Supporting Information

Unraveling the Atomic Structure of Bulk Binary Ga-Te Glasses with Surprising Nanotectonic Features for Phase-Change Memory Applications

Maria Bokova, Andrey Tverjanovich, Chris J. Benmore, Daniele Fontanari, Anton Sokolov, Maxim Khomenko, Mohammad Kassem, Ilya Ozheredov, and Eugene Bychkov*

Figure S1. Diffraction pattern of MM- $Ga_{0.15}Te_{0.85}$ and MM- $Ga_{0.30}Te_{0.70}$, prepared by mechanical milling (MM).

Figure S2. Diffraction patterns of Ga_{0.25}Te_{0.75} sample after *in situ* diffraction measurements as a function of temperature.

Figure S3. Raw Raman data, baseline subtraction and Gaussian fitting for bulk glassy Ga_{0.25}Te_{0.75}.

Figure S4. Structural evolution of ETH-Ga₂Te₆H₆ cluster during DFT optimization at 0 K.

Figure S5. Gaussian fitting of the X-ray total correlation function for glassy Ga_{0.2}Te_{0.8}.

Figure S6. Nearest neighbor distributions around two-fold and trigonal Te species.

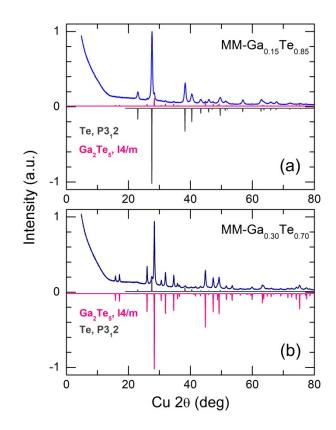

Figure S7. Structural references and HP-motifs in supercooled viscous Ga_{0.2}Te_{0.8} at 600 K.

Figure S8. Orientational order parameter q and $B(\theta)$ distributions of Te-Ga-Te bond angles for GaTe₃ and GaTe₅ entities in liquid Ga_{0.2}Te_{0.8}.

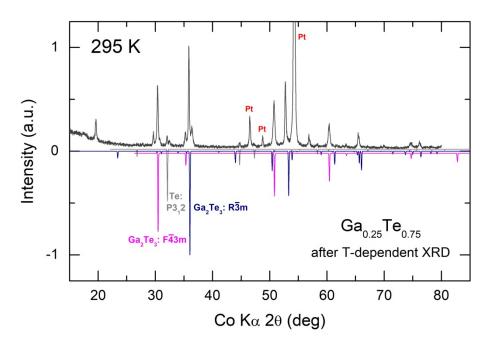
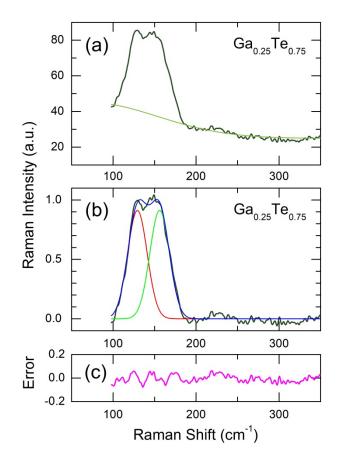
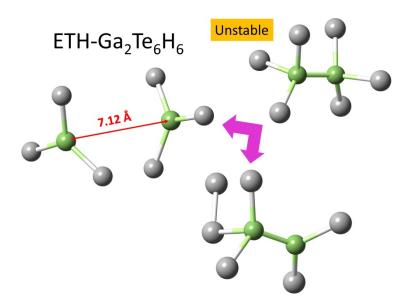
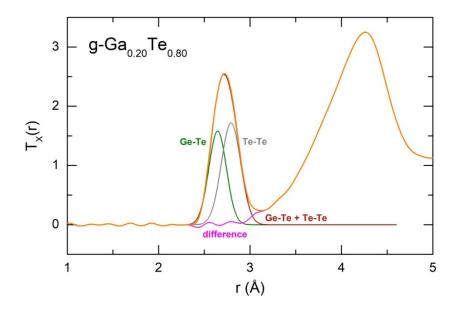
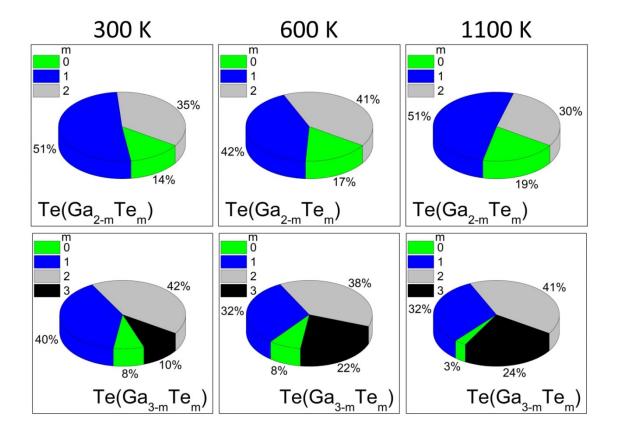

