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Rotational Strength for Periodic Boundaries

In this section, we discuss the gauge dependence of the classical time-correlation function of

the electric current and magnetic dipole moment for periodic boundary conditions (PBC)

and propose a gauge-independent expression of the resulting VCD signal.

Position of the Problem

We consider the calculation of a susceptibility of the following type:

χjm(ω) =

∫ ∞
−∞
〈j(0) ·m(t)〉 eiωtdt, (1)

where j(t) is the time-derivative of the system’s instantaneous electric dipole moment (current

dipole moment), and m(t) its instantaneous magnetic dipole moment. We assume that both
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observables can be decomposed as sum of local contributions:

j(t) =
∑
i

ji(t) (2)

and

m(t) =
∑
i

mi(t). (3)

For the electronic wave function this is done through localisation of the orbitals, usually

maximally localised Wannier functions (MLWF)S1 i can label a whole molecule if the localised

orbitals are assigned to molecules (this work), or run over nuclei, MLWFs, as well as atoms

in a force field approach. For each subsystem, or fragment, i an individual, local, gauge has

been defined such that the magnetic moment and that it can be written as the sum of a local

gauge (LG) contribution and gauge transport (GT) contribution:

mi(t) = mi,lg(t) + mOi,gt(t), (4)

where the gauge transport term with respect to a common origin O can be written as

mOi,gt(t) =
1

2c

−−→Ori × ji (5)

where ri is the fragment-dependent local origin of the local gauge (e.g., centre of mass of a

molecule). This poses a twofold problem:

(I) If an other choice of origin O′ is chosen then each fragment magnetic moment trans-

forms as

mO
′

i = mOi +
1

2c

−−→
O′O × ji(t) (6)

and the overall magnetic moment transforms as

mO
′
= mO +

1

2c

−−→
O′O × j(t). (7)
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The GT term thus renders the whole magnetic moment gauge-dependent.

(II) The vector position of fragment i,
−−→Ori, with respect to a global origin O is ill-defined

in PBC.

We will first examine how the overall VCD signal, i.e., the susceptibility χjm(ω), can be

gauge independent while the magnetic moment is not. Then we will derive an alternative ex-

pression that is explicitly gauge independent. This will have two advantages: We can expect

to limit the noise on χjm(ω) from the GT term since we do no longer rely on the cancellation

of opposite sign terms. The main advantage, however, will be that this expression will be

properly defined for PBC.

Gauge Independence of the Susceptibility

General idea

Briefly, the main point of the derivation is that the susceptibility χjm(ω) transforms following

a change of origin from O to O′ as

χO
′

jm(ω) = χOjm(ω) +
1

2c

−−→
O′O × χjj(ω). (8)

However, the current-current susceptibility χjj(ω) is a symmetric tensor such that the gauge

transport term in the previous expression is zero because of the cross-product.

T-Symmetry of the Correlation Function

In the Heisenberg representation the rotational strength is defined by means of the quantum

time-correlation function, yet the latter can be transformed, as described by Kubo,S2 to relate

to the classical time-correlation function. Taking the classical limit, a quantum correction

factor can be added a posteriori.S3
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We consider the classical time-correlation function (TCF), but the results remains true in

the quantum case if Kubo transformed correlation functions are used instead of the original

quantum correlation function.

Considering that all observables A considered here, m or j, transform by time reversal

as A→ −A, we easily find

〈A(0)B(t)〉 = 〈A(0)B(−t)〉 = 〈A(t)B(0)〉 = 〈B(0)A(t)〉. (9)

The second equality relies on the stationarity of the TCF and is exact only in the limit of

an infinite trajectory.

Proof of the Gauge Independence of the Susceptibility

Using Einstein’s notation (repeated indices indicate a sum over x, y, z), from T-symmetry it

follows that the current-current susceptibility is symmetric:

χjj,αβ(ω) =

∫ ∞
−∞
〈jα(0)jβ(t)〉 eiωtdt

=

∫ ∞
−∞
〈jβ(0)jα(t)〉 eiωtdt

= χjj,βα(ω).

