Supporting Information

Complex Phase Behavior in Particle-Forming AB/AB' Diblock Copolymer Blends with Variable Core Block Lengths

Aaron P. Lindsay,¹ Guo Kang Cheong,¹ Austin J. Peterson,¹ Steven Weigand,³ Kevin D. Dorfman,¹ Timothy P. Lodge,^{1,2} Frank S. Bates^{*1}

¹Department of Chemical Engineering and Materials Science and ²Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA

³DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL Building 432-A004, 9700 South Cass Ave, Argonne, Illinois 60439, USA

*Corresponding Author: Frank S. Bates (bates001@umn.edu)

Contents	Page
	0
Figure S1. SEC data	S3
Figure S2. Extended 1D SAXS trace for C14 Laves phase in a SB1/SB2 blend	S 3
Table S1. Indexing and residuals for C14 Laves phase in a SB1/SB2 blend	S4
Table S2. Indexing and residuals for σ phase in a SB3/SB4 blend	S5
Figure S3. 1D SAXS trace for a SB3/SB4 blend with $\phi_2 = 0.80$ at 180 °C	S6
Figure S4. SAXS data collected for SB3/SB5 blends at 120 °C	S6
Figure S5. 1D SAXS traces collected for SB3/SB5 blends with $\phi_2 = 0.31$	S7
Figure S6. TEM micrograph collected from a SB3/SB5 blend with $\phi_2 = 0.31$	S 8
Figure S7. 1D SAXS trace for a HCP phase in a SB3/SB5 blend	S9
Figure S8 1D SAXS trace for a σ /HCP coexistence in a SB3/SB5 blend	S9
Table S3. Indexing and residuals for a σ /HCP coexistence in a SB3/SB5 blend	S10
Figure S9 1D SAXS trace for an A15/ σ coexistence in a SB3/SB5 blend	S11
Table S4. Indexing and residuals for an A15/ σ coexistence in a SB3/SB5 blend	S12
Table S5. Indexing and residuals for a QC in a SB3/SB5 blend	S13
Table S6. Indexing and residuals for an A15/HEX _C coexistence in a SB3/SB5 blend	S13
Calculation of mean particle radii	S14
Dispersity	S17
Self-consistent mean field theory (SCFT)	S19
Figure S10. Free energy profiles as a function of composition	S20
Figure S11. Free energy profiles as a function of χN	S20
Figure S12. SCFT phase portrait at increased χN	S21
Figure S13. SCFT-derived composition maps for the σ and A15 phases	S22
References	S23

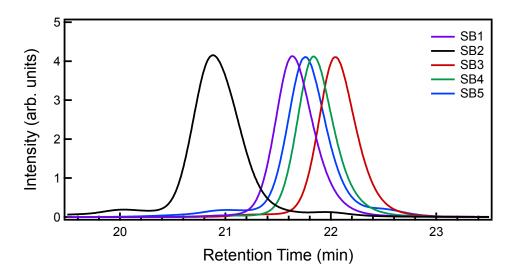
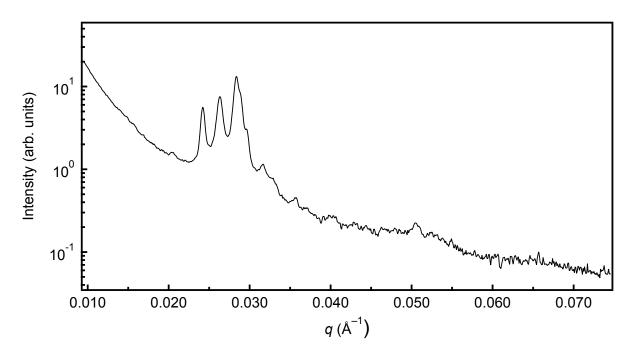
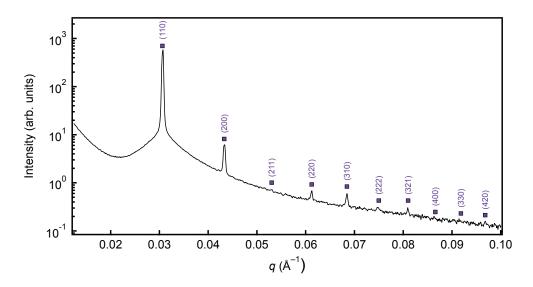
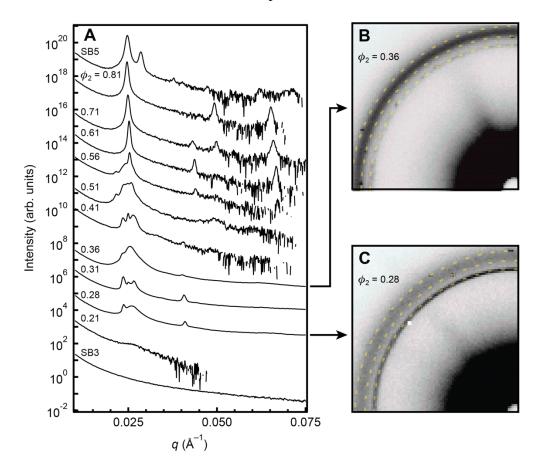



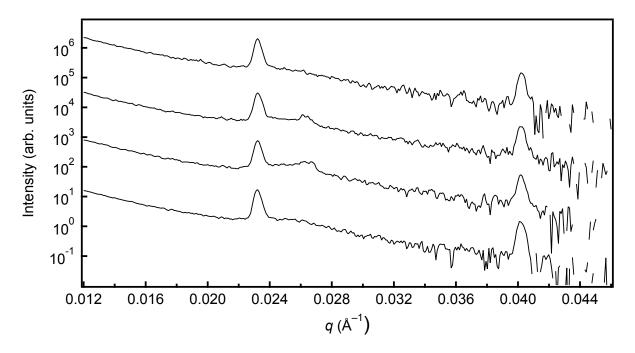
Figure S1. Size exclusion chromatography light scattering traces collected in tetrahydrofuran.

