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1. Theoretical analysis of dynamic range in flexural beam resonators  

 

1.1. Nonlinear equation of motion and frequency response 

 

  A general approach to derive the nonlinear equation of motion of a bending beam with a large aspect 

ratio (much larger length 𝐿 than transversal dimensions), regardless of its clamp configuration, is based on 

Hamilton’s principle and Galerkin’s method.30,31 The Lagrangian L of the system is defined in terms of its 

kinetic energy 𝐸𝐾 and potential energy 𝑈 as:  

 

L = 𝐸𝐾(𝑢) − 𝑈(𝑢)                                                                          (S1) 

 

where 𝑢 = 𝑢(𝜉, 𝑡) is the displacement of the beam along its bending direction 𝑋, written as a function of the 

normalized position along the beam (𝜉 = 𝑍 𝐿⁄ ) and time 𝑡. If we consider an approximate unimodal solution 

given by 

 

𝑢(𝜉, 𝑡) = 𝜙(𝜉)𝑥(𝑡)                                                                         (S2) 

 

where 𝜙(𝜉) is the mode shape of the associated linear problem and 𝑥(𝑡) is an unknow function of time (we 

normalize 𝜙(𝜉) such that 𝑥(𝑡) represents the actual displacement of the beam at the maximum deflection 

point), then our problem is reduced to solving the temporal Euler-Lagrange equation: 

 

∂L
𝜕𝑥

−
𝑑

𝑑𝑡
(
∂L
𝜕𝑥̇

) = 0                                                                        (S3) 

 

  In sections 1.1.1 and 1.1.2, we follow this approach considering the first nonlinear terms that appear 

in the Lagrangian of singly clamped (SC) and doubly clamped (DC) beams, respectively, in order to obtain 

their equations of motion; and in section 1.1.3, we derive an equivalent nonlinear frequency response for both 

cases after solving these equations.  

 

1.1.1. Equation of motion for singly clamped beams 

 

  In a singly clamped beam, nonlinear terms appearing both in its potential energy (geometric terms) 

and kinetic energy (inertial terms) are equally significant.24 The former occur because the bending curvature 

has an intrinsic nonlinear dependence on the displacement 𝑢, which starts to manifest when 𝑢 is large enough. 

On the other hand, inertial terms appear as a consequence of the inextensibility condition, which considers that 

the neutral axis of the beam has a constant length. Including the first nonlinear terms derived from these 

considerations, the kinetic and potential energy of the beam read:30 
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𝐸𝐾 =
𝜌𝐿𝑆

2
∫ [𝑢̇2 +

1

4𝐿2 (
𝑑

𝑑𝑡
 ∫ 𝑢′2(𝜁)𝑑𝜁

𝜉

0

)

2

] 𝑑𝜉
1

0

                                        (S4a) 

𝑈 =
𝐸𝐼

2𝐿3
∫ [(𝑢′′)2 +

1

𝐿2
(𝑢′𝑢′′)2] 𝑑𝜉

1

0

                                                 (S4b) 

 

where an apostrophe denotes derivative with respect to 𝜉, a dot refers to time derivative; and homogeneous 

density (𝜌), Young’s modulus (𝐸), cross section area (𝑆) and second moment of area with respect to Y axis (𝐼) 

have been considered. The first terms appearing on the right-hand side of equations (S4) are the linear 

contributions from which the harmonic oscillator equation would be derived, whereas the second terms are the 

first nonlinear corrections (lowest order in 𝑢′ 𝐿⁄ ). If we combine equations (S1)-(S4), we obtain the equation 

of motion of a singly clamped nonlinear beam resonator: 

 

𝑚𝑥̈ +
𝑚𝜔0

𝑄
𝑥̇ + 𝑘𝑥 +

𝛽𝐺

𝐿2
𝑥3 +

𝛽𝐼

𝐿2
(𝑥𝑥̇2 + 𝑥2𝑥̈) = 𝐹0 cos(𝜔𝑡)                             (S5)  

 

where an external force with amplitude 𝐹0 and frequency 𝜔 has been added, as well as a phenomenological 

damping term associated to a finite quality factor 𝑄; and the effective mass (𝑚), effective spring constant (𝑘), 

natural frequency (𝜔0), geometrical nonlinear coefficient (𝛽𝐺), and inertial nonlinear coefficient (𝛽𝐼) are given 

by: 

𝑚 = 𝜌𝐿𝑆 ∫ 𝜙(𝜉)2𝑑𝜉
1

0

                                                                   (S6a) 

𝑘 =
𝐸𝐼

𝐿3
∫ 𝜙′′(𝜉)2𝑑𝜉

1

0

                                                               (S6b) 

𝜔0
2 =

𝑘

𝑚
                                                                                 (S6c) 

𝛽𝐺 =
2𝐸𝐼

𝐿3
∫ [𝜙′(𝜉)𝜙′′(𝜉)]2𝑑𝜉

1

0

                                                        (S6d) 

𝛽𝐼 = 𝜌𝐿𝑆 ∫ [∫ 𝜙′(𝜁)2𝑑𝜁
𝜉

0

]

2

𝑑𝜉
1

0

                                                      (S6e) 

 

As mentioned in section 1.1, 𝜙(𝜉) is the mode shape of the associated linear problem:31  

 

𝜙(𝜉) =
1

2
{cosh(𝑘0𝜉) − cos(𝑘0𝜉) +

cos(𝑘0) + cosh(𝑘0) 

sin(𝑘0) + sinh(𝑘0) 
[sin(𝑘0𝜉) − sinh(𝑘0𝜉) ]}             (S7) 
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where 𝑘0 = 1.875, since we are only considering in the first flexural mode, and the 1 2⁄  factor results from 

the normalization criterion 𝜙(1) = 1. 

 

1.1.2. Equation of motion for doubly clamped beams 

 

  The dominant nonlinear mechanism in doubly clamped beams is bending-induced tension, arising 

from the fact that when a doubly clamped beam deflects, it necessarily stretches.19 The clamps at both ends 

may also introduce a residual tension resulting from an extension or compression of the beam in equilibrium 

with respect to its rest length, but we do not consider such residual tension in our calculations. Thus, for the 

doubly clamped configuration, the kinetic and potential energy can be expressed as: 

 

𝐸𝐾 =
𝜌𝐿𝑆

2
∫ 𝑢̇2𝑑𝜉

1

0

                                                               (S8a) 

𝑈 =
𝐸𝐼

2𝐿3
∫ (𝑢′′)2𝑑𝜉

1

0

+
𝐸𝑆

8𝐿3
[∫ (𝑢′)2𝑑𝜉

1

0

]

2

                                             (S8b) 

 

The second term on the right-hand side of the potential energy accounts for the geometric nonlinearity arising 

from bending-induced tension in doubly clamped beams, and it dominates over other nonlinear terms 

comparable to those calculated for singly clamped beams in the previous section. With an analogous procedure 

to the one followed there, we can combine (S1)-(S3) with (S8) to obtain the Duffing-type equation of motion 

of a doubly clamped nonlinear beam resonator: 

 

𝑚𝑥̈ +
𝑚𝜔0

𝑄
𝑥̇ + 𝑘𝑥 +

𝛽𝐷𝐶

𝐿2
𝑥3 = 𝐹0 cos(𝜔𝑡)                                          (S9) 

 

where the dominating geometric nonlinear coefficient for this configuration (𝛽𝐷𝐶) is defined as: 