(10)

Then from

χO
′

jm,αα(ω) = χOjm,αα(ω) +
1

2c
εαβγ · (O′O)β · χjj,αγ(ω), (11)

where εαβγ is the Levi-Civita tensor satisfying εαβγ = −εγβα = −εαγβ, we can verify that

εαβγ · (O′O)β · χjj,αγ(ω) = εγβα · (O′O)β · χjj,γα(ω)

= −εαβγ · (O′O)β · χjj,γα(ω)

= 0,

(12)

Gauge invariance is then readily obtained.
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Expression of the Susceptibility that is Explicitly Origin-Independent

From the decomposition of the current and magnetic dipole moments into fragment contri-

butions, we have, using Einstein’s notation:

χOjm,αα(ω) =

∫ ∞
−∞

∑
ij

[
〈ji,α(0)mj,lg,α(t)〉 +

1

2c
〈ji,α(0) (εαβγ(Orj(t))β · jj,γ(t))〉

]
eiωtdt

=

∫ ∞
−∞

∑
ij

[
〈ji,α(0)mj,lg,α(t)〉+

1

2c
εαβγ〈ji,α(0) ((Orj(t))β · jj,γ(t))〉

]
eiωtdt

(13)

(NB: the subscript LG has been dropped in the main text). It is important to remember that

the Einstein sum is taken over repeated indices and that their symbols can be interchanged.

With T-symmetry of the correlation function it follows:

χOjm,αα(ω) =

∫ ∞
−∞

∑
ij

[
〈ji,α(0)mj,lg,α(t)〉+

1

2c
εαβγ〈ji,α(0) ((Orj(t))β · jj,γ(t))〉

]
eiωtdt

=

∫ ∞
−∞

∑
ij

[
〈ji,α(0)mj,lg,α(t)〉 − 1

2c
εβαγ〈ji,α(0) ((Orj(t))β · jj,γ(t))〉

]
eiωtdt

=

∫ ∞
−∞

∑
ij

[
〈ji,α(0)mj,lg,α(t)〉 − 1

2c
εβαγ〈((Orj(0))β · jj,γ(0)) ji,α(t)〉

]
eiωtdt

=

∫ ∞
−∞

∑
ij

[
〈ji,α(0)mj,lg,α(t)〉 − 1

2c
εβγα〈((Orj(0))β · jj,α(0)) ji,γ(t)〉

]
eiωtdt

=

∫ ∞
−∞

∑
ij

[
〈ji,α(0)mj,lg,α(t)〉 − 1

2c
εαβγ〈ji,α(0) ((Ori(0))β · jj,γ(t))〉

]
eiωtdt,

(14)

where in the last line, after cyclic shift of the triple product, the indices i and j have been

exchanged as they are summed over as well. It is now easy to take the half of the sum of the

first and last line to obtain

χOjm,αα(ω) =

∫ ∞
−∞

∑
ij

[
〈ji,α(0)mj,lg,α(t)〉+

1

4c
εαβγ〈ji,α(0) (Orj(t)−Ori(0))β · jj,γ(t)〉

]
eiωtdt

=

∫ ∞
−∞

∑
ij

[
〈ji,α(0)mj,lg,α(t)〉+

1

4c
εαβγ〈ji,α(0) (ri(0)rj(t))β · jj,γ(t)〉

]
eiωtdt.

(15)
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The last expression is explicitly gauge independent as the origin O has completely disap-

peared and only the vector (rj(t)− ri(0)) is involved. After dropping the superscript O the

susceptibility reads:

χjm,αα(ω) =

∫ ∞
−∞

∑
ij

[
〈ji,α(0)mj,lg,α(t)〉+

1

4c
εαβγ〈ji,α(0) (ri(0)rj(t))β · jj,γ(t)〉

]
eiωtdt. (16)

It should be noted that the self-term i = j does not cancel. This can be understood, for

instance, as a fragment moving along a helix.

Minimum Image Convention

The minimum image convention ensures that pair distances are always between adjacent

(nearest) neighbours taking the periodic image if necessary. This convention can be expressed

through lattice translation ∆pbc
ij (see main text), adding integer units (a = −1, 0, 1) of the

lattice vector for each axis,
−−→rirj = rj − ri + ∆pbc

ij . (17)

Considering the minimum-image convention through ∆pbc
ij and using the correlation time

τ , the GT term can be transformed, so that the distributed origins ri enter individually

(with respect to the common origin) and that only ∆pbc
ij depends on i and j. Using the
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T-symmetry of the correlation function, it follows:

εαβγ

〈
ji,α(t) (ri(t)rj(t+ τ))β · jj,γ(t+ τ)