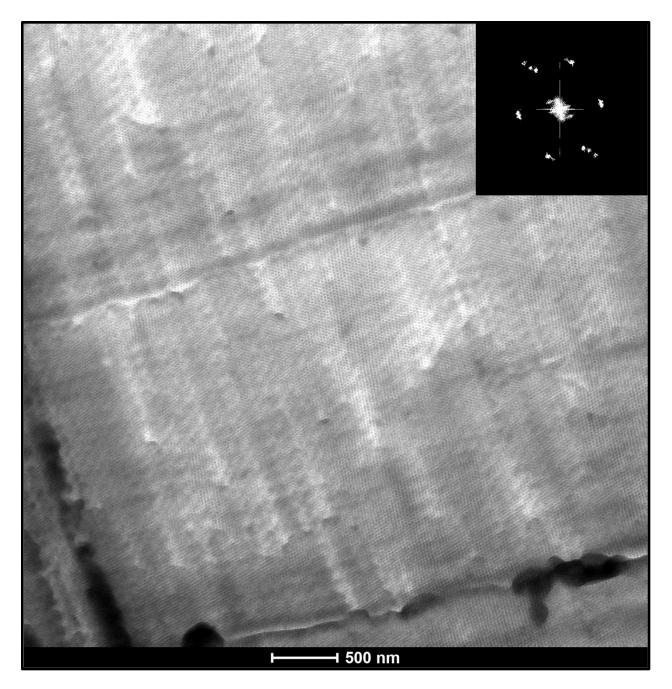

Figure S2. Extended 1D SAXS trace for the C14 Laves phase observed in SB1/SB2 blends with $\phi_2 = 0.075$ at 150 °C following the thermal processing outlined in Figure 2 and the main text. Indexing and residuals can be found in Table S1.

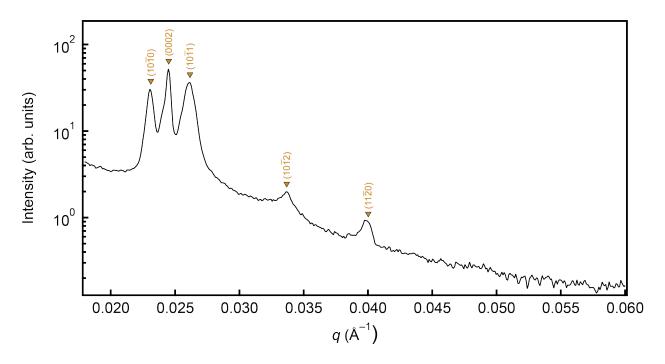
Miller Indices (<i>hkl</i>)	$q_{ m obs}$ (1/Å)	$q_{ m calc}$ $(1/{ m \AA})$	% Residual $(\Delta q/q_{calc} \times 100)$
(100)	0.013948	0.013952	0.03
(002)	0.014846	0.014827	-0.13
(101)	0.015744	0.015800	0.35
(102)	0.020325	0.020359	0.17
(110)	0.024188	0.024166	-0.09
(103)	0.026292	0.026254	-0.14
(200)	_	0.027905	_
(112)	0.028319	0.028352	0.12
(201)	0.028858	0.028873	0.05
(004)	0.029577	0.029653	0.26
(202)	0.031643	0.031599	-0.14
(104)	0.032900	0.032772	-0.39
(203)	0.035685	0.035683	-0.01
(210)	0.036942	0.036914	-0.07


Table S1. Observed and calculated peak positions for the C14 Laves phase in Figures 2 and S2; data were collected from SB1/SB2 blends with $\phi_2 = 0.075$ at 150 °C. Peak positions were calculated as $q_{\rm hkl} = 2\pi \left[(4/3) (h^2 + hk + k^2)/a^2 + l^2/c^2 \right]^{1/2}$ based on $P6_3/mmc$ space group symmetry with lattice parameters a = 520.0 Å and c = 847.5 Å