 

𝛽𝐷𝐶 =
𝐸𝑆

2𝐿
[∫ 𝜙′(𝜉)2𝑑𝜉

1

0

]

2

                                                     (S10) 

 

and every other common magnitude is defined analogously to the singly clamped case, but considering the 

corresponding mode shape of a doubly clamped beam:  

 

𝜙(𝜉) = 0.6297 {cosh(𝑘0𝜉) − cos(𝑘0𝜉) +
cos(𝑘0) − cosh(𝑘0) 

sin(𝑘0) − sinh(𝑘0) 
[sin(𝑘0𝜉) − sinh(𝑘0𝜉) ]}          (S11) 

 

with 𝑘0 = 4.730, and normalized to satisfy 𝜙(1/2) = 1. 
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1.1.3. Nonlinear frequency response 

 

The frequency response derived from equations of motion (S5) and (S9) can be similarly obtained by 

considering an approximate solution with the form: 

 

𝑥 = 𝑎1 cos(𝜔𝑡) + 𝑎2 sin(𝜔𝑡) = 𝑎 cos(𝜔𝑡 − Φ)                                     (S12) 

 

where the amplitude (𝑎) and the phase shift (Φ) of the response are defined by 

 

𝑎2 = 𝑎1
2 + 𝑎2

2                                                                     (S13a) 

tan Φ =
𝑎2

𝑎1
                                                                        (S13b) 

 

Introducing these expressions into equations (S5) and (S9), we obtain an equivalent approximate frequency 

response for both configurations: 

 

𝑎2(𝜔) =
𝑎0

2

[𝑄 (
𝜔2

𝜔0
2 − 1) −

3𝑄𝛼𝑁𝐿

4𝐿2 𝑎2(𝜔)]
2

+
𝜔2

𝜔0
2

                                     (S14) 

 

where we have designated 𝑎0 = 𝑄𝐹0 𝑘⁄ , and the difference between singly clamped and doubly clamped 

nonlinear response is included into a global nonlinear coefficient 𝛼𝑁𝐿. For the case of singly clamped beams, 

this coefficient is defined by 

 

𝛼𝑁𝐿(𝑆𝐶) =
𝛽𝐺

𝑘
−

2

3

𝛽𝐼

𝑚
                                                                 (S15) 

 

and it can be regarded as a result of the balance between geometrical (𝛼𝐺) and inertial (𝛼𝐼) contributions: 

 

𝛼𝑁𝐿(𝑆𝐶) = 𝛼𝐺 − 𝛼𝐼                                                                    (S16a) 

𝛼𝐺 =
2 ∫ [𝜙′(𝜉)𝜙′′(𝜉)]2𝑑𝜉

1

0

∫ 𝜙′′(𝜉)2𝑑𝜉
1

0

                                                           (S16b) 

𝛼𝐼 =
2

3

∫ [∫ 𝜙′(𝜁)2𝑑𝜁
𝜉

0
]

2
𝑑𝜉

1

0

∫ 𝜙(𝜉)2𝑑𝜉
1

0

                                                          (S16c) 

 

According to equation (S14), when 𝛼𝑁𝐿 is positive, a sufficiently large driving force deforms the 

Lorentzian resonance response curve of the linear case so that the peak amplitude occurs at a resonance 



 SI-6 

frequency 𝜔𝑅 > 𝜔0  (stiffening). Oppositely, when 𝛼𝑁𝐿  is negative then the resonance frequency shifts to 

𝜔𝑅 < 𝜔0 (softening). For the first flexural mode of a singly clamped beam with homogeneous cross-section, 

𝛼𝐺 is slightly larger than 𝛼𝐼 and the global nonlinear coefficient obtained after computing (S16) for the mode 

shape in (S7) is 𝛼𝑁𝐿 = 0.0517, thus producing a stiffening effect. Because of this delicate balance, the 

opposite behavior has been observed on cantilevers with length over width ratios lower than 10,24 but our 

model is not considering such short aspect ratio regime. 

 

  On the other hand, for the case of doubly clamped beams, 𝛼𝑁𝐿 is given by 

 

𝛼𝑁𝐿(𝐷𝐶) =
𝛽𝐷𝐶

𝑘
=

𝑆𝐿2

2𝐼

[∫ 𝜙′(𝜉)2𝑑𝜉
1

0
]

2

∫ 𝜙′′(𝜉)2𝑑𝜉
1

0

                                                 (S17) 

 

which is a positive coefficient, always resulting in a stiffening effect at large amplitude. Contrary to what we 

found for the SC case, the nonlinear coefficient in DC beams is not only a numerical factor, but it depends on 

the geometry of the beam. The common numerical factor resulting from the integrals appearing in (S17) can 

be computed for the mode shape in (S11) to obtain 

 

𝛼𝑁𝐿(𝐷𝐶) = 0.0600
𝑆𝐿2

𝐼
                                                                (S18) 

 

This expression already shows that because of the different nature of the dominating nonlinear 

mechanism in a doubly clamped beam, its nonlinear coefficient is proportional to the square of its aspect ratio 

𝐿 𝐷⁄  (having into account that 𝑆 𝐼⁄ ∝ 𝐷−2), which results into the appearance of nonlinear effects at much 

lower amplitudes for this clamping configuration when typical aspect ratios are considered. Table S1 in section 

1.3 shows the expressions of 𝛼𝑁𝐿 for the different beam geometries treated in this work. 

 

 

1.2. Onset of nonlinearity 

 

  The common frequency response described by (S14) allows to characterize the transition from linear 

to nonlinear regime as well as to define magnitudes that represent such transition. Here we describe three 

relevant magnitudes that represent three different thresholds of the linear to nonlinear transition: the 

multivalued resonance threshold amplitude, the critical amplitude and the 1 dB compression point.  
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1.2.1. Multivalued resonance threshold 

  

  If we consider the case 𝛼𝑁𝐿 > 0 (stiffening response), as we have seen that is expected for the first 

flexural mode of both singly clamped and doubly clamped beams, equation (S14) can be rewritten as follows: 

 

𝑎2(𝜔) =
𝑎0

2

[𝑄 (
𝜔2

𝜔0
2 − 1) −

𝑎2(𝜔)

𝑎𝑀
2 ]

2

+
𝜔2

𝜔0
2

                                                   (S19) 

 

where the multivalued resonance threshold amplitude (𝑎𝑀) has been defined as 

 

𝑎𝑀 =
2𝐿

√3𝑄𝛼𝑁𝐿

                                                                           (S20) 

 

  This magnitude has several remarkable peculiarities. First, if we evaluate (S19) at the natural frequency 

𝜔0, which approximately corresponds to the resonance frequency of the linear case (𝛼𝑁𝐿 = 0) when 𝑄 ≫ 1, 

we obtain  

 

𝑎0 = 𝑎(𝜔0)√1 + [
𝑎(𝜔0)

𝑎𝑀
]

4

                                                             (S21) 

 

and two different regimes can be defined from this expression. For the case 𝑎(𝜔0) ≪ 𝑎𝑀, we recover the 

response of the linear oscillator such that the amplitude is proportional to the applied force: 

 

𝑎(𝜔0) ≈ 𝑎0                                                                             (S22) 

 

On the other hand, when 𝑎(𝜔0) ≫ 𝑎𝑀, the amplitude turns to be proportional to the cubic root of the applied 

force: 

 

𝑎(𝜔0) ≈ 𝑎𝑀
2 3⁄

𝑎0
1 3⁄

                                                                       (S23) 

 

This gives the first significant meaning to 𝑎𝑀: it can be regarded as a characteristic amplitude that defines the 

transition from linear to nonlinear regime. Moreover, if we compare the purely linear response in (S22) with 

the purely nonlinear response in (S23), we find that the cutting point of these curves (straight lines if we plot 

them in log-log scale) occurs exactly at 𝑎(𝜔0) = 𝑎𝑀, as shown in Figure 1c of the main text. Another property 

of this parameter can be found by introducing this last equality into equation (S21) to obtain 𝑎0 𝑎𝑀⁄ = √2, 
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which means that 𝑎𝑀 is the amplitude of the resonator (evaluated at 𝜔0) when the nonlinearity reduces the 

expected response for a purely linear case by a factor of √2.  