〉
= εαβγ

〈
ji,α(t)

(
rj(t+ τ)− ri(t) + ∆pbc

ij (t, t+ τ)
)
β
· jj,γ(t+ τ)

〉
= εαβγ 〈ji,α(t)rj(t+ τ)β · jj,γ(t+ τ)〉

− εαβγ 〈ji,α(t)ri(t)β · jj,γ(t+ τ)〉 + εαβγ
〈
ji,α(t)∆pbc

ij (t, t+ τ)β · jj,γ(t+ τ)
〉

= εαβγ 〈ji,α(t)rj(t+ τ)β · jj,γ(t+ τ)〉

− εγαβ 〈jj,γ(t+ τ)ji,α(t) · ri(t)β〉 + εαβγ
〈
ji,α(t)∆pbc

ij (t, t+ τ)β · jj,γ(t+ τ)
〉

= εαβγ 〈ji,α(t)rj(t+ τ)β · jj,γ(t+ τ)〉

+ εγβα 〈jj,γ(t+ τ)ri(t)β · ji,α(t)〉 + εαβγ
〈
ji,α(t)∆pbc

ij (t, t+ τ)β · jj,γ(t+ τ)
〉

= εαβγ 〈ji,α(t)rj(t+ τ)β · jj,γ(t+ τ)〉

+ εγβα 〈ji,γ(t)rj(t+ τ)β · jj,α(t+ τ)〉 + εαβγ
〈
ji,α(t)∆pbc

ij (t, t+ τ)β · jj,γ(t+ τ)
〉

= εαβγ 〈ji,α(t)rj(t+ τ)β · jj,γ(t+ τ)〉

+ εαβγ 〈ji,α(t)rj(t+ τ)β · jj,γ(t+ τ)〉 + εαβγ
〈
ji,α(t)∆pbc

ij (t, t+ τ)β · jj,γ(t+ τ)
〉

= 2 · εαβγ 〈ji,α(t)rj(t+ τ)β · jj,γ(t+ τ)〉 + εαβγ
〈
ji,α(t)∆pbc

ij (t, t+ τ)β · jj,γ(t+ τ)
〉

≈ 2 · εαβγ 〈ji,α(t)rj(t+ τ)β · jj,γ(t+ τ)〉 + εαβγ
〈
ji,α(t)∆pbc

ij (t)β · jj,γ(t+ τ)
〉

(18)

The latter approximation allows for using FFT for the computation of the TCF, which would

otherwise be computationally very demanding for ∆pbc
ij (t+τ) would have to be evaluated for

each pair (t, t+ τ). As a consequence, if a particle diffuses too fast within correlation time τ ,

there may occur jumps in the TCF. For the term rj(t)× jj(t), this can be circumvented by

unwrapping the periodic boundaries a priori. In turn, for ∆pbc
ij (t, t+τ)×jj(t, t+τ) there is no

such operation. However, the approximation made in the last line of the upper equation can

be connected to a condition. If ∆pbc
ij (t) shall be used, the inequality rα,j(t+τ)−rα,i(t) ≤ 1

2
|Tα|

has to be satisfied, where T is the cell tensor. Hence, for large cells (liquids) and/or slow

relative particle diffusion (solids), the approximation ∆pbc
ij (t, t+ τ) ≈ ∆pbc

ij (t) is valid.
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Periodic case

The resulting expression for the susceptibility reads:

χjm,αα(ω) =

∫ ∞
−∞

∑
ij

[〈
ji,α(0)mj,lg,α(t)

〉
+

1

2c
εαβγ

〈
ji,α(0)

(
rj(t) +

1

2
∆pbc
ij (0)

)
β

· jj,γ(t)
〉]

eiωtdt.

(19)

The sum over j can be carried out a priori, which scales the algorithm from O(Ni · Nj) =

O(N2
i ) to O(Ni). The final expression is:

χjm,αα(ω) =

∫ ∞
−∞

[
〈jα(0)mlg,α(t)〉

+
1

2c
εαβγ

∑
i

〈
ji,α(0)

∑
j

(
rj(t) +

1

2
∆pbc
ij (0)

)
β

· jj,γ(t)
〉]

eiωtdt.

