Copper-Catalyzed Cross-Nucleophile Coupling of β-Allenyl Silanes with Tertiary C-H Bonds: A Radical Approach to Branched 1,3-Dienes

Qi-Chao Shan, Lu-Min Hu, Wei Qin, and Xu-Hong Hu*

Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University,

Nanjing 211816, China

ias_xhhu@njtech.edu.cn (X.-H. Hu)

Table of Contents

1	General methods	S2
2	Optimization of the reaction conditions	S3
3	Preparation of the starting materials	S3
	3.1 Preparation of β-allenyl silanes 1a–1q	S3
	3.2 Preparation of tertiary hydrocarbons 2b–2q	S9
4	The general procedure 5 (GP5) for the synthesis of 3	S13
5	Scale-up synthesis of product 3aa	S13
6	Derivatization reactions of product 3aa	S14
	6.1 Synthesis of compound 4	S14
	6.2 Synthesis of compound 5	S14
	6.3 Synthesis of compound 6	S15
	6.4 Synthesis of compound 7	S15
	6.5 Synthesis of compound 8	S16
7	Mechanistic exploration experiments	S16
	7.1 Radical trapping experiments	S16
	7.2 By-product tracking experiment	S17
8	NMR data of the products	S18
9	References	S26
10	NMR spectra of the starting materials	S27
11	NMR spectra of all the products	S51

1. General methods

Experiments involving moisture and/or air sensitive components were performed in oven-dried glassware by using Schlenk line techniques with a four-port dual-bank manifold under a nitrogen atmosphere. Commercial solvents and reagents were purchased from Energy-Chemical, Aladdin Bio-Chem Technology, and J&K Scientific, and were used without further purification.

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate, followed by heating on a hot plate. Flash chromatography was performed using Nuotai silica gel (200 – 300 mesh) with distilled solvents. Columns were typically packed as slurry and equilibrated with petroleum ether prior to use.

Proton nuclear magnetic resonance (1 H NMR) and carbon nuclear magnetic resonance (13 C NMR) spectroscopy were performed on a Bruker Advance 400 MHz and JEOL 400 MHz spectrometers. Chemical shifts for 1 H NMR spectra are reported as in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (J=7.264, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); ddd (doublet of doublets of doublets of doublets of doublets); dt (doublet of triplets); m (multiplet), etc. The number of protons (n) for a given resonance is indicated by nH. Coupling constants are reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (13 C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ = 0.0) and relative to the signal of chloroform-d (δ = 77.00, triplet). To clarify the complete signal assignments, "× number" indicates the multiple carbons due to the superposition of chemical shifts.

High resolution mass spectral analysis (HRMS) was performed on Water Q-TOF Premier mass spectrometer (Thermo Electron Corporation). Gas chromatography-mass spectrometer (GC-MS) analysis was conducted on a Thermo Scientific DSQ II single quadrupole GC/MS instrument with Thermo Fisher Scientific GC column TG-5MS ($30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ }\mu\text{m}$).

2. Optimization of the reaction conditions

Table S1. Effect of Oxidants on the Reaction^a

^aReaction conditions: **1a** (0.15 mmol), **2a** (0.225 mmol), CuBr₂ (20 mol%) and oxidant (0.3 mmol) in DMSO (1.5 mL) at 70 °C for 12 h. ^bYield of isolated product. n.d. = not detected; TBHP = *tert*-butyl hydroperoxide; TBPB = *tert*-butyl peroxybenzoate; BPO = benzoyl peroxide; LPO = lauroyl peroxide.

Table S2. Effect of Solvents on the Reaction^a

^aReaction conditions: **1a** (0.21 mmol), **2a** (0.15 mmol), CuBr₂ (40 mol%) and DTBP (0.45 mmol) in solvent (1.5 mL) at 60 °C for 12 h. ^bYield of isolated product. n.d. = not detected. 1,2-DCE = 1,2-dichloroethane.

3. Preparation of the starting materials

3.1 Preparation of β-allenyl silanes 1a-1q

3.1.1 Compounds 1a-1m were prepared according to the general procedure 1 (GP1)[1]

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

- (1) To a solution of aryl iodide (5 mmol, 1.0 equiv) and propargyl alcohol (840.5 mg, 15 mmol, 3.0 equiv) in triethylamine (25 mL, 0.2 M) was added Pd(PPh₃)₂Cl₂ (35.1 mg, 0.05 mmol, 1 mol%) and CuI (47.6 mg, 0.25 mmol, 5 mol%) under N₂ atmosphere. The resulting mixture was stirred at ambient temperature for 12 h. After completion of the reaction as monitored by TLC, the reaction mixture was diluted with EtOAc (20 mL) and filtered through a short pad of Celite®. The filtrate was concentrated in vacuo and the crude residue were purified by flash column chromatography (petroleum ether/EtOAc) on silica gel to afford the propargylic alcohol **S1**.
- (2) To a solution of the individual propargylic alcohol **S1** (1.0 equiv) and triethylamine (2.0 equiv) in CH₂Cl₂ (0.2 M) was added methanesulfonyl chloride (1.5 equiv) dropwise at 0 °C under N₂ atmosphere. The reaction

mixture was allowed to warm to room temperature. After full conversion, saturated aqueous NaHCO₃ (10 mL) was added to quench the reaction and the aqueous layer was extracted with CH₂Cl₂ (15 mL x 3). The combined organic extracts were washed with H₂O (20 mL) and brine (10 mL), dried over Na₂SO₄ and concentrated in vacuo. The crude products were purified by flash column chromatography (petroleum ether/EtOAc) to afford **S2**.

