by (a-c) hydrophobicity or (d-f) effective attraction between p beads. The local 

densities of forest beads in proximity to polymeric beads are higher at loop length Lld=440 kb for 

both cases. This is because f beads are more likely to get buried inside the collapsed globule for 

       
 . Consequently, slightly lower local densities of p beads in proximity to p, and lower 

densities of s beads in proximity to f are observed for Lld=440 kb. The density fluctuation is also 

larger at Lld=440 kb.  

 

Fig.S8: (a-f) The local densities of (a,d) forest    (b,e) prairie    and (c,f) solvent beads    as a 

function of genomic distance S for a single -50-50- polymer at various Lld. The phase separation 

is driven either by (a-c) hydrophobicity or (d-f) effective attraction between p beads. (g-i) the 

mean densities of (g) p in proximity to f ,    , (h) p in proximity to p,    , and (i) s in proximity 

to all polymeric beads ,   , as function of Lld with two sets of interaction parameters. 
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For better comparison of local densities with two sets of repulsive parameters, in Fig.S8 (g-i) we 

present the mean densities of p in proximity to f ,     p in proximity to p,    , and s in proximity 

to all polymeric beads,   , as functions of Lld. As expected, larger     for phase separation 

driven by effective attraction and larger    for phase separation driven by hydrophobicity are 

obtained for any given Lld.     peaks at the critical length    
 =440 kb. However,    is minimized 

at a lower loop length Lld= 320 kb. This is in consistency with the minimum of the unit solvation 

energy      at Lld= 320 kb shown in Fig.S12(c). 

We also measure the order parameter   for polymers with different bond stiffness K for 

connected beads, as shown in Fig. S9. When K is decreased from 200 to 100, the  -    relation is 

barely changed for         kb. Although   becomes larger at smaller K for         kb, the 

critical LD length that minimizes   is always located at    
      kb for any given K. If K is 

further decreased to 50, a slightly smaller critical length    
      kb is obtained (data not 

shown). However, the rule of topological constraints (i.e. the chain cannot cross itself) is also 

severely violated for polymers with K 50.  

 

Figure S9: The dependence of    on      for -50-50- polymers of different bond stiffness K for 

connected beads. 

 

The results indicate that the magnitude of the critical length    
  is not an artifact caused by the 

choice of interaction parameters, but rather an intrinsic feature of the polymer determined by the 

length of F/P segments. 
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Shape of collapsed polymers 

Fig.S10(a) presents the radius of gyration as a function of the length for loop domains Lld. For a 

single -50-50- polymer, a small peak for the gyration radius of the polymer Rf,p is observed at 

Lld=440 kb. For the two-polymer system, the peak can no longer be discerned due to the large 

variance of Rf,p. To remove the effect of forest beads on collapsing behavior, the gyration radius 

of prairie beads Rp is measured in Fig.S10(b). The peak values of Rp are obtained at Lld=440 kb 

and Lld=520 kb respectively for the single and two-polymer system, which agree well with the 

critical length Lld
*
 for phase separation determined in the main text. 

 

Fig.S10: The dependence of (a) gyration radius of the polymer Rf,p and (b) gyration radius of p 

beads Rp on Lld for a single -50-50- polymer (black) and two -50-50- polymers (red). 

 

Fig.S11 presents Rf,p and   as a function of Lld for a -50-50- polymer with Asp=Asf=160 (i.e. fully 

collapsed polymer). Here Rf,p reduces to 6.0 and   fluctuates around 0.0, both of which are 

barely changed with Lld. This indicates the degree of collapsing does not depend on the elasticity 

of the entire chain, but is determined by the combined effect of segmental rigidity and sequence 

randomness. This also explains why Lld and Lf,p are correlated. 
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Fig.S11: The dependence of (a) Rf,p and (b)  on Lld for a fully collapsed -50-50- polymer with 

Asf=Asp=160. 

 

The aspheric parameter   of the crumpled polymers can be defined as:
14

 

     
⟨              ⟩

⟨          
 ⟩

                                                             

with   ,    and    denoting the eigenvalues of the gyration tensor. By definition,         

measures the degree of asphericity of the crumpled polymer. We find the peak value of   also 

locates at around the critical length    
 . 