 

  Finally, the property to which the multivalued resonance threshold amplitude 𝑎𝑀 owes its name can 

be derived by searching for the onset of bifurcation when we evaluate the response given by (S19) at the 

resonance frequency (𝜔𝑅), which for 𝑄 ≫ 1 reads: 

 

𝜔𝑅
2 ≈ 𝜔0

2 (1 +
𝑎0

2

𝑄𝑎𝑀
2 )                                                                    (S24) 

 

For the resonance to start to be multivalued, the implicit cubic equation in 𝑎2 associated to (S19) must have 

three real roots: one simple root (𝑎𝐼) with zero slope, which corresponds to the maximum amplitude of the 

spectrum (resonance); and one double root (𝑎𝐼𝐼), which corresponds to a lower amplitude value with an infinite 

slope. If we compute these roots considering (S24) and 𝑄 ≫ 1, we obtain 𝑎𝐼 = √2𝑎𝑀 and 𝑎𝐼𝐼 = 𝑎𝑀. Thus, 

since the amplitude at resonance is approximately equal to 𝑎0, we find that the onset of bifurcation at such 

amplitude occurs exactly for the curve satisfying 𝑎(𝜔0) = 𝑎𝑀 that we discussed above.  

 

  An equivalent analysis can be performed if we consider the case 𝛼𝑁𝐿 < 0, for which a plus sign must 

replace the minus sign preceding the nonlinear term in equation (S19), and the same conclusions about the 

parameter 𝑎𝑀  would result from such analysis, with the only difference that the resonance would show a 

softening behavior at large amplitudes (the plus sign in (S24) should be replaced by a minus sign). 

 

1.2.2. Critical amplitude 

 

  The critical amplitude (𝑎𝑐) is another relevant magnitude of a nonlinear oscillator, both from a physical 

and a mathematical point of view. It is defined as the amplitude for which the response of the resonator starts 

to show a bifurcation at some frequency. This is equivalent to the case in which the implicit cubic equation in 

𝑎2 associated to (S19) has a triple root. If we calculate this triple root and consider 𝑄 ≫ 1, we obtain the 

following expression for the critical amplitude: 

 

𝑎𝑐 ≈  
2√2

33 4⁄

𝐿

√𝑄|𝛼𝑁𝐿|
                                                                      (S25) 

 

occurring at a frequency 𝜔𝑐 that is neither the natural frequency nor the resonance frequency: 
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𝜔𝑐 ≈  𝜔0 (1 +
√3

2𝑄
)                                                                   (S26) 

 

with the plus sign replaced by a minus sign in the case 𝛼𝑁𝐿 < 0. If we compare (S20) and (S25), we can relate 

the parameter 𝑎𝑀 with the critical amplitude: 

 

𝑎𝑀 = √√3

2
𝑎𝑐 ≈ 0.931𝑎𝑐                                                               (S27) 

 

It is important to note that although 𝑎𝑐  is larger than 𝑎𝑀 , the driving force required to reach the critical 

amplitude (onset of bifurcation at some frequency) is lower than the driving force required to reach the curve 

for which 𝑎(𝜔0) = 𝑎𝑀 (onset of bifurcation at resonance frequency), and thus the critical amplitude represents 

a more restrictive reference for the upper limit of the linear regime.  

 

1.2.3. 1 dB Compression point 

 

  We finally describe the magnitude that is used to define the onset of nonlinearity regarding practical 

applications. The parameters introduced in the last two sections, 𝑎𝑀 and 𝑎𝑐, are associated to bifurcations and 

infinite slopes in the frequency response curves that are not desirable by typical experimental procedures 

designed to work within the linear operation regime. For this reason, a more restrictive parameter to delimit 

the linear regime is commonly used: the 1 dB compression point, referred to as the point where the oscillation 

amplitude at the natural frequency 𝑎1𝑑𝐵(𝜔0) is 1 dB lower than the amplitude that would result from a purely 

linear response for the same driving force, 𝑎0. If we apply this definition to equation (S21), we obtain the 

following expression for the 1 dB compression point: 

 

𝑎1𝑑𝐵(𝜔0)  = (101/10 − 1)
1/4

𝑎𝑀 ≃ 0.713𝑎𝑀                                            (S28) 

 

This is the parameter that we have used to define the upper limit of the dynamic range and, combining 

expressions (S27) and (S28), it can be related to the critical amplitude by  

 

𝑎1𝑑𝐵(𝜔0)  = (101/10 − 1)
1/4√√3

2
𝑎𝑐 ≃ 0.664𝑎𝑐                                         (S29) 
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If we now evaluate this same 1 dB compression curve at the resonance frequency 𝜔𝑅 , we obtain a value 

𝑎1𝑑𝐵(𝜔𝑅) which, for 𝑄 ≫ 1,  is equal to the amplitude that would be expected for the linear case evaluated at 

𝜔0, that is, 1 dB larger than 𝑎1𝑑𝐵(𝜔0):  

 

𝑎1𝑑𝐵(𝜔𝑅)  = 101/20(101/10 − 1)
1/4

𝑎𝑀 ≃ 0.800𝑎𝑀                                          (S30) 

 

resulting into the more extended relation found in previous works:19,34 

 

𝑎1𝑑𝐵(𝜔𝑅)  ≃ 0.745𝑎𝑐                                                                  (S31) 

 

It is important to note that 𝑎1𝑑𝐵(𝜔𝑅) is not the amplitude of the spectrum that shows a 1 dB compression at 

resonance (for 𝑄 ≫ 1, the response evaluated at resonance that follows the backbone curve defined by (S24) 

does not show any compression), but it is the amplitude at resonance of the spectrum that shows a 1 dB 

compression at the fixed natural frequency. Since this definition is less straightforward than the definition of 

𝑎1𝑑𝐵(𝜔0), and having into account that the lower limit of the dynamic range is also evaluated at the natural 

frequency, we have considered more convenient to use relations (S28) and (S29) for the analysis developed in 

this work. However, our results can be easily compared to those reported in previous works and our model can 

be adapted to the definitions given by (S30) and (S31) just by having into account that slight 1 dB difference. 