Miller Indices	$q_{ m obs}$	$q_{ m calc}$	% Residual
(hkl)	(1/Å)	(1/Å)	$(\Delta q/q_{ m calc} imes 100)$
(110)	_	0.009682	_
(200)	_	0.013692	_
(101)	_	0.014654	_
(210)	_	0.015308	_
(111)	_	0.016174	_
(220)	_	0.019363	_
(211)	0.020048	0.020055	0.04
(310)	0.021753	0.021649	-0.48
(221)	0.023369	0.023298	-0.30
(301)	0.024267	0.024283	0.07
(320)	0.024626	0.024684	0.23
(311)	0.025255	0.025230	-0.10
(002)	0.025917	0.025913	-0.02
(400)	0.027320	0.027384	0.23
(112)	_	0.027663	_
(321)	0.027858	0.027877	0.07
(410)	0.028217	0.028227	0.03
(330)	0.029025	0.029045	0.07
(202)	0.029295	0.029308	0.04
(212)	_	0.030097	_
(420)	_	0.030616	_
(411)	0.03109	0.031058	-0.10
(331)	0.031809	0.031804	-0.02
(222)	0.032347	0.032348	0.00
(421)	0.033155	0.033245	0.27
(312)	0.033694	0.033766	0.21
(430)	_	0.034230	_
(510)	_	0.034908	_
(322)	0.035849	0.035788	-0.17
(501)	0.036657	0.036600	-0.16
(520)	_	0.036867	_
(511)	0.037195	0.037235	0.11


Table S2. Observed and calculated peak positions for the σ phase coexisting with HEX_C in Figures 3 and 4. Data were collected from an SB3/SB4 blend with $\phi_2 = 0.80$ at 150 °C. Peak positions were calculated as $q_{hkl} = 2\pi [(h^2 + hk + k^2)/a^2 + l^2/c^2]^{1/2}$ based on $P4_2/mnm$ space group symmetry with lattice parameters a = 917.8 Å and c = 484.9 Å.


Figure S3. 1D SAXS trace collected from a SB3/SB4 blend with $\phi_2 = 0.80$ following a 169 h anneal at 180 °C. The trace is indexed to a BCC phase.


Figure S4. (A) 1D and (B,C) 2D SAXS data collected from SB3/SB5 blends following extended annealing (66-92 h) at 120 °C. 2D SAXS data in B and C was collected following 92 h of annealing at 120 °C. 2D data is indexed to the HCP phase (yellow dashed lines).

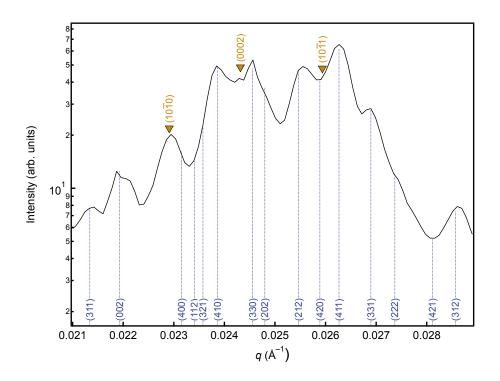

Figure S5. 1D SAXS traces collected from different locations on a SB3/SB5 blend with $\phi_2 = 0.31$ following 66 h of annealing at 150 °C.

Figure S6. Transmission electron microscopy (TEM) micrograph collected from a thin (~70 nm) microtomed section of a SB3/SB5 blend with $\phi_2 = 0.31$. Prior to microtoming, the sample was annealed for 66 h at 150 °C, after which the SAXS patterns in Figures 5A,C and S5 were collected and the sample was vitrified in liquid nitrogen. The inset in the upper right corner is a Fourier transform of the image displaying the 6-fold rotation symmetry present over large areas.

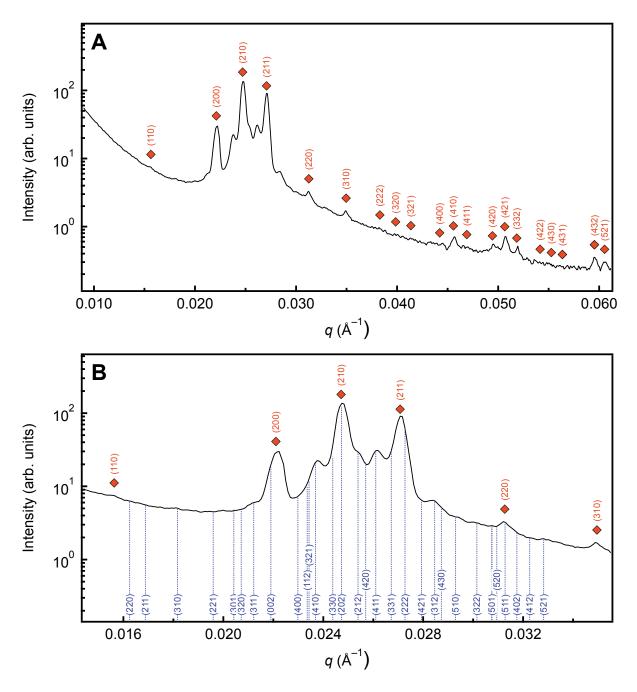

Figure S7. 1D SAXS trace collected from a SB3/SB5 blend with $\phi_2 = 0.41$ following 92 h of annealing a 180 °C. The trace is indexed to a HCP phase. Additional patterns can be found in Figures 5 and S9. Indexing and residuals can be found in Table S4.

Figure S8. 1D SAXS trace collected from a SB3/SB5 blend with $\phi_2 = 0.46$ after annealing at 180 °C for 66 h. Lines and inverted triangles denote peaks associated with the σ and HCP phases, respectively. Indexing and residuals can be found in Table S3.