 

Potential energy for -  -  - polymers 

In the main text, we find the critical LD length that minimizes phase separation    
  depends 

sensitively on     . In general, the number of LDs that cross-link f and p can be minimized when 

              (n=1, 2, 3 … is a positive integer). However, we do not observe any periodic 

peaks of   (with              ) in Fig.3(a) of the main text. This means the sensitive 

dependence of    
  on      is an effect of elasticity rather than the pre-determined LD contacts.  

The competition between elastic energy and surface energy cannot be determined directly by 

measuring the corresponding energy terms. This is because the polymeric beads significantly 
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overlap each other even in the unfolded state (obtained at   p=150) due to the bonded 

interactions between loop boundaries. 

 

Figure S12: The dependence of (a) unit bond energy   , (b) unit polymeric energy  p    and (c) 

unit solvation energy      on Lld for a single -50-50- polymer at   p=160. (d-f) The variations of 

  ,  p    and      compared to the unfolded state (obtained at   p=150) for the same system. 

 

Fig. S12(a-c) presents the dependence of unit bond energy        p   , unit polymeric 

energy  p     p     p    and the unit solvation energy            p    on     at   p=160, 

where   ,  p   ,      and  p    respectively denote the total bond energy, the total energy 

between polymeric beads, the total energy between solvent and polymeric beads and the number 

of polymeric beads. Since forest beads are more likely to become buried inside the non-

spherically collapsed globule for        
 , a large dip for      is obtained at    =320 kb. Both    
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and  p    reach the peak values at    =80 kb and gradually decrease with    , following the 

bonds formed between nonadjacent beads at loop boundaries, the number of which also reaches a 

peak at    =80 kb and decreases with    . To provide a further test, in Fig. S12(d-f) we compare 

the variations of   ,  p    and      from the unfolded state (obtained at   p=150) to collapsed 

state (obtained at   p=160). We find that    is barely changed, and the magnitude of     no 

longer depends on    . Interestingly, the variation of polymeric energy   p    depends 

sensitively on     and reaches its minimum at    =440 kb. This result indicates the polymer is of 

the smallest degree of collapse at    =   
  due to elastic repulsions. The variation in solvation 

energy       slightly decreases with     and levels off around -2.0 for    >   
 , which means 

polymer could achieve greater surface energy in a less collapsed state. 

 

Fig.S13: The dependence of (a) unit polymeric energy  p    and (b) unit solvation energy      on 

Lld for two -50-50- polymers at   p=170. (c-d) The variations of  p    and      compared to 

unfolded state (obtained at   p=150) for the same system. 

 

Next we compare the dependence of unit polymeric energy  p    and unit solvation energy      

on     for the two-polymer system in Fig.S13. Similarly, we find the peak for  p    at    =80 kb 

and the dip for      at    =320 kb, which demonstrates that these energy terms are determined by 
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the initial configurations (i.e.    ). Fig.S13(c-d) compares the variations of  p    and      from 

the unfolded state (obtained at   p=150) to the fully collapsed state (obtained at   p=170). 

Interestingly, both the variation of polymeric energy   p    and variation of solvation energy 

      reach their maximum/minimum at    =   
 =520 kb. This result confirms that the two-

polymer system reaches its smallest degree of collapse at    
 =520 kb, which is slightly larger 

than that for a single -50-50- polymer (i.e.    
 =440 kb). By comparing Fig.S12(f) with 

Fig.S13(d), we find this change to be attributable to the depletion effect: the decrease in 

solvation energy from phase separated state to unfolded state is significantly larger for the two-

polymer system than that for a single polymer, especially for        
 . 