 

 

1.3. Expressions for dynamic range 

 

As described in the main text, we consider thermomechanical noise as the dominant noise source of 

the amplitude signal, and we define the intrinsic dynamic ratio 𝑟𝐷 as the ratio of the amplitude at the onset of 

nonlinearity (1 dB compression point) to the lowest measurable amplitude (thermomechanical spectral density 

integrated for the measurement bandwidth Δ𝑓): 

 

𝑟𝐷 =
𝑎1𝑑𝐵(𝜔0)

√2𝑆𝑥
ThΔ𝑓

 ≃ 0.291√
𝐿2𝑚𝜔0

3

𝑘𝐵𝑇𝑄2Δ𝑓|𝛼𝑁𝐿|
                                             (S32) 

 

This relation, given in terms of 𝑚, 𝜔0 and 𝛼𝑁𝐿, can be applied both to singly clamped and doubly clamped 

beams with different geometries. Table S1 includes the expressions of such parameters for rectangular, 

hexagonal and circular cross section geometries, considering a uniform cross section, as well as the resulting 

1 dB compression amplitude obtained from (S28). Slight variations are found when comparing distinct 

geometries for a given clamping configuration, whereas more significant differences appear between SC and 
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DC beams. The most remarkable one is that, because of the different nonlinear mechanisms that dominate the 

appearance of nonlinearities in SC and DC beams (see section 1.1), the 1 dB compression amplitude is 

geometry-dependent and proportional to the transversal characteristic magnitude 𝐷 in DC beams, whereas it 

has a unique value proportional to the length 𝐿 in SC beams.  

 

 

Clamp Geometry 𝑺 𝑰 𝒎 𝝎𝟎 𝜶𝑵𝑳 𝒂𝟏𝒅𝑩  

SC 

Rectangular 𝑊 · 𝐷 
𝑊𝐷3

12
 0.250𝜌𝐿𝑊𝐷 1.015√

𝐸

𝜌

𝐷

𝐿2
 0.0517 3.623

𝐿

√𝑄
 

Hexagonal 
3√3𝐷2

8
 

5√3𝐷4

256
 0.162𝜌𝐿𝐷2 0.802√

𝐸

𝜌

𝐷

𝐿2
 0.0517 3.623

𝐿

√𝑄
 

Circular 
𝜋𝐷2

4
 

𝜋𝐷4

64
 0.196𝜌𝐿𝐷2 0.879√

𝐸

𝜌

𝐷

𝐿2
 0.0517 3.623

𝐿

√𝑄
 

DC 

Rectangular 𝑊 · 𝐷 
𝑊𝐷3

12
 0.397𝜌𝐿𝑊𝐷 6.459√

𝐸

𝜌

𝐷

𝐿2
 0.719 (

𝐿

𝐷
)

2

 0.971
𝐷

√𝑄
 

Hexagonal 
3√3𝐷2

8
 

5√3𝐷4

256
 0.258𝜌𝐿𝐷2 5.106√

𝐸

𝜌

𝐷

𝐿2
 1.151 (

𝐿

𝐷
)

2

 0.768
𝐷

√𝑄
 

Circular 
𝜋𝐷2

4
 

𝜋𝐷4

64
 0.311𝜌𝐿𝐷2 5.593√

𝐸

𝜌

𝐷

𝐿2
 0.959 (

𝐿

𝐷
)

2

 0.841
𝐷

√𝑄
 

 

 

Table S1. Cross section, second moment of area, effective mass, natural frequency, nonlinear coefficient and 

1dB compression amplitude for different geometries of SC and DC beams with uniform cross section. In 

rectangular cross section beams, D refers to thickness and W to width. 

 

 

  Table S2 shows the dynamic ratio of SC and DC beams with uniform cross section calculated by means 

of equation (S32), according to the parameters from table S1. Regarding the differences between both clamping 

configurations in terms of order of magnitude, we can extract an approximate relation valid for every geometry 

considered in this work: 

 

𝑟𝐷(𝑆𝐶)

𝑟𝐷(𝐷𝐶)
≈ 0.2

𝐿

𝐷
                                                                    (S33) 

 

which predicts a larger dynamic range for singly clamped beams if we consider the aspect ratio of typical 

devices. The particular expressions for each geometry are listed in table S2. 
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Geometry 𝒓𝑫 (Singly Clamped) 𝒓𝑫 (Doubly Clamped) 𝒓𝑫(𝑺𝑪) 𝒓𝑫(𝑫𝑪)⁄  

Rectangular 0.655 · √𝑊𝐷 (
𝐷

𝐿
)

3
2⁄

√
𝐸

3
2⁄

𝑄2𝑘𝐵𝑇Δ𝑓√𝜌
  3.549 · √𝑊𝐷 (

𝐷

𝐿
)

5
2⁄

√
𝐸

3
2⁄

𝑄2𝑘𝐵𝑇Δ𝑓√𝜌
 0.185

𝐿

𝐷
 

Hexagonal 0.371 · 𝐷 (
𝐷

𝐿
)

3
2⁄

√
𝐸

3
2⁄

𝑄2𝑘𝐵𝑇Δ𝑓√𝜌
  1.589 · 𝐷 (

𝐷

𝐿
)

5
2⁄

√
𝐸

3
2⁄

𝑄2𝑘𝐵𝑇Δ𝑓√𝜌
 0.233

𝐿

𝐷
 

Circular 0.468 · 𝐷 (
𝐷

𝐿
)

3
2⁄

√
𝐸

3
2⁄

𝑄2𝑘𝐵𝑇Δ𝑓√𝜌
  2.195 · 𝐷 (

𝐷

𝐿
)

5
2⁄

√
𝐸

3
2⁄

𝑄2𝑘𝐵𝑇Δ𝑓√𝜌
 0.213

𝐿

𝐷
 

 

 

Table S2. Dynamic ratio of singly and doubly clamped beams with uniform cross section and different 

geometries. 

 

 

1.4. Fundamental mass detection limits 

 

  Having an analytical expression for the dynamic range of a beam allows to predict its mass resolution 

limit (𝛿𝑚), under the assumptions described in the main text, according to:47 

 

𝛿𝑚 =
𝑚

𝑄𝑟𝐷
                                                                           (S34) 

 

Combining this equation with tables S1 and S2 provides the expressions shown in table S3, from which an 

approximate relation valid for every geometry can be extracted to describe the differences between both 

clamping configurations in terms of order of magnitude: 

 

𝛿𝑚(𝐷𝐶)

𝛿𝑚(𝑆𝐶)
≈ 0.3

𝐿

𝐷
                                                                    (S35) 

 

which predicts a lower mass resolution limit for singly clamped beams if we consider the aspect ratio of typical 

devices. The particular expressions for each geometry are listed in table S3. 
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Geometry 𝜹𝒎 (Singly Clamped) 𝜹𝒎 (Doubly Clamped) 𝜹𝒎(𝑫𝑪) 𝜹𝒎(𝑺𝑪)⁄  

Rectangular 0.382 · √𝑊𝐷3 (
𝐿

𝐷
)

5/2

√
𝑘𝐵𝑇Δ𝑓𝜌

5
2⁄  

𝐸
3

2⁄
 0.112 · √𝑊𝐷3 (

𝐿

𝐷
)

7/2

√
𝑘𝐵𝑇Δ𝑓𝜌

5
2⁄  

𝐸
3

2⁄
 0.293

𝐿

𝐷
 

Hexagonal 0.438 · 𝐷2 (
𝐿

𝐷
)

5/2

√
𝑘𝐵𝑇Δ𝑓𝜌

5
2⁄  

𝐸
3

2⁄
 0.162 · 𝐷2 (

𝐿

𝐷
)

7/2

√
𝑘𝐵𝑇Δ𝑓𝜌

5
2⁄  

𝐸
3

2⁄
 0.370

𝐿

𝐷
 

Circular 0.420 · 𝐷2 (
𝐿

𝐷
)

5/2

√
𝑘𝐵𝑇Δ𝑓𝜌

5
2⁄  

𝐸
3

2⁄
 0.142 · 𝐷2 (

𝐿

𝐷
)

7/2

√
𝑘𝐵𝑇Δ𝑓𝜌

5
2⁄  

𝐸
3

2⁄
 0.338

𝐿

𝐷
 

 

 

Table S3. Mass resolution limit of singly and doubly clamped beams with uniform cross section and different 

geometries. 