Table S3. Observed and calculated peak positions for the σ/HCP phase coexistence evidenced in Figures 5 and S10; data were collected from SB3/SB5 blends with $\phi_2 = 0.46$ at 180 °C. Peak positions for the HCP phase were calculated as $q_{hkl} = 2\pi [(4/3) (h^2 + hk + k^2)/a^2 + l^2/c^2]^{1/2}$ based on $P6_3/mmc$ space group symmetry with lattice parameters a = 316.7 Å and c = 517.1 Å. Peak positions for the σ phase were calculated as $q_{hkl} = 2\pi [(h^2 + k^2)/a^2 + l^2/c^2]^{1/2}$ based on $P4_2/mnm$ space group symmetry with lattice parameters a = 1085.5 Å and c = 573.0 Å.

Miller Indices (<i>hkil</i>) or (<i>hkl</i>)	$q_{ m obs}$ $(1/ m \AA)$	$q_{ m calc} \ (1/{ m \AA})$	% Residual $(\Delta q/q_{calc} \times 100)$
		CP	
(1010)	0.022946	0.022910	-0.16
(0002)	0.024293	0.024300	0.03
(1011)	_	0.025933	-0.26
(1012)	0.033539	0.033397	-0.43
(1120)	0.039643	0.039682	0.10
(1013)	_	0.043052	_
(2020)	0.046016	0.045820	-0.43
(1122)	0.046555	0.046531	-0.05
(2021)	0.047363	0.047404	0.09
(0004)	0.048799	0.048599	-0.41
(2022)	0.051761	0.051865	0.20
		5	
(211)	0.016932	0.016964	0.19
(310)	0.018279	0.018304	0.14
(221)	0.019625	0.019705	0.40
(301)	0.020613	0.020537	-0.37
(320)	_	0.020870	_
(311)	0.021331	0.021337	0.03
(002)	0.021959	0.021931	-0.13
(400)	_	0.023153	_
(112)	_	0.023409	_
(321)	_	0.023575	_
(410)	0.023844	0.023866	0.09
(330)	0.024562	0.024558	-0.02
(202)	0.024832	0.024799	-0.13
(212)	0.02555	0.025465	-0.33
(420)	_	0.025886	_
(411)	0.026268	0.026264	-0.01
(331)	0.026896	0.026895	-0.01

Figure S9. 1D SAXS trace collected from a SB3/SB5 blend with $\phi_2 = 0.51$ after annealing at 180 °C for 66 h. Lines and diamonds denote peaks associated with σ and A15 phases, respectively. Indexing and residuals can be found in Table S6.

Table S4. Observed and calculated peak positions for the A15/ σ phase coexistence evidenced in Figures 5 and S11; data were collected from SB3/SB5 blends with $\phi_2 = 0.51$ at 180 °C. Peak positions for the A15 phase were calculated as $q_{hkl} = 2\pi [(h^2 + k^2 + l^2)/a^2]^{1/2}$ based on $Pm\bar{3}n$ space group symmetry with a lattice parameter of a = 568.5 Å. Peak positions for the σ phase were calculated as $q_{hkl} = 2\pi [(h^2 + k^2)/a^2 + l^2/c^2]^{1/2}$ based on $P4_2/mnm$ space group symmetry with lattice parameters a = 1093.3 Å and c = 573.7 Å.

Miller Indices (<i>hkl</i>)	$q_{ m obs} \ (1/{ m \AA})$	$q_{ m calc} \ (1/{ m \AA})$	% Residual $(\Delta q/q_{calc} \times 100)$
(11.11)		15	$(\Delta q/q_{calc} \times 100)$
(110)	0.015586	0.015630	0.28
(200)	0.022228	0.022104	-0.56
(210)	0.024742	0.024713	-0.12
(211)	0.027165	0.027072	-0.34
(220)	0.031205	0.031260	0.18
(310)	0.034885	0.034950	0.19
(222)	0.038207	0.038285	0.20
(320)	0.039733	0.039849	0.29
(321)	0.041348	0.041353	0.01
(400)	0.0444	0.044208	-0.43
(410)	0.045657	0.045569	-0.19
(411)	0.047004	0.046890	-0.24
(420)	0.049517	0.049426	-0.18
(421)	0.050684	0.050647	-0.07
(332)	0.051941	0.051839	-0.20
		5	
(410)	0.023754	0.023695	-0.25
(330)	_	0.024382	_
(202)	_	0.024735	_
(212)	0.02546	0.025394	-0.26
(420)	_	0.025701	_
(411)	0.026178	0.026103	-0.29
(331)	_	0.026728	_
(222)	_	0.027275	_
(421)	_	0.027937	_
(312)	0.028422	0.028460	0.13
(430)	_	0.028734	_
(510)	0.02941	0.029303	-0.36
(322)	0.030038	0.030150	0.37

Table S5. Observed and calculated peak positions for the QC evidenced in Figures 5 and S12; data were collected from SB3/SB5 blends with $\phi_2 = 0.51$ at 150 °C. Peak positions were calculated as described by Iwami and Ishimasa [1] based on a $P12_6/mmc$ space group symmetry, a tiling edge length a = 572.9 Å, and a periodicity of c = 575.6 Å.