Table S1. Optimized Geometry Parameters of Size-Limited Ga-Te Clusters Used in DFT Modeling of Vibrational Properties

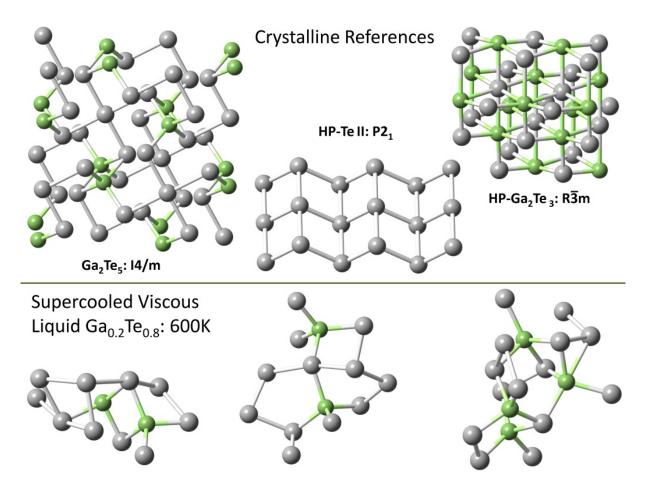
Table S2. Optimized Geometry Parameters of Tellurium Rings Used in DFT Modeling of VibrationalProperties


* Email: <u>Eugene.Bychkov@univ-littoral.fr</u>


Figure S1. Diffraction pattern of (a) MM-Ga_{0.15}Te_{0.85} and (b) MM-Ga_{0.30}Te_{0.70}, prepared by mechanical milling (MM). The main crystalline phase in case of MM-Ga_{0.15}Te_{0.85} is trigonal tellurium, space group $P3_12.^{S1}$ Tetragonal Ga₂Te₅, I4/m,^{S2,S3} appears to be the major crystalline species in MM-Ga_{0.30}Te_{0.70}.


Figure S2. Diffraction patterns of Ga_{0.25}Te_{0.75} sample after *in situ* diffraction measurements as a function of temperature and related crystalline references: cubic Ga₂Te₃,⁵⁴ high-pressure rhombohedral Ga₂Te₃,⁵⁵ and trigonal tellurium.^{S1}


Figure S3. (a) Raw Raman data for bulk glassy $Ga_{0.25}Te_{0.75}$ before baseline subtraction, (b) a two-peak Gaussian fitting of the baseline subtracted and normalized Raman spectrum for $Ga_{0.25}Te_{0.75}$, and (c) difference between experimental and deconvoluted spectra.


Figure S4. Structural evolution of ETH-Ga₂Te₆H₆ cluster during DFT optimization at 0 K. The first scenario consists in a complete separation of the ETH-Ga₂Te₆H₆ cluster into two GaTe₃H₃ units of approximate D_{3h} geometry distant of 7.12 Å. In the second scenario, a tellurium species moves from one gallium toward the other one forming a Te-Te pair. The terminal hydrogen atoms are not shown.

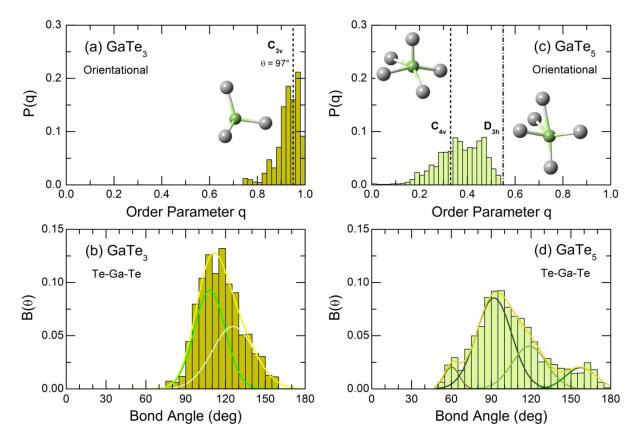

Figure S5. Gaussian fitting of the nearest neighbor peak of the X-ray total correlation function $T_X(r)$ for glassy Ga_{0.2}Te_{0.8}: Ge-Te and Te-Te correlations are shown by the green and gray solid lines, respectively, the difference between experimental and deconvoluted data is drawn as the solid magenta line.