 

 

1.5. Including tapering effect in singly clamped beams 

 

  The expressions obtained so far regarding singly clamped beams with a circular or hexagonal uniform 

cross section can be generalized to consider a linearly decreasing diameter from base (𝐷0) to tip (𝐷𝑡𝑖𝑝), which 

is a characteristic feature of bottom-up grown nanowires. If we introduce a tapering coefficient 𝛼𝑇 = 1 −

𝐷𝑡𝑖𝑝 𝐷0⁄ , the diameter of the beam can be expressed as a function of the position along its normalized length:  

 

𝐷(𝜉) = 𝐷0(1 − 𝛼𝑇𝜉)                                                                (S36) 

 

Considering this relation, the kinetic and potential energies in (S4) must be rewritten as 

 

𝐸𝐾 =
𝜌𝐿𝑆0

2
∫ (1 − 𝛼𝑇𝜉)2 [𝑢̇2 +

1

4𝐿2 (
𝑑

𝑑𝑡
 ∫ 𝑢′2(𝜁)𝑑𝜁

𝜉

0

)

2

] 𝑑𝜉
1

0

                        (S37a) 

𝑈 =
𝐸𝐼0

2𝐿5
∫ (1 − 𝛼𝑇𝜉)4[(𝐿𝑢′′)2 + (𝑢′𝑢′′)2]𝑑𝜉

1

0

                                         (S37b) 

 

where the section and the second moment of area at the base of the beam have been introduced (𝑆0 and 𝐼0, 

respectively). If we apply the analysis described in section 1.1 to these expressions, we arrive to the same 

equation of motion found in (S5) after redefining the coefficients from (S6) as follows: 

 

𝑚 = 𝜌𝐿𝑆0 ∫ (1 − 𝛼𝑇𝜉)2𝜙(𝜉)2𝑑𝜉
1

0

                                                (S38a) 

𝑘 =
𝐸𝐼0

𝐿3
∫ (1 − 𝛼𝑇𝜉)4𝜙′′(𝜉)2𝑑𝜉

1

0

                                                 (S38b) 
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𝜔0
2 =

𝑘

𝑚
                                                                          (S38c) 

𝛽𝐺 =
2𝐸𝐼0

𝐿3
∫ (1 − 𝛼𝑇𝜉)4[𝜙′(𝜉)𝜙′′(𝜉)]2𝑑𝜉

1

0

                                     (S38d) 

𝛽𝐼 = 𝜌𝐿𝑆0 ∫ (1 − 𝛼𝑇𝜉)2 [∫ 𝜙′(𝜁)2𝑑𝜁
𝜉

0

]

2

𝑑𝜉
1

0

                                     (S38e) 

 

where the mode shape of the associated linear problem 𝜙(𝜉) is not represented by (S7) anymore, but it must 

also consider the tapered geometry. The mode shape and the natural frequencies of tapered beams have already 

been numerically computed in a previous work,28 and here we extend the analysis to describe the relation of 

other relevant parameters with the tapering coefficient, obtaining the results shown in table S4. Since 𝛼𝑇 only 

takes values within the interval [0,1], every function of 𝛼𝑇 that we have defined can be approximated by a 

polynomial fitting after numerically solving the corresponding integrals for a discrete set of values within that 

interval, as shown in Figure S1. 

 

  Table S5 includes the expressions for the dynamic ratio of tapered singly clamped beams with 

hexagonal and circular cross section, showing that the dynamic range of a very tapered beam (𝛼𝑇 = 0.9) is 8.2 

dB lower than the dynamic range of a uniform beam (note that this difference only depends on the function 

ℎ(𝛼𝑇) and is therefore independent of the cross-section geometry). 

 

  Finally, if we consider a singly clamped beam with tapered geometry according to the general 

expression of mass resolution limit provided in table S4, we obtain the relations included in table S6, showing 

that the mass resolution limit is around one order of magnitude lower for a very tapered beam (𝛼𝑇 = 0.9) than 

for a uniform beam (note that this difference only depends on the function 𝑗(𝛼𝑇) and is therefore independent 

of the cross section geometry).  
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Natural 

frequency 

Expression 𝜔0 = [
𝑘0(𝛼𝑇)

𝐿
]

2

√
𝐸𝐼0

𝜌𝑆0

 

Function 𝑘0(𝛼𝑇) = √
∫ (1 − 𝛼𝑇𝜉)4𝜙′′(𝜉)2𝑑𝜉

1

0

∫ (1 − 𝛼𝑇𝜉)2𝜙(𝜉)2𝑑𝜉
1

0

4

 

Fitting 𝑘0(𝛼𝑇) ≈ 1.875 + 0.336𝛼𝑇 + 0.697𝛼𝑇
2 − 1.115𝛼𝑇

3 + 1.150𝛼𝑇
4  

Effective 

mass 

Expression 𝑚 = 𝑔(𝛼𝑇)𝜌𝐿𝑆0 

Function 𝑔(𝛼𝑇) = ∫ (1 − 𝛼𝑇𝜉)2𝜙(𝜉)2𝑑𝜉
1

0

 

Fitting 𝑔(𝛼𝑇) ≈ 0.250 − 0.448𝛼𝑇 + 0.203𝛼𝑇
2  

Nonlinear 

onset 

Expression 𝑎1𝑑𝐵(𝜔0)  = (101/10 − 1)1/4
2𝐿

√3𝑄𝛼𝑁𝐿(𝛼𝑇)
 

Function 𝛼𝑁𝐿(𝛼𝑇) =
2 ∫ (1 − 𝛼𝑇𝜉)4[𝜙′(𝜉)𝜙′′(𝜉)]2𝑑𝜉

1

0

∫ (1 − 𝛼𝑇𝜉)4𝜙′′(𝜉)2𝑑𝜉
1

0

−
2

3

∫ (1 − 𝛼𝑇𝜉)2 [∫ 𝜙′(𝜁)2𝑑𝜁
𝜉

0
]

2

𝑑𝜉
1

0

∫ (1 − 𝛼𝑇𝜉)2𝜙(𝜉)2𝑑𝜉
1

0

  

Fitting 𝛼𝑁𝐿(𝛼) ≈ 0.0517 + 0.0651𝛼𝑇 − 0.188𝛼𝑇
2 + 0.548𝛼𝑇

3 − 0.364𝛼𝑇
4 

Dynamic 

ratio 

Expression 𝑟𝐷 = 4.222 · ℎ(𝛼𝑇)√
(𝐸𝐼0)3 2⁄

𝐿3𝑘𝐵𝑇𝑄2𝛥𝑓√𝜌𝑆0

  

