Arsenic(III)-Oxide Intercalates with Potassium

Chloride: Water-Induced Varieties and New

Synthesis Methods

Supporting Information

Mateusz A. Domański^{l†}, Karol Kraszewski^{l†}, Piotr Paluch² and Piotr A. Guńka^{l*}

¹ Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland.

² Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódz, Poland

[†] Present Addresses: Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warszawa, Poland.

^{*} To whom correspondence should be addressed. E-mail: piogun@ch.pw.edu.pl

Table S1. Qualitative description of mechanochemical studies results.

reactants (molar ratio)	arsenolite + KCl (1:1)	arsenolite + KCl (1:2)	claudetite II+ KCl (1:1)
no solution	no reaction	no reaction	no reaction
distilled water	no reaction	no reaction	intercalate X _{KCI} , low yield, pronounced effect of time on reaction yield
CH ₃ COOK aqueous solution	intercalate P _{KCI} , medium yield	intercalate P _{KCI} , low yield	intercalate P _{KCI} , high conversion of claudetite II
K ₂ HPO ₄ aqueous solution	intercalate X _{KCl} , medium yield	intercalate X _{KCI} , low yield	intercalate PKCI, high conversion of claudetite II

Table S2. Qualitative description of the stability of the mechanochemical reaction products in the ambient conditions (or during drying)

reactants (molar ratio)	arsenolite + KCl (1:1)	arsenolite + KCl (1:2)	claudetite II+ KCl (1:1)
distilled water	no products	no products	the product decomposed to claudetite II, arsenolite and KCl
CH ₃ COOK aqueous solution	intercalate P _{KCI} , medium yield	intercalate P _{KCI} , low yield	further reaction, large quantity of Y_{KCI} intercalate plus remaining compound P_{KCI}
K ₂ HPO ₄ aqueous solution	intercalate X _{KCI} decomposed to intercalate Y _{KCI} completely after 5 days	after drying at 40 °C for 3 h the product formed unknown phase Z _{KCI} which was stable	after drying at 80 °C for 1 h the product formed unknown phase Z _{KCI} which was stable

Figure S1. Differential scanning calorimetry (DSC) curve for intercalate Y_{KCI} . DSC experiment was carried out from 40 °C to 210 °C with a heating rate of 5 °C/min and cooling rate of 10 °C/min.

Figure S2. Differential thermal analysis and thermogravimetric curve for intercalate Y_{KCI} (top) together with the mass spectrometry signal of m/z = 18 corresponding to water (bottom) plotted as a function of temperature.

Figure S3. ATR-FTIR spectra of intercalate Y_{KCI} recorded at various temperatures as indicated by labels plotted next to the spectra.

Figure S4. Powder X-ray diffraction pattern of showing the reflection of the unknown phase \mathbf{Z}_{KCI} (at 15.5° and 31.3°) in addition to reflections of other compounds present in the reaction mixture.

Figure S5. Solid-state 1 H-NMR (600.15 MHz) spectrum of intercalate Y_{KCI} recorded with the spin-echo technique at 55.555 kHz spinning speed.