Miller Indices $(a_1 a_2 a_3 a_4 a_5)$	$q_{ m obs} \ (1/{ m \AA})$	$q_{ m calc} \ (1/{ m \AA})$	% Residual $(\Delta q/q_{calc} \times 100)$
(11000)	_	0.012233	_
(00002)	0.021780	0.021832	0.24
(12100)	0.023844	0.023633	-0.89
(01102)	0.024921	0.025026	0.42
(22011)	0.025999	0.026032	0.13
(11102)	0.028063	0.027856	-0.74
(12202)	_	0.036531	_
(00004)	0.043664	0.043664	0.00
(01104)	0.045298	0.045345	0.10

Table S6. Observed and calculated peak positions for the A15 phase coexisting with HEX_C evidenced in Figures 5 and S13; data was collected from SB3/SB5 blends with $\phi_2 = 0.56$ at 180 °C. Peak positions for the A15 phase were calculated as $q_{\rm hkl} = 2\pi \left[(h^2 + k^2 + l^2) / a^2 \right]^{1/2}$ based on $Pm\bar{3}n$ space group symmetry with a lattice parameter of a = 577.0 Å.

Miller Indices (<i>hkl</i>)	$q_{ m obs}$ (1/Å)	$q_{ m calc} \ (1/{ m \AA})$	% Residual $(\Delta q/q_{calc} \times 100)$
(110)	_	0.015400	_
(200)	0.021753	0.021779	0.12
(210)	0.024357	0.024349	-0.03
(211)	0.026601	0.026673	0.27
(220)	_	0.030800	_

Calculation of mean particle radii:

For a periodic particle packing, the mean particle radius $\langle R \rangle$ can be calculated as:

$$\langle R \rangle = \left(\frac{3V_{\rm UC}}{4\pi\rho_{\rm P,UC}}\right)^{1/3} \tag{S1}$$

where V_{UC} is the unit cell volume, which can be readily determined *via* SAXS, and $\rho_{P,UC}$ is the number of particles per unit cell set by the packing. In the most general form, unit cell volume can be calculated as:

$$V_{\rm UC} = a \ b \ c \left(1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma\right)^{1/2}$$
(S2)

where *a*, *b*, and *c* are lattice constants and the angles α , β , and γ are lattice parameters. These values are determined from SAXS from the relations:

$$q_{\rm hkl,cubic} = 2\pi \left(\frac{\left(h^2 + k^2 + l^2\right)}{a^2} \right)^{1/2}$$
 (S3)

$$q_{\rm hkl,hexagonal} = 2\pi \left(\frac{4(h^2 + hk + k^2)}{3a^2} + \frac{l^2}{c^2} \right)^{1/2}$$
(S4)

$$q_{\rm hkl,tetragonal} = 2\pi \left(\frac{(h^2 + k^2)}{a^2} + \frac{l^2}{c^2} \right)^{1/2}$$
 (S5)

for cubic, hexagonal, or tetragonal lattices, where q_{hkl} is the scattering wavevector for plane (*hkl*), $\alpha = \beta = \gamma = 90^{\circ}$ for a cubic or tetragonal lattice, and $\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$ for a hexagonal lattice.

From these relations, $\langle R \rangle$ can be calculated for the phases observed in this work as:

$$\langle R \rangle_{\rm BCC} = R_{\rm BCC} = \frac{3^{1/3} 2^{1/2} \pi^{2/3}}{q_{110}}$$
 (S6)

$$\langle R \rangle_{\rm FCC} = R_{\rm FCC} = \frac{3^{5/6} \pi^{2/3}}{2^{1/3} q_{111}}$$
 (S7)

S14

$$\langle R \rangle_{\rm HCP} = R_{\rm HCP} = \frac{2^{2/3} \pi^{2/3} (c/a)^{1/3}}{q_{10\bar{1}0}}$$
 (S8)

$$\langle R \rangle_{\sigma} = \frac{2\pi^{2/3}}{5^{1/3} (c/a)^{2/3} q_{002}}$$
(S9)

$$\langle R \rangle_{\rm A15} = \frac{3^{1/3} \pi^{2/3}}{2^{1/6} q_{110}}$$
 (S10)

$$\langle R \rangle_{C14} = \frac{2^{1/3} \pi^{2/3} (c/a)^{1/3}}{3^{1/3} q_{10\bar{1}0}}$$
 (S11)

Owing to a lack of translational symmetry, $\langle R \rangle$ for a dodecagonal quasicrystal (QC) or a liquidlike packing (LLP) can only be estimated. For a QC, this is best done by taking the (00002) reflection as the σq_{002} peak owing to the close structural relationship between the two phases and the invariance of this reflection on transition to the σ phase.^{2,3} For LLP the principal reflection can be taken as the q_{110} peak of the BCC phase by a similar argument. On calculating $\langle R \rangle$, the core radius can be calculated as:

$$\langle R_{\rm core} \rangle = f_{\rm core}^{-1/3} \langle R \rangle$$
 (S12)

where f_{core} is volume fraction of the core domain assuming complete segregation of both blocks. This core radius can then be used to calculate the underlying spherical form factor.