Function 
ℎ(𝛼𝑇) =

1

√
𝑔(0)𝑘0

6(0)
|𝛼𝑁𝐿(0)|

√
𝑔(𝛼𝑇)𝑘0

6(𝛼𝑇)

|𝛼𝑁𝐿(𝛼𝑇)|
 

Fitting ℎ(𝛼𝑇) ≈ 1 − 0.677𝛼𝑇 

Mass 

resolution 

limit 

Expression 𝛿𝑚 = 0.0592 · 𝑗(𝛼𝑇)√
𝑘𝐵𝑇𝛥𝑓𝐿5(𝜌𝑆0)5 2⁄

(𝐸𝐼0)3 2⁄   

Function 
𝑗(𝛼𝑇) =

1

√
𝑔(0)|𝛼𝑁𝐿(0)|

𝑘0
6(0)

√
𝑔(𝛼𝑇)|𝛼𝑁𝐿(𝛼𝑇)|

𝑘0
6(𝛼𝑇)

 

Fitting 𝑗(𝛼𝑇) ≈ 1 − 1.171𝛼𝑇 + 0.200𝛼𝑇
2  

 

Table S4. Functions of the tapering coefficient appearing in some relevant expressions treated in this work 

and approximate polynomial fittings of such functions obtained from numerical analysis. The intercepts of the 

fittings are fixed at the values found for the uniform cross section case.  
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Figure S1. Functions of the tapering coefficient. Numerical calculations for a set of 19 𝛼𝑇  values and 

polynomial fittings of the functions 𝑔 (a), 𝛼𝑁𝐿 (b), ℎ (c), and 𝑗 (d). The expressions defining these functions 

and the corresponding fittings are shown in table 3. The fitting of the function 𝑘0 can be found in a previous 

work.28 

 

 

 

Geometry 𝒓𝑫 (Singly Clamped, Tapered) 𝑫𝑹 (𝜶𝑻 = 𝟎. 𝟗) − 𝑫𝑹 (𝜶𝑻 = 𝟎) 

Hexagonal 0.371 · ℎ(𝛼𝑇) · 𝐷0 (
𝐷0

𝐿
)

3
2⁄

√
𝐸

3
2⁄

𝑄2𝑘𝐵𝑇Δ𝑓√𝜌
  −8.2 𝑑𝐵 

Circular 0.468 · ℎ(𝛼𝑇) · 𝐷0 (
𝐷0

𝐿
)

3
2⁄

√
𝐸

3
2⁄

𝑄2𝑘𝐵𝑇Δ𝑓√𝜌
  −8.2 𝑑𝐵 

 

 

Table S5. Dynamic ratio of tapered singly clamped beams with hexagonal and circular cross section. 
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Geometry 𝜹𝒎 (Singly Clamped, Tapered) 𝜹𝒎 (𝜶𝑻 = 𝟎. 𝟗)/𝜹𝒎 (𝜶𝑻 = 𝟎) 

Hexagonal 0.438 · 𝑗(𝛼𝑇) ·  𝐷0
2 (

𝐿

𝐷0

)
5/2

√
𝑘𝐵𝑇Δ𝑓𝜌

5
2⁄  

𝐸
3

2⁄
 0.108 

Circular 0.420 · 𝑗(𝛼𝑇) ·  𝐷0
2 (

𝐿

𝐷0

)
5/2

√
𝑘𝐵𝑇Δ𝑓𝜌

5
2⁄  

𝐸
3

2⁄
 0.108 

 

 

Table S6. Mass resolution limit of tapered singly clamped beams with hexagonal and circular cross section. 
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2. Si Nanowire growth and characterization 

 

Si nanowires (NW) were grown in a Nanoinnova “CVDCube” atmospheric pressure chemical vapor 

deposition (AP-CVD) system by the vapor liquid solid (VLS) mechanism with SiCl4 vapor as precursor. We 

used colloidal Au nanoparticles (NP) as catalyst with three different nominal diameter values: 100, 150 and 

250 nm (Sigma-Aldrich). Au NPs were deposited on Si (111) substrates without any predetermined pattern 

and without any sort of prefabricated micro or nanostructure. Before NP deposition, substrates were thoroughly 

treated in ultrasounds by sequential immersions in acetone, isopropyl alcohol and DI water. A 10s immersion 

in HF (5%) was performed in order to remove native oxide. 60s immersion in Poly-L-lysine was also 

performed in order to improve Au NP adhesion. NP deposition was completed by immersion of the treated 

substrates in the colloidal Au NP suspension with 1:20 reduced concentration with respect to original values. 

The NWs were grown at 825 °C directing the liquid SiCl4 precursor into the tubular quartz reactor by flowing 

30 sccm of inert Ar gas through a bubbler kept at 0 °C. H2 (10% in Argon) was introduced with a flow of 120 

sccm. In order to vary the nanowire length, four growth times were used: 10, 15, 22.5 and 34 min. After the 

growth time, the reactive gases were purged with Ar from the tube for another 5 min. Very similar average 

growth rates around 1.1 m/min where observed regardless of the catalyst NP diameter. Table S7 specifies the 

Au catalyst NP diameter and growth time used for each of the Si NWs under analysis in this work. 

 

 

Au NP  
D [nm] 

Growth  
time [min] 

Si NW 
# 

Si NW  

L [m] 

Si NW 
D0 [nm] 

Si NW 
L/D0 

Si NW 

T 

150 34 2 44.2 256 173 0.88 

150 34 3 43.7 276 158 0.81 

150 34 1 43.2 241 179 0.89 

250 22.5 9 27.1 326 83 0.46 

250 22.5 8 27.0 294 92 0.52 

150 22.5 4 25.9 199 130 0.72 

150 22.5 6 25.7 237 108 0.69 

150 22.5 7 25.1 219 115 0.73 

250 15 16 19.5 422 46 0.24 

250 15 12 19.3 347 56 0.27 

250 15 11 18.1 309 58 0.28 

150 15 5 17.6 212 83 0.34 

150 15 10 17.5 190 92 0.38 

250 10 15 11.6 338 34 0.17 

250 10 20 11.0 326 34 0.18 

150 10 17 10.8 183 59 0.31 

150 10 18 10.7 194 55 0.24 

150 10 19 10.5 203 52 0.29 

150 10 14 10.3 192 53 0.29 

100 10 13 10.3 145 71 0.46 

 

 

Table S7. Au catalyst NP diameter and growth time used for each of the Si NWs under analysis in this work.  
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3. Transduction of Si nanowire vibration 

 

3.1 Experimental set-up details 

 

The experimental set-up (Figure 2c in the main text) uses a fiber-coupled diode laser (TopMode-633, 

Toptica Photonics AG, =633 nm). Output power and polarization are manually controlled with a variable 

attenuator and birefringence loops, respectively. The values of incident optical power used range from 72 μW 

to 216 μW, depending on the sample, high enough to resolve the thermomechanical signal of nanowires at 

practical acquisition times (𝜏 ≲ 1s) but without inducing any observable optomechanical back-action effect. 

On the other hand, the polarization is aligned with the longitudinal axis of the nanowires in order to maximize 

the backscattered intensity, optimizing transduction sensitivity.8 After this fiber stage, a triplet lens collimator 

provides a nearly Gaussian free-space beam, with its optical axis (Y axis) oriented perpendicular to the 

longitudinal axis of the nanowires (Z axis).  

