Supporting Information

Photochemical Synthesis of Selenium Nanospheres of Tunable Size and Colloidal Stability with Simple Diketones

Li Zhang,[†] Yonghai Gan,[†] Bingdang Wu,[†] Zhihao Chen,[†] Jie Ren,[†] Chi Zhang,[†] Shujuan Zhang,^{*,†} Chuncheng Chen[‡] and Bingcai Pan[†]

[†] State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China. E-mail: <u>sjzhang@nju.edu.cn</u>

* Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author. Tel.: +86 25 89680389

E-mail address: sjzhang@nju.edu.cn (S.J. Zhang)

This file contains 4 tables and 5 figures.

Chemical	LD_{50} (rat, oral) (mg/kg) ^{<i>a</i>}
Acetone	5800 ^b
AcAc	1000 ^c
BD	1580 ^{<i>b</i>}
PD	3000 ^b
HD	2076 ^b
I-2959	4082 ^b
BP	> 10000 ^{<i>b</i>}
Formic acid	1100 ^b
Acetic acid	3310 ^{<i>b</i>}

Table S1. Acute toxicity data of the tested ketones and their main degradation products with rat as the testing species.

 a LD₅₀, the median lethal dose, represents the dose at which a substance is lethal for 50% of the tested subjects at the given route of delivery. A substance that is innocuous in one species could be lethal in another. The data with rat as the testing species is selected for comparison.

^b The National Library of Medicine's Hazardous Substances Data Bank (HSDB). See the following web site: <u>https://pubchem.ncbi.nlm.nih.gov/</u>

^a Ballantyne, B.; Cawley, T. J. Toxicology Update. J. Appl. Toxicol. 2001, 21, 165–171.

λ Chemical (nm	λ	RT <i>^{<i>a</i>}</i>	Volume ^b		Temp ^d		Flow rate	
	(nm)	(min)	(µL)	Column ^c	(°C)	Mobile phase (v/v)	(mL·min ⁻¹)	
AcAc	274	3.55	20	C8, 5 µm	25	CH ₃ OH/1 mM CuCl ₂	0.24/0.36	
				4.6 × 150 mm				
BD	315	4.17	20	C18, 5 µm	25	CH ₃ CN/H ₂ O	0.21/0.39	
				4.6 × 100 mm				
I-2959	280	1.66	1	C18, 5 µm	25	CH ₃ CN/H ₂ O	0.24/0.06	
				4.6 × 100 mm				
BP	258	7.09	5	C18, 5 µm	30	CH ₃ CN/H ₂ O	0.47/0.53	
				4.6 × 100 mm				

Table S2. HPLC conditions for the determination of AcAc, BD, I-2959 and BP

^a Retention time, ^b Injection volume, ^c Agilent Eclipse Plus, ^d Column temperature

Name	MW	Structure	Formula	S ^a	λ_{\max}^{b}	8 ^{<i>c</i>}
				(g·L ⁻¹)	(nm)	(M ⁻¹ cm ⁻¹)
Acetone	58.08	°	C ₃ H ₆ O	Miscible	263	17
AcAc	100.12		$C_5H_8O_2$	160	274	1800
BD	86.09	, in the second	$C_4H_6O_2$	2	271	32
I-2959	224.25	П НООН	C ₁₂ H ₁₆ O ₄	10	280	14100
BP	182.22		C13H10O	Insoluble	258	16610
				(< 1)		

Table S3. Basic chemical information of the tested ketones

^{*a*} Water solubility, cited from <u>https://www.chemicalbook.com/</u> and

http://www.xtgchem.cn/upload/20110629045632.PDF

^b The maximum absorption wavelength

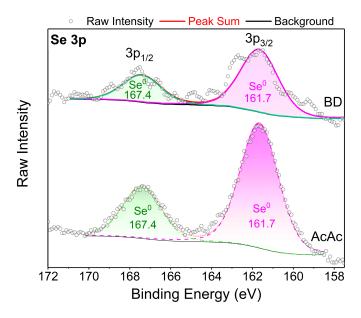
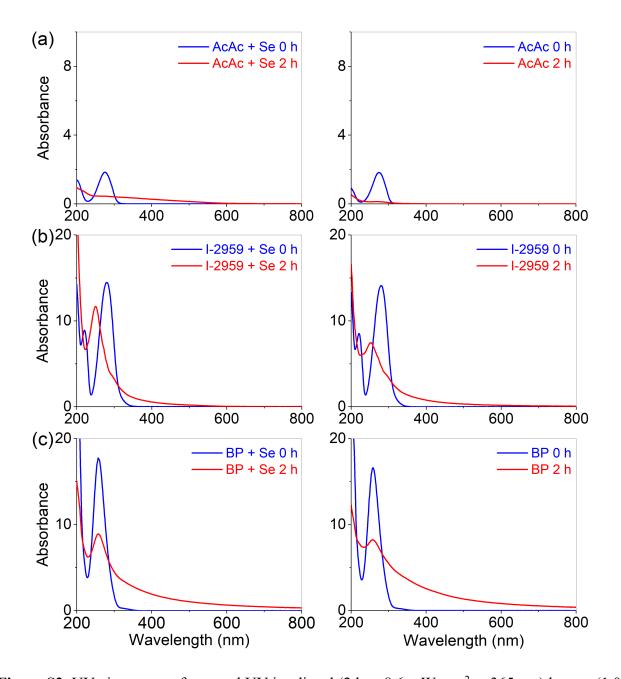
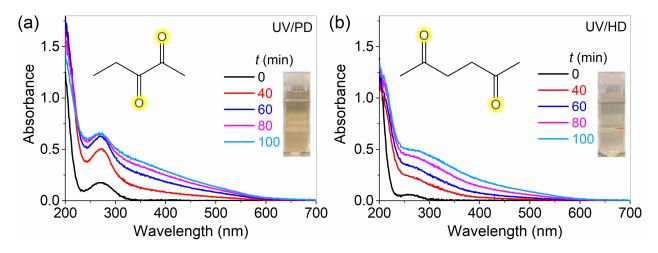
^{*c*} The molar extinction coefficient at the maximum absorption wavelength