A similar strategy can be used to calculate the radius of cylinders in the hexagonally-packed cylinder (HEX_C) phase. However, the functional form changes slightly owing to periodicity in only two dimensions. $\langle R \rangle$ is instead calculated as:

$$R_{\rm cyl} = \left(\frac{A_{\rm UC}}{\pi\rho_{\rm C,UC}}\right)^{1/2}$$
(S13)

where A_{UC} is the unit cell area, which can be readily determined *via* SAXS, and $\rho_{C,UC} = 1$ is the number of cylinders per unit cell. The unit cell area can be calculated as:

$$A_{\rm UC} = \frac{3^{1/2} a^2}{2} \tag{S14}$$

The lattice parameter *a* is determined from SAXS according to the relation:

$$q_{\rm hk,hexagonal2D} = 2\pi \left(\frac{4(h^2 + hk + k^2)}{3a^2}\right)^{1/2}$$
 (S15)

From these equations, $\langle R \rangle$ can be calculated for the HEX_C phase as:

$$R_{\rm cyl} = \frac{2^{3/2} \pi^{1/2}}{3^{1/4} q_{10}} \tag{S16}$$

On calculating R_{cyl} , the cylinder core radius can then be calculated as:

$$R_{\rm core,cyl} = f_{\rm core}^{1/2} R_{\rm cyl} \tag{S17}$$

where f_{core} is again the volume fraction of the core domain assuming complete segregation of both blocks. This core radius can then be used to calculate the underlying cylindrical form factor.

Dispersity:

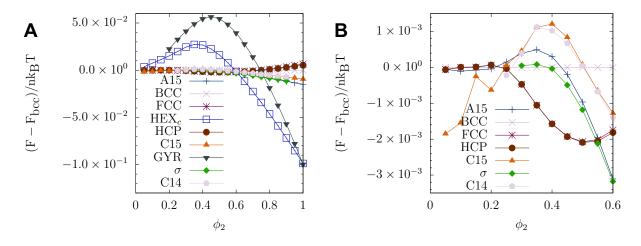
Core block dispersity $D \approx 1.12$ was estimated for SB3/SB4 blends with $\phi_2 = 0.80$ approximating the constituent diblock copolymers as monodisperse via the relation:

$$D = \frac{M_{\rm w}}{M_{\rm n}} \tag{S18}$$

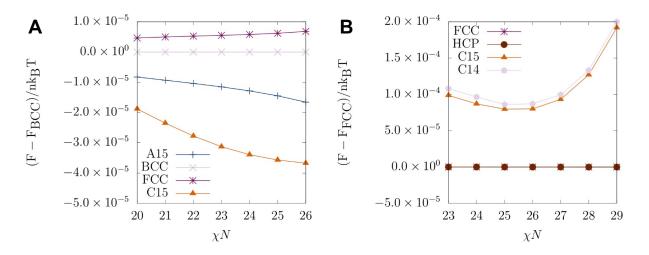
where M_w and M_n are the weight- and number-average block molecular weights calculated as:

$$M_{\rm n} = x_1 M_{\rm n,1} + x_2 M_{\rm n,2} \tag{S19}$$

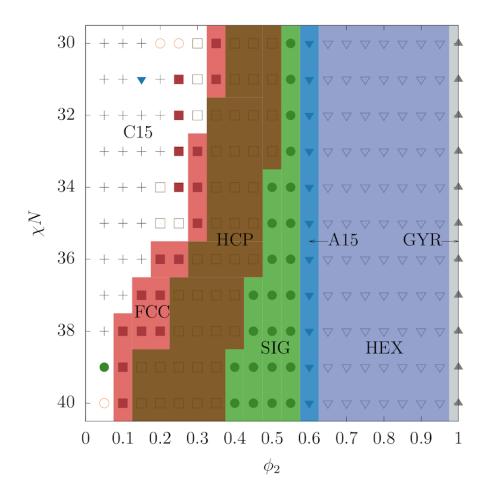
$$M_{\rm w} = \frac{x_1 M_{\rm n,1}^2 + x_2 M_{\rm n,2}^2}{x_1 M_{\rm n,1} + x_2 M_{\rm n,2}}$$
(S20)


where values of M_n for each block and polymer can be found in Table S1 and x_i is the mole fraction of copolymer *i* in the core domain. A similar approach can be used to estimate the dispersity of the corona as $D \approx 1.001$. Notably, this approach only provides an estimate and neglects the dispersity of each polymer, each determined via size exclusion chromatography (SEC) to be $D \approx 1.01$.

To compare this value with previously investigated 1,4-polyisoprene-*block*-poly(\pm -lactide) (IL) diblock copolymers, we assume a I precursor dispersity of 1.06, a reasonable estimate for low molecular weight I synthesized *via* anionic polymerization,⁴ and independent block dispersities. Using the rule for the sum of variances of statistical distributions (*i.e.*, $D_{PIPLA} = w_{PI}^2(D_{PI} - 1) + w_{PLA}^2(D_{PLA} - 1) + 1$, where w_i is the mass fraction of block i), it can be found that many of the σ -forming IL diblock copolymers reported in the literature likely had core (L) block dispersities greater than the $D_{core} = 1.2$ we found in this work to be sufficient to drive σ -formation.⁵⁻¹² It should be noted that the accuracy of such calculations is limited by that of the assumed I precursor dispersity and the resolution of the instruments used for dispersity for the second block. First, ring-opening polymerization of lactides generally results in higher dispersity (~1.1–2.0) than anionic polymerization of isoprene (< 1.1).^{5,14,15} Second, it is anticipated that some fraction of PI precursor will be present in the final diblock copolymer due to a combination of early termination,


incomplete reinitiation, and challenges inherent to purification.¹³ Third, when considering the low molecular weight of these polymers, generally characterized by an average block length of 45 isoprene and 6 lactide monomer units, it is clear that the loss or gain of only a few lactide monomer units over the course of the polymerization would have a dramatic effect on the block dispersity.