 

The beam is focused on the Si NWs grown near the edges of the substrate (Figure 2a) using a 20× 

objective with 0.42 numerical aperture, which results into a laser spot waist diameter (2𝑤0) of around 4 μm. 

A nanopositioning stage controls the relative X-Z position of the sample with respect to the probe beam 

incidence point as well as its focus. A piezoelectric actuator below the sample allows the excitation of flexural 

modes.  

 

The backscattered beam is collected by an unsegmented Si photoreceiver coupled to a low-noise 

transimpedance amplifier. The resulting electrical signal is then processed either by a digital acquisition (DAQ) 

board or by a lock-in amplifier (LIA). The LIA reference signal is delivered to the piezoelectric actuator in the 

case of driven vibrations. The DAQ board is synchronized both with a signal generator, which can also be 

connected to the actuator, and with the nanopositioning stage, allowing the acquisition of the signal of the 

photoreceiver as the relative sample−laser beam position is scanned. All the measurements are performed in 

high vacuum (∼10−5 mbar) and at substrate temperatures of around 325 K (a stationary heating effect is induced 

by the nanopositioner stage). A CCD camera with white light illumination coupled to the system by a pellicle 

beamsplitter provides top-view optical images in order to navigate the sample surface and locate nanowires of 

interest. A flip mount adapter allows to remove the pellicle beamsplitter from the beam path during 

measurements in order to reduce optical losses. 
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3.2 Transduction sensitivity 

 

  The transduction mechanism underlying the readout of mechanical resonances used in this work is 

based on the modulation of backscattered light induced by nanowire vibrations. Besides the use of an 

unsegmented photodetector, similar methods have already been used in previous works.9,15 An example 

corresponding to nanowire #18 of the mean optical power 𝑃 collected by the unsegmented photodetector (DC 

component) as a function of the X-Z position with respect to the incident laser beam is shown in Figure S2a. 

When the beam is focused on the nanowire, the optical gradient lies in the X-Z plane, enabling the transduction 

of X-Z displacements. However, in this configuration, the flexural doublet modes of the nanowire occur in the 

X-Y plane,10 and thus only the projection along the X axis of each doublet component can be detected. Since 

these components are orthogonal, at least one of them shows a significant projection along the X axis.  Given 

that the resonance frequencies of the components of a doublet are very close (although nondegenerate in high 

vacuum due to slight geometric asymmetries in nanowire cross section), we have focused our study on the 

component presenting a better alignment with the X axis (higher signal).  

 

  The sensitivity (𝜎) of the transduction mechanism relates the power spectral density (PSD) of nanowire 

vibrations in m2/Hz units (𝑆𝑋) with the PSD of the measured power signal in W2/Hz units (𝑆𝑃) through 𝑆𝑃 =

𝜎2𝑆𝑋 + 𝑆𝐵𝐺, where an uncorrelated background noise (𝑆𝐵𝐺) has been added. The transduction mechanism 

implies that the sensitivity is proportional to the absolute value of the optical power gradient 𝜕𝑃 𝜕𝑋⁄  along the 

X direction, so that 𝜎 ∝ 𝜕𝑃 𝜕𝑋⁄  .10 Figure S2c shows the corresponding X-Z mapping of the collected power 

gradient along the X direction for the same nanowire as in Figure S2a. 𝜕𝑃 𝜕𝑋⁄   depends on the Z position 

because the coupling of Mie modes depends on the diameter of the nanowire,1,9 which varies along its length 

due to its tapered geometry, thus resulting into the varying backscattering efficiency along Z as already seen 

in Figure S2a. As a consequence, the highest signal is not necessarily obtained at the maximum displacement 

Z position (tip of the NW), as would be expected for a homogeneous cross section NW. In longer and more 

tapered nanowires, several Mie modes can be coupled along their length.   

 

  Figures S2b and S2d show a cross-section along the X direction in the maps from Figures S2a and S2c, 

respectively, revealing two relevant remarks regarding the transduction mechanism. First, within the area of 

interaction between the nanowire and the laser beam, which is comparable to the diameter of the later (2𝑤0), 

the collected power gradient profile shows two symmetric local maxima at an approximate nanowire-laser 

beam relative position 𝑋 = ±𝑋𝑀 , with 𝑋𝑀 ≈ 𝑤0 2⁄ . In order to maximize transduction sensitivity, our 

measurements were taken at either of these local maxima. The second remark is that the collected power profile 

is approximately linear (i.e., nearly constant transduction sensitivity) along a ~1 m span centered at the 

measuring positions ±𝑋𝑀 . This provides a wide transduction linearity that has enabled the experiments 

performed in this work. In section 3.3, we analyze such linearity in more detail. 
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Figure S2. Backscattering modulation transduction mechanism. (a) Mapping of collected optical power, 

P, as a function of the relative nanowire−laser beam position, measured for NW #18 (the longitudinal axis of 

the nanowire is located along X=0, and the saturated yellow region corresponds to the reflection from the 

substrate). (b) Profile along the white dashed line of the previous map (Z=11 m) showing the variation of 

backscattered power as the laser beam is translated along the X direction. (c) Gradient along X (absolute value) 

of the collected optical power shown in (a). (d) Profile along the white dashed line of the previous map (Z=11 

m) showing the variation of backscattered power X-gradient as the laser beam is translated along the X 

direction.  

 

  Remarkably, the sensitivity also depends on a diverse number of factors as nanowire diameter, relative 

X-Z probe position, optical power, amplifier gain, and angle between the actual vibration direction and X axis. 

Thus, a single calibration constant valid for every nanowire and measurement condition cannot be obtained 

from the measurement of |𝜕𝑃 𝜕𝑋⁄ |XM
. Alternatively, since we know the effective mass of our nanowires from 

SEM characterization and our transduction method is able to resolve thermal fluctuations for the whole set of 

nanowires studied, the thermomechanical calibration method provides a more practical approach to determine 

the nanowire vibration amplitude in length units.37 Figure S3 provides the calibrated spectrum of nanowire 

#18 measured at an input power of 144 W (same nanowire considered in Figure S2). The fitting to a thermally 

driven linear oscillator response provides a transduction sensitivity of 0.50 W/m and a noise floor of 4.62 

pm/√Hz, which represents an estimation of the minimum detectable displacement for this concrete example.  

 



 SI-22 

 

Figure S3. Thermomechanical calibration of vibration signal. Calibrated thermomechanical noise 

spectrum of NW #18, measured with the DAQ board at an equivalent resolution bandwidth of 10 Hz, fitted to 

a thermally driven linear oscillator response (equation equivalent to (S14) for the case 𝛼𝑁𝐿 = 0) with an added 

white background noise (in the plot, the background has been subtracted from the fitting). 

