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Figure S1. Normalized emission (Em.) spectra of oxidized luminol (donor, blue) and normalized absorbance 
(Abs.) spectra of fluorescein (acceptor, green) with their spectral overlapping area colored dark green.
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Figure S2. The chemiluminescence intensity of designed DNAzyme-CRET probe before addition of Pb2+ 
ions under varying positions of G4 sequence and fluorescein. Comparing SFAM-EG4 probe and SG4-EFAM probe, 
the CRET signal of the latter combination was drastically increased, suggesting the incompatibility of both 
G4 sequence and catalytic core sequence to be presented on E strand simultaneously.
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Figure S3. The changes of CRET ratio on DNAzyme-CRET probe in respond to increasing Pb2+ 
concentrations at different lengths of T-spacer. By increasing the T-spacer from 0 to 9 nucleotides, the CRET 
signal was drastically increased until a stable Ratio was reached, indicating that the proximity of G4 could 
interfere with the subsequent sensitivity towards Pb2+ ions.
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Figure S4. The effect of varied reaction temperature on DNAzyme-CRET probe after addition of Pb2+ ions. 
The CRET signals of the DNAzyme-CRET probe obtained either at 25 oC or 37 oC were indistinguishable.
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Figure S5. The effect of varying reaction pH on DNAzyme-CRET probe after addition of Pb2+ ions. After 
an initial sharp increase of Ratio, there is negligible difference between pH 7.5 and pH 8.0, indicating an 
optimal reaction pH was achieved at pH 7.5.
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Figure S6. Optimizing catalytic oxidation efficiency of luminol by tuning the concentration of hemin. The 
effect of varying molar ratio between SG4-EFAM and hemin. With the overall decreasing trend of normalized 
chemiluminescence intensity, the optimal molar ratio was identified at 1:1.
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Figure S7. Calibration curve achieved by the DNAzyme-CRET sensor for Pb2+ detection in buffer by 
fluorometer without an excitation light source. The data collecting procedure was conducted according to the 
manufacturer’s protocol. The linear response range for Pb2+ is from 7.5 nM to 125 nM.
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Figure S8. Photographed image for DNAzyme CRET sensor in Tris buffer with addition of 0 and 30 nM 
Pb2+ ions respectively.

Figure S9. Real working process for smartphone measurement.
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Table S1. Comparison of the reported sensors using DNAzymes for Pb2+

NO. Detection method Portability Dynamic range Limit of 
detection

Ref.

1 Colorimetric yes 0.4-2 M not mentioned 1

2 FRET no 1-50 nM 0.2-0.5 nM 2

3 Colorimetric yes 120 nM-20 M 3 nM 3

4 Fluorescent no 1 nM-1 M 300 pM 4

5 Fluorescent no 10 nM-4 M 10 nM 5

6 Photoelectrochemical no 0.1-50 nM 0.05 nM 6

7 CRET yes 7.5-125 nM 5 nM this work
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