(3) To an ice-cooled suspension of CuCN (3.0 equiv) and LiCl (6.0 equiv) in anhydrous THF (0.1 M) was added a solution of Me₃SiCH₂MgCl (1.0 M in Et₂O, 2.5 equiv). After being stirred for 25 min, the mixture was cooled to -78 °C and a solution of **S2** (1.0 equiv) in THF (5 mL) was added dropwise. After 2 h, the reaction was quenched with saturated aqueous NH₄Cl (5 mL). The reaction mixture was extracted with Et₂O (20 mL x 3). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄ and concentrated in vacuo. The crude products were purified by flash column chromatography (petroleum ether/EtOAc) to afford β-allenyl silanes **1a-1m**.

3.1.2 Compounds 10-1q were prepared according to the general procedure 2 (GP2)[1]

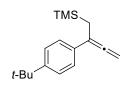
- (1) To a 100 mL round bottom flask equipped with a stir bar was added phenylacetylene (1.02 g, 10 mmol, 1.0 equiv) and THF (20 mL) and then cooled to -78 °C. *n*-BuLi (2.5 M in hexane, 4.0 mL, 1.0 equiv) was added dropwise and the slightly yellow solution was stirred for 30 min. The corresponding aldehyde (10.0 mmol, 1.0 equiv) was added and the mixture was allowed to warm to room temperature and further stirred for 1 h. After completion, the reaction was quenched with aqueous HCl (1.0 M) and then extracted with CH₂Cl₂ (20 mL x 3). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by flash column chromatography (petroleum ether/EtOAc) to provide the corresponding propargylic alcohol **S3**.
- (2) To a solution of the individual propargylic alcohol **S3** (1.0 equiv) and triethylamine (2.0 equiv) in CH₂Cl₂ (0.2 M) was added methanesulfonyl chloride (1.5 equiv) dropwise at 0 °C under N₂ atmosphere. The reaction mixture was allowed to warm to room temperature and stirred for 2 h. After completion, saturated aqueous NaHCO₃ (15 mL) was added and the aqueous layer was extracted with CH₂Cl₂ (15 mL x 3). The combined organic extracts were washed with H₂O (20 mL) and brine (10 mL), dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography (petroleum ether/EtOAc) to afford **S4**.
 - (3) To an ice-cooled suspension of CuCN (3.0 equiv) and LiCl (6.0 equiv) in anhydrous THF (0.1 M) was added

a solution of Me₃SiCH₂MgCl (1.0 M in Et₂O, 2.5 equiv). After being stirred for 25 min, the mixture was cooled to -78 °C and a solution of the **S4** (1.0 equiv) in THF (5 mL) was added. After 2 h, the reaction was quenched with saturated aqueous NH₄Cl (5 mL). The reaction mixture was extracted with Et₂O (20 mL x 3). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄ and concentrated in vacuo. The crude products were purified by flash column chromatography (petroleum ether/EtOAc) to afford β-allenyl silanes **1o-1q**.

Trimethyl(2-phenylbuta-2,3-dien-1-yl)silane (1a)

TMS

The title compound was prepared according to **GP1** and isolated as a colorless oil (647.8 mg, 3.20 mmol, 64%). 1 H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.37 (m, 2H), 7.30 – 7.26 (m, 3H), 4.94 (t, J = 2.5 Hz, 2H), 1.57 (t, J = 2.5 Hz. 2H), 0.12 (s, 9H). The spectral data matched those reported previously. $^{[1]}$


Trimethyl(2-(p-tolyl)buta-2,3-dien-1-yl)silane (1b)

TMS

The title compound was prepared according to **GP1** and isolated as a colorless oil (616.7 mg, 2.85 mmol, 57%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 5.01 (t, J = 2.6 Hz, 2H), 2.34 (s, 3H), 1.79 (t, J = 2.6 Hz, 2H), 0.02 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 209.0, 136.0, 134.3, 128.9 × 2, 126.0 × 2, 102.1, 77.1,

21.0, 18.5, -1.0 \times 3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₂₁Si 217.1407; Found: 217.1413.