(20)

Isolated case

For the non-periodic case this simplifies to a single calculation:

χjm,αα(ω) =

∫ ∞
−∞

[〈
jα(0)mlg,α(t)

〉
+

1

2c
εαβγ

〈
jα(0)

∑
j

rj(t)β · jj,γ(t)
〉]

eiωtdt. (21)

Pseudo-isolated case

This relation holds under pseudo-isolated conditions (e.g., a solute in a solvent bath), with a

distance cutoff rc applied around an origin molecule rk, if rj is defined relative to the origin,

rkj (t) = rj(t) + ∆pbc
kj (t), and rc ≤ 1

4
|Tα|, where T is the cell tensor:

χjm,αα(ω) =

∫ ∞
−∞

[〈
jα(0)mlg,α(t)

〉
+

1

2c
εαβγ

〈
jα(0)

∑
j

rkj (t)β · jj,γ(t)
〉]

eiωtdt (22)
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This almost, but not exactly, equals the entry expression for χOjm,αα(ω), where it has been

assumed
−−→Orj(t) = rj(t)−O + ∆pbc

Oj (t)
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Figure S1: Gauge dependence of the VCD spectrum using the old (Equation 8 in the main
text), and the new (Equation 9 in the main text) formulation of the rotational strength. For
this figure, no frequency alignment has been carried out.
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Experimental Methods
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Figure S2: The mid-IR VCD spectra of solid-state (1R,2R)-trans-1,2-cyclohexanediol (black)
and (1S,2S )-trans-1,2-cyclohexanediol (red) in a KBr pellet, at a mass concentration of 0.5%.

The IR absorption and VCD spectra of the enantiopure forms of solid (1S,2S )-trans-

1,2-cyclohexanediol were measured using a Fourier-transform infrared spectroscopy (FTIR)

spectrometer (Vertex 70, Bruker) equipped with a VCD module (PMA 50, Bruker), as pre-

viously described.S4–S7 The filtered and linearly polarized IR radiation was modulated by

a 50 kHz ZnSe photo-elastic modulator (Hinds). The signal was measured by a mercury-

cadmium-telluride (MCT) IR detector and demodulated by a lock-in amplifier (Stanford

Research Systems SR 830), with a spectral resolution of 4 cm−1. The samples were prepared

by grinding 10 mg of enantiopure (1S,2S )-trans-1,2-cyclohexanediol with 2 g of KBr in a

mixer mill (MM 400 Retsch) at 20 Hz during 30 min and making 150 to 200 mg pellets

in an hydraulic press. Linear dichroism artefacts were eliminated following the procedure

reported in the literature.S8,S9 It consists in averaging the spectra obtained for the pellets
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rotated at 0° and 90° in the plane perpendicular to the light propagation axis for each side

of the pellet. Each measurement corresponds to a total measurement time of 4 h and was

repeated on two different pellets to ensure its reproducibility. When not specified other-

wise, the VCD spectrum discussed in the article is that of (1S,2S )-trans-1,2-cyclohexanediol

obtained from the half difference of the VCD spectra of the two enantiomers, shown in

Figure S2. (1R,2R)-trans-1,2-cyclohexanediol and (1S,2S )-trans-1,2-cyclohexanediol were

purchased from Sigma-Aldrich and used without further purification.

S-11



Computational Details

Molecular Dynamics, Quantum Response, Gauge and Correlation

A single unit cell of crystalline (1S,2S )-trans-1,2-cyclohexanediol was considered based on

the crystal structure from diffraction taken from the CCDC database (CCDC 974135).S10

(1S,2S )-trans-1,2-cyclohexanediol crystallises in the P3121 space group with cell parameters

a = b = 10.216 Å, c = 10.884 Å, α = β = 90.00°, γ = 120.00°. The system was optimised

an pre-equilibrated using CP2K 6.1S11 and AmberTools20S12 with the GAFF2 force field.S12

Then, Born-Oppenheimer AIMD simulations were carried out with the CP2K 5.1S11 program

package via the Quickstep module,S13 describing the exchange-correlation energy with the

GGA functional BLYP for equilibration and the hybrid functional B3LYP for production

(30 ps),S14–S18 the DZVP-MOLOPT-SR-GTH basis set,S19 and GTH pseudo-potentialsS20–S22

with a 0.5 fs time step, a density cutoff of 400 Ry, and Grimme’s dispersion correction

(D3).S23 The CSVRS24 thermostat was used at 320 K to account for the overstructuring

effect of the functional (coupling constant: equilibration 10-100 fs with massive and global

thermostatting; production 1000 fs with global thermostatting).