 

 

3.3. Linear range 

 

  As described in the previous section, the transduction sensitivity depends critically on the optical 

power gradient 𝜕𝑃/𝜕𝑋 along the X direction, so that the variation of |𝜕𝑃 𝜕𝑋⁄ |XM
  as a function of the 

projection of the vibration amplitude of the nanowire along this direction determines the linear range of the 

transduction. An estimation of the transduction linear range for the example treated in section 3.2 can be 

obtained from the collected power profile shown in Figure S2b. Since it is related to the intensity profile of the 

laser spot, an approximated analytical expression of the collected power profile can be obtained from a 

Gaussian fitting of the (𝑋, 𝑃) measured points: 

 

𝑃(𝑋) = 𝐴𝑒
− 

𝑋2

2𝐵2 + 𝐶                                                                    (S39) 

 

where 𝐴, 𝐵 and 𝐶 are positive fitting parameters, and the Gaussian curve has been centered at 𝑋 = 0 (as well 

as the measured points). The derivative of this curve can be written as: 

 

𝑃′(𝑋) = −
𝐴𝑋

𝐵2
𝑒

− 
𝑋2

2𝐵2                                                                  (S40) 
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Figure S4. Transduction Dynamic Range. (a) Collected power profile from Figure S2b (dots) fitted to a 

Gaussian curve (black line) whose derivative (red solid line) reveals the optimum transduction positions ±𝑋𝑀, 

with 𝑋𝑀 = 0.924𝜇𝑚 and |𝑃′(±𝑋𝑀)| = 0.92 𝜇𝑊/𝜇𝑚. The green area indicates the extension of the linear 

transduction range, according to the 1 dB compression criterion followed here. (b) Average transduction 

sensitivity as a function of the peak vibration amplitude, calculated according to (S42), from which a value 

𝐷𝑅(transduction) = 103 𝑑𝐵  is obtained for a resolution bandwidth Δ𝑓 = 1.098 𝐻𝑧 . The yellow area 

indicates the extension of the intrinsic mechanical dynamic range of the nanowire. 

 

 

whose absolute value shows two symmetric maxima at points 𝑋 = ±𝑋𝑀 , with 𝑋𝑀 = 𝐵. These symmetric 

maxima correspond to the optimum X positions regarding transduction sensitivity discussed in section 3.2 

(local maxima in Figure S2d). The collected power profile, the Gaussian fitting and its derivative are shown 

in Figure S4a. The fitting provides an optimum transduction position 𝑋𝑀 = 0.924 𝜇𝑚 with a power gradient 

of |𝑃′(±𝑋𝑀)| = 0.92 𝜇𝑊/𝜇𝑚 . This value of the power gradient can be taken as an upper limit for an 

estimation of the transduction sensitivity, given that 1) it refers to the projection of the nanowire vibration 

along the X direction, which is lower than the actual vibration amplitude and 2) it corresponds to a point along 

the nanowire in the Z direction where 𝑃′(𝑋) is maximum, which is not necessarily at the tip, where the 

vibration amplitude is maximum.  

 

  Now we want to determine how the transduction sensitivity degrades as the amplitude of vibration 

increases. As a first order approximation, we characterize this degradation by computing the average 

sensitivity |𝑃’(𝑋)̅̅ ̅̅ ̅̅ ̅| along an |𝑋| interval ranging from 𝑋𝑀 − 𝛿𝑋 to 𝑋𝑀 + 𝛿𝑋, where 𝛿𝑋 is the peak amplitude 

of vibration: 

 

|𝑃’(𝑋)̅̅ ̅̅ ̅̅ ̅| = |
∫ 𝑃′(𝑋)𝑑𝑋

𝑋𝑀+𝛿𝑋

𝑋𝑀−𝛿𝑋

∫ 𝑑𝑋
𝑋𝑀+𝛿𝑋

𝑋𝑀−𝛿𝑋

| =
1

2𝛿𝑋
|[𝑃(𝑋)]

𝑋𝑀−𝛿𝑋
𝑋𝑀+𝛿𝑋

|                                     (S41) 
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Thus, after evaluating 𝑃(𝑋) at the integration boundaries, we obtain the average transduction sensitivity at the 

optimum transduction points ±𝑋𝑀 as a function of vibration amplitude 𝛿𝑋: 

 

|𝑃’(𝑋)̅̅ ̅̅ ̅̅ ̅| =
𝐴

2𝛿𝑋
𝑒

− 
(𝑋𝑀−𝛿𝑋)2

2𝑋𝑀
2

[1 − 𝑒
− 

2𝛿𝑋
𝑋𝑀 ]                                                 (S42) 

  

Now, in consistency with the definition used for the dynamic range of the nanowires, we define the upper limit 

for the transduction linear range as the 1 dB compression point for the transduction sensitivity. Therefore, the 

transduction 1 dB compression amplitude 𝛿𝑋1𝑑𝐵 is defined as the peak amplitude for which |𝑃’(𝑋)̅̅ ̅̅ ̅̅ ̅| decays 1 

dB with respect to the maximum value |𝑃’(±𝑋𝑀)|: 

 

𝐴
2𝛿𝑋1𝑑𝐵

𝑒
− 

(𝑋𝑀−𝛿𝑋1𝑑𝐵)2

2𝑋𝑀
2

[1 − 𝑒
− 

2𝛿𝑋1𝑑𝐵
𝑋𝑀 ]

𝐴
𝐵

𝑒−1/2
= 101/20                                    (S43) 

  

  By solving this equation numerically (see Figure S4b), we obtain a value 𝛿𝑋1𝑑𝐵 = 541 nm for the 

onset of transduction nonlinearity. It must be noted that this value corresponds actually to the projection of the 

vibration amplitude along the X direction and to a laser incidence point not at the nanowire tip, so that it 

represents a lower limit estimation of the actual vibration amplitude at the onset of transduction nonlinearity. 

From the analysis described in the main text for determining the dynamic range of the nanowires, we can 

obtain a value for the amplitude at the onset of mechanical nonlinearity 𝑎1𝑑𝐵 for this nanowire. For a proper 

comparison with the value obtained for the onset of transduction nonlinearity, we convert the measurement of 

𝑎1𝑑𝐵 into length units by using |𝑃′(±𝑋𝑀)| = 0.92 𝜇𝑊/𝜇𝑚 for the transduction sensitivity, which results in 

𝑎1𝑑𝐵 = 213 nm. Thus, the amplitude at onset of mechanical nonlinearity is a factor 0.39 (-8.1 dB) lower than 

the amplitude at the onset of transduction nonlinearity, which validates our determination of the mechanical 1 

dB compression amplitude. 

 

  Regarding the lower limit of the transduction linear range, the fact that the thermomechanical 

amplitude at the natural frequency is above the transduction detection limit is evidenced by Figure S3. Again, 

by assuming a transduction sensitivity given by|𝑃′(±𝑋𝑀)| = 0.92 𝜇𝑊/𝜇𝑚, we estimate a detection limit of 

3.56 pm/√Hz (PSD peak amplitude), which for our measurement bandwidth (Δ𝑓 = 1.098 Hz) corresponds 

to an amplitude of 𝛿𝑋𝐵𝐺 = 3.73 pm . Applying the same conversion factor, the thermomechanical peak 

amplitude at the natural frequency is 𝑎𝑇𝐻 = 13.9 pm, which is a factor 3.7 (11.4 dB) larger than the amplitude 

detection limit.  
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  Finally, we can define the transduction dynamic range as the ratio of the transduction 1 dB 

compression amplitude to the detection limit, expressed in dB: 

 

𝐷𝑅(transduction) = 20 log10 (
𝛿𝑋1𝑑𝐵

𝛿𝑋𝐵𝐺
)                                                    (S44) 

 

from which for the case of nanowire #18 considered above we obtain a transduction DR of 103 dB, 

significantly larger than the mechanical DR of 84 dB measured for this nanowire. This observation and the 

fact that the mechanical DR limits are within the transduction DR boundaries make the detection scheme used 

in this work suitable for studying and exploiting the intrinsic mechanical DR of nanowires comparable to those 

characterized here.  

 


