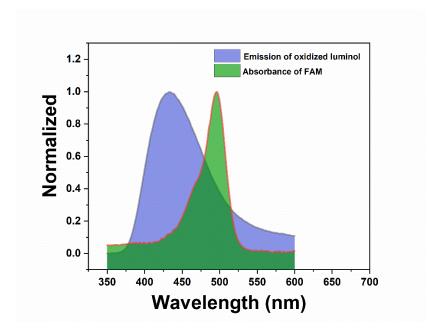
Supporting Information

A DNAzyme sensor that uses chemiluminescence resonance energy transfer for rapid, portable and ratiometric detection of metal ions

Jiao Zheng,^{†,§} Jing Luen Wai, ^{†,#} Ryan J. Lake,[†] Siu Yee New,^{*,#} Zhike He,^{*,§} Yi Lu^{*, †,‡}


[†]Department of Chemistry, [‡] Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States; Email: yi-lu@illinois.edu

[§]Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; Email: zhkhe@whu.edu.cn

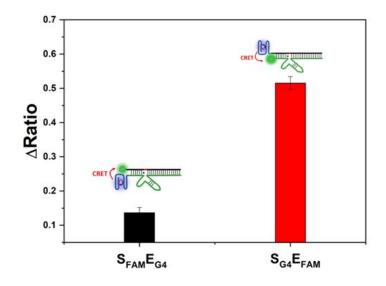
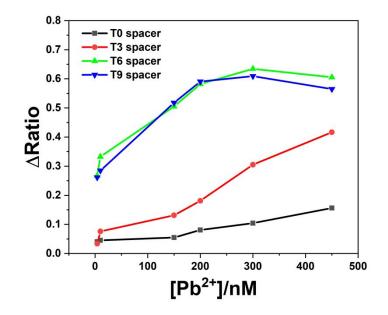
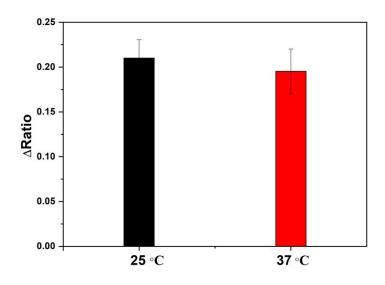
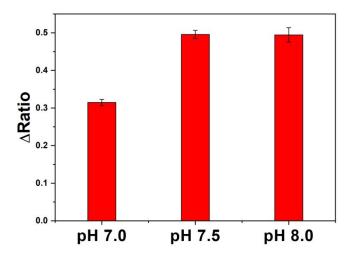
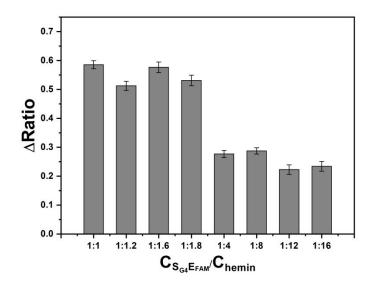

[#] School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor, Malaysia; Email: <u>New@nottingham.edu.my</u>

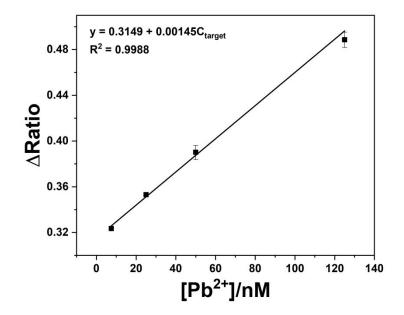
Table of Contents


Normalized spectra of oxidized luminol and fluorescein	.S-3
The chemiluminescence intensity of designed DNAzyme-CRET probe	.S-4
The changes of CRET ratio on DNAzyme-CRET probe at different lengths of T-spacer	S-5
The effect of varied reaction temperature on DNAzyme-CRET probe	S-6
The effect of varying reaction pH on DNAzyme-CRET probe	S-7
Optimizing catalytic oxidation efficiency of luminol	S-8
Calibration curve for Pb ²⁺ detection by fluorometer	S-9
Photographed image for DNAzyme CRET sensor	.S-10
Real working process for smartphone measurement	.S-10
Table for comparison of the reported sensors	-S11


Figure S1. Normalized emission (Em.) spectra of oxidized luminol (donor, blue) and normalized absorbance (Abs.) spectra of fluorescein (acceptor, green) with their spectral overlapping area colored dark green.


