Arsenic(III)-Oxide Intercalates with Potassium Chloride: Water-Induced Varieties and New Synthesis Methods ## **Supporting Information** Mateusz A. Domański^{l†}, Karol Kraszewski^{l†}, Piotr Paluch² and Piotr A. Guńka^{l*} ¹ Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland. ² Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódz, Poland [†] Present Addresses: Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warszawa, Poland. ^{*} To whom correspondence should be addressed. E-mail: piogun@ch.pw.edu.pl Table S1. Qualitative description of mechanochemical studies results. | reactants
(molar ratio) | arsenolite + KCl (1:1) | arsenolite + KCl (1:2) | claudetite II+ KCl
(1:1) | |--|---|---|---| | no solution | no reaction | no reaction | no reaction | | distilled water | no reaction | no reaction | intercalate X _{KCI} , low yield, pronounced effect of time on reaction yield | | CH ₃ COOK aqueous solution | intercalate P _{KCI} , medium yield | intercalate P _{KCI} , low yield | intercalate P _{KCI} , high conversion of claudetite II | | K ₂ HPO ₄ aqueous solution | intercalate X _{KCl} , medium yield | intercalate X _{KCI} , low yield | intercalate PKCI, high conversion of claudetite II | **Table S2.** Qualitative description of the stability of the mechanochemical reaction products in the ambient conditions (or during drying) | reactants
(molar ratio) | arsenolite + KCl (1:1) | arsenolite + KCl (1:2) | claudetite II+ KCl
(1:1) | |--|---|---|---| | distilled water | no products | no products | the product
decomposed to
claudetite II,
arsenolite and KCl | | CH ₃ COOK aqueous solution | intercalate P _{KCI} , medium yield | intercalate P _{KCI} , low yield | further reaction, large quantity of Y_{KCI} intercalate plus remaining compound P_{KCI} | | K ₂ HPO ₄ aqueous solution | intercalate X _{KCI} decomposed to intercalate Y _{KCI} completely after 5 days | after drying at 40 °C for 3 h the product formed unknown phase Z _{KCI} which was stable | after drying at 80 °C for 1 h the product formed unknown phase Z _{KCI} which was stable | **Figure S1**. Differential scanning calorimetry (DSC) curve for intercalate Y_{KCI} . DSC experiment was carried out from 40 °C to 210 °C with a heating rate of 5 °C/min and cooling rate of 10 °C/min. Figure S2. Differential thermal analysis and thermogravimetric curve for intercalate Y_{KCI} (top) together with the mass spectrometry signal of m/z = 18 corresponding to water (bottom) plotted as a function of temperature. **Figure S3.** ATR-FTIR spectra of intercalate Y_{KCI} recorded at various temperatures as indicated by labels plotted next to the spectra. **Figure S4.** Powder X-ray diffraction pattern of showing the reflection of the unknown phase \mathbf{Z}_{KCI} (at 15.5° and 31.3°) in addition to reflections of other compounds present in the reaction mixture. Figure S5. Solid-state 1 H-NMR (600.15 MHz) spectrum of intercalate Y_{KCI} recorded with the spin-echo technique at 55.555 kHz spinning speed.