Figure S6. Nearest neighbor distributions around two-fold and trigonal Te species at 300, 600 and 1100 K (enlarged insets to Figure 12).

Figure S7. Structural references: tetragonal Ga₂Te₅, space group I4/m,^{S2,S3} monoclinic HP-Te II, $P2_1$,^{S6} and rhombohedral HP-Ga₂Te₃, $R\bar{3}m$,^{S5} and HP-motifs in supercooled viscous Ga_{0.2}Te_{0.8} at 600 K (FPMD, this work).

Figure S8. Orientational order parameter q for (a) GaTe₃ and (b) GaTe₅ entities in liquid Ga_{0.2}Te_{0.8}, (b,d) corresponding $B(\theta)$ distributions for Te-Ga-Te bond angles.

Under- and over-coordinated GaTe₃ and GaTe₅ units in liquid Ga_{0.2}Te_{0.8} also have variable geometry evidenced by broad $B_{\text{TeGaTe}}(\theta)$ distributions of the Te-Ga-Te bond angles, Figure S5b,d. Following Ref. [S7-S9], we have used the orientational order parameter q

$$q = 1 - \frac{3}{8} \sum_{j=1}^{3} \sum_{k=j+1}^{4} \left(\cos \psi_{jk} + \frac{1}{3} \right)^2$$

to determine basic geometry types of these entities. The GaTe₃ units often have a pyramidal geometry shown in the inset of Figure S5a. Regular pyramids of C_{3v} symmetry have different q-values dependent on the Te-Ga-Te angle θ : q = 1 for tetrahedral $\theta_{T_d} = 109.47^\circ$, $q = \frac{7}{8}$ for octahedral $\theta_{O_h}(2) = \frac{\pi}{2}$, and finally going to q = 0 at $\theta \cong 52.45^\circ$. In addition, flat GaTe₃ of D_{3h} symmetry has $q \cong 0.97$, and a T-shaped planar unit of C_{2v} geometry with $\theta_{O_h}(1) = \pi$ and $\theta_{O_h}(2) = \frac{\pi}{2}$ reveals $q = \frac{3}{4}$. The P(q) probability distribution for GaTe₃ appears to be asymmetric and approximately peaked at q = 0.95, corresponding to the C_{3v} -entities with $\theta \cong 97^\circ$. The population of flat and defect tetrahedral GaTe₃ species seems to be superior to that of defect octahedral moieties of both pyramidal and planar geometry.

The five-fold coordinated gallium species mostly have a defect octahedral shape, the inset on the left in Figure S5b. A regular square pyramid of C_{4v} symmetry with $\theta_{O_h}(1)$ and $\theta_{O_h}(2)$ angles is characterized by $q = \frac{1}{3}$, which is close to the maximum of a broad P(q) distribution for GaTe₅. Possible alternative shapes appear to be a trigonal bipyramidal unit of D_{3h} symmetry having $q \approx 0.55$, and a trigonal prism GaTe₅ without one Te NN. The defect regular prism with identical Ga-Te distances has $q \approx 0.28$. The fraction of distorted bipyramids, the inset in Figure S5b, or prisms seems to be small.

Table S1. Optimized Geometry Parameters (Ga-Te, Ga-Ga and Te-Te Interatomic Distances, Te-Ga-Te and Ga-Te-Ga Bond Angles) of Size-Limited Ga-Te^a Clusters Used in DFT Modeling of Vibrational Properties