 

Determination of   from Hi-C data 

Similar to the measurement of   in our simulations, experimentally the magnitude of   can be 

determined as: 

  
∑ ⟨(  

       
    ) (  

       
    )⟩

   
   

   
                                                

where   
     and   

     respectively denote the average probability of contact in same and different 

types at curvilinear distance       along the chain. Both   
     and   

     are derived from the 

ICE normalization of the original counts from Hi-C data. We thus obtain smaller degree of phase 

separation for Chr1 and Chr2 taken from LV and H1 (with smaller difference          ) than 

that taken from HegG2 (Table 2 of main text), which is consistent with   for Chr1+Chr2 

determined in simulations. We do not expect an accurate prediction of   determined from Hi-C 

data based on our simulations, since the effects of confinement, lamina-associated domains 

(LADs), nucleolus and interactions with other chromosomes are not taken into account. 

 

Further discussions on       and       
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The cross-linking between two polymers works against intra-polymer compactness. As 

illustrated in Fig.S14(a-b), for     520 kb, while the probability of inter-chromosomal contact, 

   ff, decreases with    , the probability of intra-chromosomal contact       is significantly 

increased. The relation is reversed for     520 kb, as loops formed by LDs become looser. 

Fig.8 of the main text indicates that   decreases monotonically with   p for human chromosome 

1 and 2 (Chr1+Chr2) taken from embryonic stem cells4 (H1). However, as indicated by 

Fig.S14(c-d), for Chr1+Chr2 both       and    ff increase with   p. The decrease of   with   p 

is thus caused by a faster growth rate for    ff compared to that for      . This growth rate of 

   ff becomes even larger for polymers without LD. 

 

Figure S14: (a-b) The dependence of (a) the probability of intra-chromosomal contact       and 

(b) the probability of inter-chromosomal contact    ff on     for two -50-50- polymers at 

  p     . (c-d) The dependence of (c)       and (d)    ff on   p for Chr1+Chr2 with LD 

boundaries taken from H1 or without LD at   p     . 
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Fig. S15 presents normalized number of contacting pairs             as a function of     at 

  p     , with    ,         and         respectively denoting number of contacting 

pairs across two -50-50- polymers, bead number for polymer   and  . For         kb     

decreases significantly with    , while for         kb     slightly increases. This turning 

point at around         kb is again very close to the critical LD length (   
      kb) that 

impedes phase separation for a single polymer. 

 

Figure S15: Normalized number of contacting neighbours for two -50-50- polymers,         
   , as a function of     at        . 

 

Effect of heterogeneous loop sizes  

Due to the effect of loop entropy, variance of the loop length for human chromosomes can 

stabilize the phase transitions
15

. In absence of variance, the loop entropy   p   p      p , where 

  p and   p respectively denote the number and length of the loops. By contrast, for system with 

sufficiently small variance，the entropy    
    ∑          f p ∑

 

 
         f p〈       〉   

 
 
  

 f p     〈  〉 . This gives    
      p. Therefore, introducing variance will stabilize the formation 

of clusters. To check this, we compare the gyration radius of p beads Rp as a function of   p for 

polymer either with identical or different lengths of loop domains in Fig.S16. To remove the 

effect of segmental rigidity, the polymer is composed entirely of p beads. The transition from a 

crumple globule into unfolded chain takes place at round   p      for polymers both of fixed 
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    440 kb (i.e. 𝜎=0) or with disordered distributions of     in Gamma distributions with 𝜎=12. 

However, a smoother transition is obtained for the latter one in the presence of disorder. 

 

Figure S16: Comparison of the   -  p relation for polymer with identical or different length of 

loop domains. The polymer is composed entirely of p beads. 

 

We expect giant loops can protrude far from chromosome territories and intermingle with fibers 

from neighboring chromosomes in simulations. Fig.S17 presents the dependence of inter-

chromosomal coordinate number density             (where     and     respectively denote 

the inter-chromosomal coordinate number and the number of beads for each loop) on     for the 

two-polymer system with LD boundaries determined from Hi-C data of H1 (i.e. human stem 

cells). As expected,     is positively correlated with    , which can be approximated by linear 

fitting with a slope                    . These results provide evidence that, for two 

chromosomes in close contact, longer loops from one chain are more likely to get in touch with 

the neighboring chromosome. 
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Fig.S17: The dependence of inter-chromosomal coordinate number density ncr on loop length Lld 

for LD boundaries determined from Hi-C data of H1. The cutoff radius for measuring contact 

pairs rc=1.0. 
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