Figure S2. The chemiluminescence intensity of designed DNAzyme-CRET probe before addition of Pb²⁺ ions under varying positions of G4 sequence and fluorescein. Comparing S_{FAM} - E_{G4} probe and S_{G4} - E_{FAM} probe, the CRET signal of the latter combination was drastically increased, suggesting the incompatibility of both G4 sequence and catalytic core sequence to be presented on E strand simultaneously.


Figure S3. The changes of CRET ratio on DNAzyme-CRET probe in respond to increasing Pb^{2+} concentrations at different lengths of T-spacer. By increasing the T-spacer from 0 to 9 nucleotides, the CRET signal was drastically increased until a stable Δ Ratio was reached, indicating that the proximity of G4 could interfere with the subsequent sensitivity towards Pb^{2+} ions.


Figure S4. The effect of varied reaction temperature on DNAzyme-CRET probe after addition of Pb²⁺ ions. The CRET signals of the DNAzyme-CRET probe obtained either at 25 °C or 37 °C were indistinguishable.

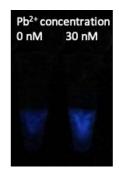

Figure S5. The effect of varying reaction pH on DNAzyme-CRET probe after addition of Pb^{2+} ions. After an initial sharp increase of Δ Ratio, there is negligible difference between pH 7.5 and pH 8.0, indicating an optimal reaction pH was achieved at pH 7.5.

Figure S6. Optimizing catalytic oxidation efficiency of luminol by tuning the concentration of hemin. The effect of varying molar ratio between S_{G4} - E_{FAM} and hemin. With the overall decreasing trend of normalized chemiluminescence intensity, the optimal molar ratio was identified at 1:1.

Figure S7. Calibration curve achieved by the DNAzyme-CRET sensor for Pb^{2+} detection in buffer by fluorometer without an excitation light source. The data collecting procedure was conducted according to the manufacturer's protocol. The linear response range for Pb^{2+} is from 7.5 nM to 125 nM.

Figure S8. Photographed image for DNAzyme CRET sensor in Tris buffer with addition of 0 and 30 nM Pb^{2+} ions respectively.

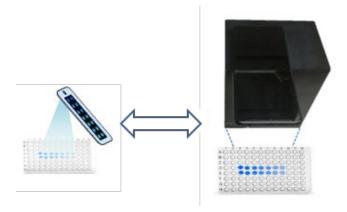


Figure S9. Real working process for smartphone measurement.

NO.	Detection method	Portability	Dynamic range	Limit of detection	Ref.
1	Colorimetric	yes	0.4 - 2 μM	not mentioned	1
2	FRET	no	1-50 nM	0.2-0.5 nM	2
3	Colorimetric	yes	120 nM-20 μM	3 nM	3
4	Fluorescent	no	1 nM-1 μM	300 pM	4
5	Fluorescent	no	10 nM-4 μM	10 nM	5
6	Photoelectrochemical	no	0.1-50 nM	0.05 nM	6
7	CRET	yes	7.5-125 nM	5 nM	this work

Table S1. Comparison of the reported sensors using DNAzymes for Pb²⁺

References

- Liu, J.; Lu, Y. Accelerated Color Change of Gold Nanoparticles Assembled by DNAzymes for Simple and Fast Colorimetric Pb²⁺ Detection. *J. Am. Chem. Soc.* 2004, *126*(39), 12298–12305.
- (2) Wu C., Khaing Oo M., Fan X., Highly Sensitive Multiplexed Heavy Metal Detection Using Quantum-Dot-Labeled DNAzymes. ACS Nano 2010, 4(10), 5897-5904
- (3) Wang Z., Lee J., Lu Y., Label-Free Colorimetric Detection of Lead Ions with a Nanomolar Detection Limit and Tunable Dynamic Range by using Gold Nanoparticles and DNAzyme. *Adv. Mat.* 2008, 20(17), 3263-3267.
- (4) Zhao X., Kong R., Zhang X., Meng H., Liu W., Tan W., Shen G., Yu R., Graphene– DNAzyme Based Biosensor for Amplified Fluorescence "Turn-On" Detection of Pb²⁺ with a High Selectivity. *Anal. Chem.* 2011, 83(13), 5062-5066.
- (5) Li J., Lu Y., A Highly Sensitive and Selective Catalytic DNA Biosensor for Lead Ions. J. Am. Chem. Soc. 2000, 122(42), 10466-10467.
- (6) Zang Y., Lei J., Hao Q., Ju H., "Signal-on" photoelectrochemical sensing strategy based on target-dependent aptamer conformational conversion for selective detection

of lead (II) ion. ACS Appl. Mater. Interfaces, 2014, 6, 15991-15997.