Compound Cluster	Ga-Te (Å)	Te-Te (Å)	Ga-Ga (Å)	Te-Ga-Te (deg)	Ga-Te-Ga (deg)	X-X-Y (deg) ^b
GaTe ₄ ^a	2.66(8)	_	_	108(14)	_	_
CS-Ga ₂ Te ₇ ^a	2.71(20)	2.78	4.08 ^c	108(11)	103.2	94(6)
ES-Ga ₂ Te ₆ ^a	2.67(9)	4.14 ^c	3.39 ^c	107(20)	79(4)	-
ES-Ga ₃ Te ₈ ^a	2.67(5)	4.17 ^c	3.34(1) ^c	108(14)	77.4(4)	_
ETH-Ga ₂ Te ₅ ^a	2.65(9)	_	2.50	107(19)	_	116(5)
$Ga_2Te_5^{S2,S3}$	2.641	3.027	3.424	110(8)	80.1	98.8
Ga ₂ Te ₃ ^{S4}	2.553	4.17 ^c	4.17 ^c	109.47	109.47	_
GaTe ^{S10}	2.67(2)	4.22(15) ^c	2.43(1)	105(4)	96(4)	113(8)

^{*a*} the terminal hydrogen species in the formula are omitted; ^{*b*} X = Ga or Te; Y = Ga or Te; ^{*c*} the second-neighbor distance

Table S2. Optimized Geometry Parameters (Te-Te Interatomic Distances and Te-Te-Te BondAngles) of Tellurium Rings Used in DFT Modeling of Vibrational Properties

Compound / Te_n ring	Te-Te (Å)	Te-Te-Te (deg)
Te ₆	2.77(8)	102(3)
$(AgI)_2(Te_6)^{S11}$	2.74(2)	99(2)
Te ₈	2.76(1)	108(9)
Cs_3Te_{22} (Te ₈ rings) ^{S12}	2.80(3)	100(2)

Supporting References

- (S1) Cherin, P.; Unger, P. Two-Dimensional Refinement of the Crystal Structure of Tellurium. *Acta Crystal.* **1967**, *23*, 670–671.
- (S2) Julien-Pouzol, M.; Jaulmes, S.; Alapini, F. Tellurure de Gallium. *Acta Crystal. B* **1977**, *33*, 2270–2272.
- (S3) Deiseroth, H. J.; Amann, P.; Thurn, H. Die Pentatelluride M₂Te₅ (M = Al, Ga, In): Polymorphie, Strukturbeziehungen und Homogenitätsbereiche. *Z. Anorg. Allg. Chem.* **1996**, *622*, 985–993.
- (s4) Guymont, M.; Tomas, A.; Guittard, M. The Structure of Ga₂Te₃. An X-ray and High-Resolution Electron Microscopy Study. *Phil. Mag. A: Phys. Cond. Matter* **1992**, *66*, 133–139.
- (S5) Serebryanaya, N. R. The Crystal Structure of Pressure-Induced Phases of In₂Te₃ and Ga₂Te₃. *Powder Diffraction* **1992**, *7*, 99–102.
- (S6) Aoki, K.; Shimomura, O.; Minomura, S. Crystal Structure of the High-Pressure Phase of Tellurium. *J. Phys. Soc. Japan* **1980**, *48*, 551–556.
- (S7) Caravati, S.; Bernasconi, M.; Kühne, T. D.; Krack, M.; Parrinello, M. Coexistence of Tetrahedral- and Octahedral-like Sites in Amorphous Phase Change Materials. *Appl. Phys. Lett.* **2007**, *91*, 171906.
- (S8) Caravati, S.; Bernasconi, M.; Parrinello, M. First-Principles Study of Liquid and Amorphous Sb₂Te₃. *Phys. Rev. B* **2010**, *81*, 014201.
- (S9) Bouzid, A.; Massobrio, C.; Boero, M.; Ori, G.; Sykina, K.; Furet, E. Role of the van der Waals Interactions and Impact of the Exchange-Correlation Functional in Determining the Structure of Glassy GeTe₄. *Phys. Rev. B* 2015, *92*, 134208.
- (S10) Julien-Pouzol, M.; Jaulmes, S.; Guittard, M.; Alapini, F. Monotellurure de Gallium, GaTe. *Acta Crystal. B* **1979**, *35*, 2848–2851.
- (S11) Deiseroth, H. J.; Wagener, M.; Neumann, E. (AgI)₂Te₆ and (AgI)₂Se₆: New Composite Materials with Cyclic Te₆ and Se₆ Molecules Stabilized in the "Solid Solvent" AgI. *Eur. J. Inorg. Chem.* 2004, 2004, 4755–4758.
- (S12) W. S. Sheldrick, W. S.; Wachhold, M. Discrete Crown-Shaped Te₈ Rings in Cs₃Te₂₂. Angew. Chem. Int. Ed. 1995, 34, 450–451.