Projected NVPT calculations were carried out with the CPMD 4.3S25–S27 sampling over

the previously created FPMD trajectory, using the BLYP functional, the plane wave basis

with a cutoff of 100 Ry, Troullier–Martins pseudo potentialsS28 and the Kleinman-Bylander

separation scheme.S29 The trajectory was sampled at every eighth step to form the correlation

function, resulting in a time resolution of 4 fs for current and magnetic dipole moments.

The computation of IR and VCD spectra was carried out in the Heisenberg representation

using the the Fourier transform of the time-correlation function (FT-TCF) and the newly

described gauge for the magnetic dipole moment, as implemented in the python package

ChirPy 0.21.5, available on GitLab.S30 See also the provided Jupyter notebook for further

details (https://doi.org/10.5281/zenodo.4776907).
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Adaption of IRSA for Continuous Spectra

We extended the recently presented IRSA algorithm by Riniker and co-workers to continuous

spectral densities.S31 The computational peaks are aligned to their experimental pendants

with the Needleman-Wunsch algorithm using a scoring function for peak position and in-

tensity. For the sake of unambiguous alignment we prefer aligning the IR spectra, which is

more reliable than seeking for an alignment of the congested VCD spectra. To align with

IRSA the spectrum of (1S,2S )-trans-1,2-cyclohexanediol, a scoring function was used,S31

s = exp

{
− 1

2σI

(
min

[
Ie
Ic
,
Ie
Ic

]
− µI

)2
}
· exp

{
− 1

2σν̃

(
ν̃e
ν̃c
− µν̃

)2
}
, (23)

with standard deviations of σI = 0.25 and σν̃ = 0.025, expectation values of µI = 1.0 and

µν̃ = 1.0, and cutoff values of 0.0 a.u. and 40 cm−1 for intensities I and wavenumbers ν̃,

respectively. The subscripts e and c stand for experimental and computed values.

To improve the effect of the scoring function, that relies on regions of zeros intensity

between peaks, the experimental spectrum was parallel shifted in intensity (Figure S3).
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exp. (original)
exp. (prepared)
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Figure S3: Preparation of the experimental IR spectrum for the application of the IRSA
algorithm. Regions of zero intensity are important for the correct calculation of the peak
scoring function. The computed spectrum is shown in red.

To preserve peak shapes, parts of the spectrum were protected based on peak intensity,
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gradient and second derivative of the computed spectrum. Only “allowed” regions fulfilling

I ≤ 80 M−1 cm−1 and dI/dν̃ ≤ 0.5 M−1 and d2I/dν̃2 ≤ 3.12 M−1 cm where eligible for

frequency expansion and compression (Figure S4).
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Figure S4: Computed IR an VCD spectra, where red lines mark the zones between peaks
that are “allowed” for expansion or compression of the frequency domain.

From the resulting alignment a frequency dependent scaling factor can be calculated,

which ranges in the case of (1S,2S )-trans-1,2-cyclohexanediol, computed with B3LYP-D3,

between 0.975 and 1.01 (Figure S5). The result clearly shows that the functional predicts

frequencies with varying accuracy due to the nature of the underlying vibrational mode

(bending modes are underestimated, stretching modes are overestimated by the functional).
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Figure S5: Frequency shift alignment with the IRSA algorithm. Left: Scatter plot of original
and shifted frequencies. Right: Resulting frequency-dependent scaling factor.
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The new list of frequencies was regularised and the new averaged values for α and ∆α

obtained from cubic interpolation of the old values after relocation to their respective new

frequency (with the protected regions defined a priori, the affected values α and ∆α were

always very small though).

8001000120014001600
wavenumber / cm-1

0.00
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α
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)

8001000120014001600
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Figure S6: Changed peak position of the calculated spectrum (red) after application of the
IRSA algorithm, compared to the experimental spectrum (black).

Other

Plots were generated with python-based Matplotlib 3.0.1.S32 Molecular visualisations were

created with VMD 1.9.3S33 using the Tachyon Ray Tracer.S34 All figures were post-processed

with Gimp 2.10.18.S35 Scheme 1 was created with LibreOffice 6.4.7.2S36
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