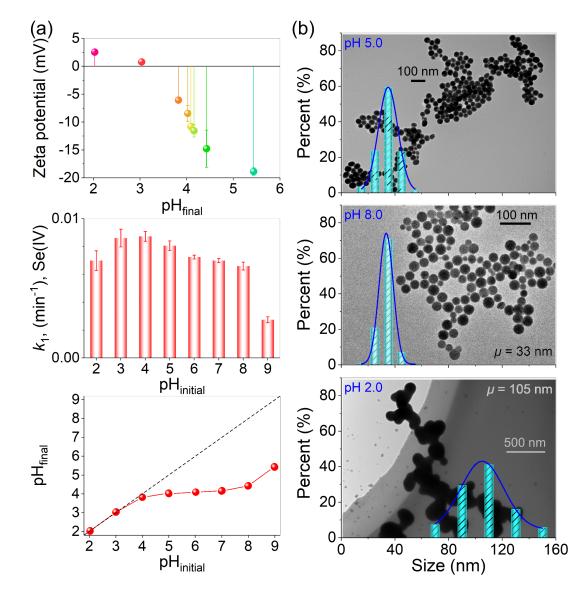
Method	Chemicals ^{<i>a</i>}		EE/O (kWh·L ⁻¹)			
	Chemicals	Energy input	Energy	Chemical	Total	
UV/AcAc	AcAc, Na ₂ SeO ₃	UV	1.8	0.05	1.8	
UV/BD	BD, Na ₂ SeO ₃	UV	1.8	0.13	1.9	
Hydrothermal	Glucose, SeO ₂ , PVP,	Heating	7	20	27	
route ^b	EtOH, NH4OH					

Table S4. The electrical energy consumption (EE/O) data of the synthesis methods for nano Se.

^a The price of the chemicals was obtained from <u>https://www.alibaba.com/</u> (2021.7.3).

^b Xie, Q.; Dai, Z.; Huang, W. W.; Zhang, W.; Ma, D. K.; Hu, X. K.; Qian, Y. T. Large-Scale Synthesis and Growth Mechanism of Single-Crystal Se Nanobelts. *Cryst. Growth Des.* 2006, 6 (6), 1514–1517.


Figure S1. XPS of Se3p spectra of the SeNSs obtained with AcAc and BD.

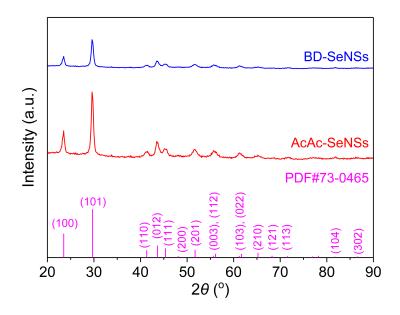

Figure S2. UV-vis spectra of raw and UV irradiated (2 h at 8.6 mW·cm⁻² at 365 nm) ketone (1.0 mM) solutions w/ or w/o Se(IV) (0.2 mM).

Figure S3. UV-vis spectra of the colloidal solutions of SeNSs obtained with 2,3-pentanedione (PD) and 2,5-hexanedione (HD). [Ketone] = 1.0 mM, [Se(IV)] = 0.2 mM, light intensity: $7.0 \text{ mW} \cdot \text{cm}^{-2}$ at 365 nm.

Figure S4. The surface charge (a) and size distributions (b) of the SeNSs obtained with AcAc at different pHs. [AcAc] = 1.0 mM, [Se(IV)] = 0.2 mM, light intensity: 5.0 mW \cdot cm⁻² at 365 nm, irradiation time: 160 min.

Figure S5. XRD pattern of the SeNSs obtained with AcAc and BD. The patterns are identical to the powder diffraction file (PDF card) JCPDS 73-0465.