Self-consistent mean-field theory (SCFT):


Calculations based on self-consistent mean-field theory were performed using the open-source Polymer Self-Consistent Field software package (PSCF).¹⁶ We performed binary blend canonical ensemble calculations at $N_2/N_1 = 1.4$, $N_{B,1} = N_{B,2}$, $f_{A,1} = 0.12$, $f_{A,2} = 0.38$ and a conformational asymmetry of $\varepsilon = b_{\rm B}/b_{\rm S}$ ($v_{\rm S}/v_{\rm B}$) = 1.7. Note this differs modestly from experiments, where $f_{\rm A,2}$ = 0.388, but is within experimental error and, thus, has a negligible impact on the applicability of the calculations to the experimental results. We scanned a range of χN (20–30) and ϕ_2 (0–1), mimicking the parameter space explored experimentally. The candidate phases tested in the canonical ensemble calculations include the body-centered cubic (BCC), face-centered cubic (FCC), hexagonally close-packed (HCP), hexagonally-packed cylinder (HEX_C), double gyroid (GYR), and disordered (DIS) phases as well as the Frank-Kasper (FK) σ, A15, C14, and C15 phases. SCFT calculations were performed using a grid size of 64×64×64 for the three-dimensional structures except for the σ and two-dimensional HEX_C phases, which were performed at a grid size of 96×96×48 and 64×64, respectively. Calculations were performed with a contour length step size of $\Delta s = 0.01$ and a convergence criterion of 10^{-5} as defined by Arora *et al.*¹⁷ As shown in Figure S10, the free energies were almost degenerate at $\phi_2 = 0.15$ and 0.25. To better resolve the phase behavior at those compositions, we repeated the calculations using a more stringent convergence criterion of 10⁻⁶. Figure S11 shows the results under this stricter convergence criterion, revealing that C15 and HCP phases offer the lowest free energy at low ϕ_2 . Then, we performed grand canonical ensemble calculations between neighboring phases to resolve phase coexistence. Further calculation details can be found elsewhere.¹⁸

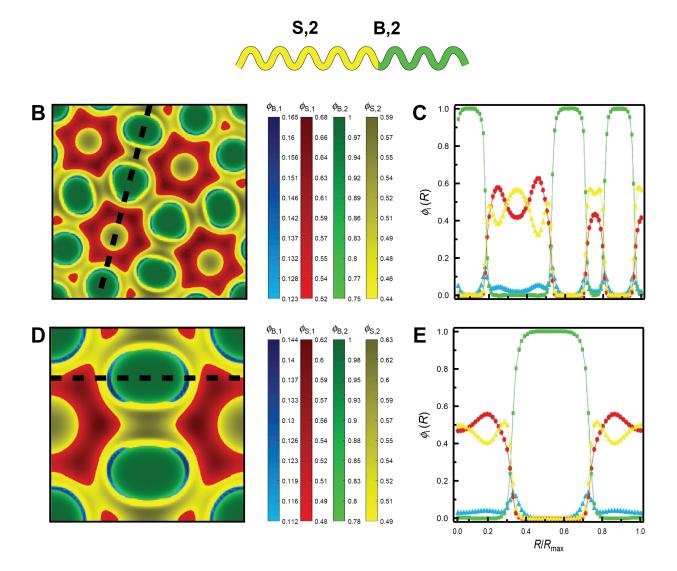

Figure S10. Normalized free energy relative to BCC *versus* ϕ_2 at $\chi N = 28$ for (A) all studied phases and (B) only particle phases.

Figure S11. Normalized free energy relative to (A) BCC and (B) FCC *versus* χN at (A) $\phi_2 = 0.15$ and (B) $\phi_2 = 0.25$ for select phases under the more stringent convergence criterion of 10⁻⁶.

Figure S12. Binary blend phase diagram generated from canonical ensemble SCFT calculations over an extended range of $\chi N (N_2/N_1 = 1.4, N_{S,1} = N_{S,2}, f_{B,1} = 0.12, \text{ and } f_{B,2} = 0.38)$. Symbols correspond to the double gyroid (gray \blacktriangle), hexagonally-packed cylinder (purple \bigtriangledown), A15 (blue \checkmark), σ (green $\textcircled{\bullet}$), hexagonal close-packed \Box), face-centered cubic (red \blacksquare), C14 (orange \circ), and C15 phases (black +).

Α

S,1

B,1

Figure S13. (B,D) Composition maps and (C,E) 1D composition profiles for the (B,C) σ and (D,E) A15 phases in the (001) planes. Data were calculated *via* SCFT for SB3/SB5 blends with (B,C) $\phi_2 = 0.55$ and (D,E) 0.60 at $\chi \langle N \rangle = 30$. ϕ_i is the volume fraction of block i at each position. *R*/*R*_{max} is the nondimensional distance along the dashed lines in (B,D), where 0 corresponds to the (C) bottom or (E) left edge of the composition map. The schematic in (A) shows the relative copolymer block lengths. Blue and red shading correspond to the B and S blocks of SB3, whereas green and yellow shading correspond to the B and S blocks of SB5, respectively.

References

- Iwami, S.; Ishimasa, T. Dodecagonal Quasicrystal in Mn-Based Quaternary Alloys Containing Cr, Ni and Si. *Philos. Mag. Lett.* 2015, 95, 229–236. https://doi.org/10.1080/09500839.2015.1038332.
- Lindsay, A. P.; Jayaraman, A.; Peterson, A. J.; Mueller, A. J.; Weigand, S.; Mahanthappa, M. K.; Lodge, T. P.; Bates, F. S. Reevaluation of Poly(Ethylene- Alt -Propylene)- Block Polydimethylsiloxane Phase Behavior Uncovers Topological Close-Packing and Epitaxial Quasicrystal Growth. *ACS Nano* 2021, *ASAP Article*. https://doi.org/10.1021/acsnano.1c02420.
- Lindsay, A. P.; Lewis, R. M.; Lee, B.; Peterson, A. J.; Lodge, T. P.; Bates, F. S. A15, σ, and a Quasicrystal: Access to Complex Particle Packings via Bidisperse Diblock
 Copolymer Blends. ACS Macro Lett. 2020, 9, 197–203.
 https://doi.org/10.1021/acsmacrolett.9b01026.
- Schmidt, S. C.; Hillmyer, M. A. Morphological Behavior of Model Poly(Ethylene-Alt-Propylene)-b-Polylactide Diblock Copolymers. *J. Polym. Sci. Part B Polym. Phys.* 2002, 40, 2364–2376. https://doi.org/10.1002/polb.10291.
- Lynd, N. A.; Hillmyer, M. A. Influence of Polydispersity on the Self-Assembly of Diblock Copolymers. *Macromolecules* 2005, *38*, 8803–8810. https://doi.org/10.1021/ma051025r.
- Cooke, D. M.; Shi, A.-C. Effects of Polydispersity on Phase Behavior of Diblock
 Copolymers. *Macromolecules* 2006, *39*, 6661–6671. https://doi.org/10.1021/ma060717s.
- Lee, S.; Bluemle, M. J.; Bates, F. S. Discovery of a Frank-Kasper σ Phase in Sphere-Forming Block Copolymer Melts. *Science* 2010, *330*, 349–353. https://doi.org/10.1126/science.1195552.
- (8) Gillard, T. M.; Lee, S.; Bates, F. S. Dodecagonal Quasicrystalline Order in a Diblock

Copolymer Melt. *Proc. Natl. Acad. Sci. U. S. A.* **2016**, *113*, 5167–5172. https://doi.org/10.1073/pnas.1601692113.

- Lee, S.; Leighton, C.; Bates, F. S. Sphericity and Symmetry Breaking in the Formation of Frank-Kasper Phases from One Component Materials. *Proc. Natl. Acad. Sci. U. S. A.*2014, *111*, 17723–17731. https://doi.org/10.1073/pnas.1408678111.
- Schulze, M. W.; Lewis, R. M.; Lettow, J. H.; Hickey, R. J.; Gillard, T. M.; Hillmyer, M. A.; Bates, F. S. Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers. *Phys. Rev. Lett.* 2017, *118*, 207801. https://doi.org/10.1103/PhysRevLett.118.207801.
- Kim, K.; Arora, A.; Lewis, R. M.; Liu, M.; Li, W.; Shi, A. C.; Dorfman, K. D.; Bates, F. S. Origins of Low-Symmetry Phases in Asymmetric Diblock Copolymer Melts. *Proc. Natl. Acad. Sci. U. S. A.* 2018, *115*, 847–854. https://doi.org/10.1073/pnas.1717850115.
- (12) Kim, K.; Schulze, M. W.; Arora, A.; Lewis, R. M.; Hillmyer, M. A.; Dorfman, K. D.; Bates, F. S. Thermal Processing of Diblock Copolymer Melts Mimics Metallurgy. *Science* 2017, *356*, 520–523. https://doi.org/10.1126/science.aam7212.
- (13) Hiemenz, P. C.; Lodge, T. P. *Polymer Chemistry*, 2nd Editio.; CRC Press: Boca Raton, 2007.
- (14) Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Controlled Ring-Opening Polymerization of Lactide and Glycolide. *Chem. Rev.* 2004, *104*, 6147–6176. https://doi.org/10.1021/CR040002S.
- Schmidt, S. C.; Hillmyer, M. A. Synthesis and Characterization of Model
 Polyisoprene–Polylactide Diblock Copolymers. *Macromolecules* 1999, *32*, 4794–4801.
 https://doi.org/10.1021/MA9900277.

- Arora, A.; Qin, J.; Morse, D. C.; Delaney, K. T.; Fredrickson, G. H.; Bates, F. S.;
 Dorfman, K. D. Broadly Accessible Self-Consistent Field Theory for Block Polymer
 Materials Discovery. *Macromolecules* 2016, 49, 4675–4690.
 https://doi.org/10.1021/acs.macromol.6b00107.
- (17) Arora, A.; Morse, D. C.; Bates, F. S.; Dorfman, K. D. Accelerating Self-Consistent Field Theory of Block Polymers in a Variable Unit Cell. J. Chem. Phys. 2017, 146, 244902. https://doi.org/10.1063/1.4986643.
- Liu, M.; Qiang, Y.; Li, W.; Qiu, F.; Shi, A. C. Stabilizing the Frank-Kasper Phases via Binary Blends of AB Diblock Copolymers. *ACS Macro Lett.* 2016, *5*, 1167–1171. https://doi.org/10.1021/acsmacrolett.6b00685.