(2-(4-(tert-Butyl)phenyl)buta-2,3-dien-1-yl)trimethylsilane (1c)

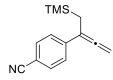
The title compound was prepared according to **GP1** and isolated as a colorless oil (775.4 mg, 3.00 mmol, 60%). 1 H NMR (400 MHz, Chloroform-*a*) δ 7.25 (s, 4H), 4.92 (t, J = 2.7 Hz, 2H), 1.70 (t, J = 2.6 Hz, 2H), 1.23 (s, 9H), -0.06 (s, 9H). 13 C NMR (101 MHz, Chloroform-*a*) δ 209.2, 149.3, 134.4, 125.8 × 2, 125.1 × 2, 102.0, 77.2, 34.4, 31.3 × 3, 18.4, -1.0 × 3.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{27}Si$ 259.1877; Found: 259.1882.

(2-(3-Methoxyphenyl)buta-2,3-dien-1-yl)trimethylsilane (1d)

TMS

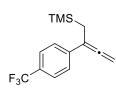
The title compound was prepared according to **GP1** and isolated as a colorless oil (611.2 mg, 2.63 mmol, 53%). 1 H NMR (400 MHz, Chloroform-d) δ 7.26 – 7.21 (m, 1H), 7.02 (d, J = 7.8 Hz, 1H), 6.98 (t, J = 2.1 Hz, 1H), 6.75 (ddd, J = 8.2, 2.6, 0.8 Hz, 1H), 5.04 (t, J = 2.6


Hz, 2H), 3.82 (s, 3H), 1.80 (t, J = 2.6 Hz, 2H), 0.04 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 209.2, 159.4, 138.9, 129.0, 118.7, 112.0, 111.7, 102.2, 77.3, 55.1, 18.5, -1.1 × 3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₂₁OSi 233.1356; Found: 233.1362.

(2-(4-Chlorophenyl)buta-2,3-dien-1-yl)trimethylsilane (1e)

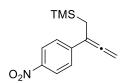
The title compound was prepared according to **GP1** and isolated as a colorless oil (698.6 mg, 2.95 mmol, 59%). 1 H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.30 (m, 2H), 7.27 (q, J = 1.1 Hz, 1H), 7.26 – 7.25 (m, 1H), 5.03 (t, J = 2.6 Hz, 2H), 1.76 (t, J = 2.6 Hz, 2H), 0.01 (s, 9H). 13 C NMR (101 MHz, Chloroform-*d*) δ 209.2, 136.0, 132.1, 128.4 × 2, 127.5 ×2, 101.7,

77.9, 18.5, -0.9 × 3. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{13}H_{18}CISi$ 237.0861; Found: 237.0866.


4-(1-(Trimethylsilyl)buta-2,3-dien-2-yl)benzonitrile (1f)

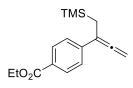
The title compound was prepared according to **GP1** and isolated as a colorless oil (534.3 mg, 2.35 mmol, 47%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H), 5.12 (t, J = 2.6 Hz, 2H), 1.79 (t, J = 2.7 Hz, 2H), 0.02 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.1, 142.7, 132.0 × 2, 126.7 × 2, 119.3, 109.7, 102.0, 78.5, 18.2, -

 1.0×3 . HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₈NSi 228.1203; Found: 228.1208.


Trimethyl(2-(4-(trifluoromethyl)phenyl)buta-2,3-dien-1-yl)silane (1g)

The title compound was prepared according to **GP1** and isolated as a colorless oil (567.8 mg, 2.10 mmol, 42%). 1 H NMR (400 MHz, Chloroform-d) δ 7.57 – 7.45 (m, 4H), 5.07 (t, J = 2.4 Hz, 2H), 1.79 (t, J = 2.6 Hz, 2H), 0.00 (s, 9H). 13 C NMR (101 MHz, Chloroform-d) δ 209.7, 141.3, 128.3 (q, J = 32.3 Hz), 126.3 × 2, 125.0 × 2 (q, J = 3.9 Hz), 124.3 (q, J =

271.8 Hz), 101.8, 77.9, 18.3, -1.1 × 3. ¹⁹F NMR (377 MHz, Chloroform-d) δ -62.18. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₈F₃Si 271.1124; Found: 271.1130.


Trimethyl(2-(4-nitrophenyl)buta-2,3-dien-1-yl)silane (1h)

The title compound was prepared according to **GP1** and isolated as a colorless oil (494.7 mg, 2.00 mmol, 40%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (d, J = 9.0 Hz, 2H), 7.54 (d, J = 8.9 Hz, 2H), 5.14 (t, J = 2.6 Hz, 2H), 1.82 (t, J = 2.6 Hz, 2H), 0.03 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.3, 146.0, 144.7, 126.6 × 2, 123.4 × 2, 101.8, 78.4, 18.2, -

 1.1×3 . HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₈NO₂Si 248.1101; Found: 248.1107.

Ethyl 4-(1-(trimethylsilyl)buta-2,3-dien-2-yl)benzoate (1i)

The title compound was prepared according to **GP1** and isolated as a colorless oil (823.3 mg, 3.00 mmol, 60%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 5.08 (t, J = 2.6 Hz, 2H), 4.36 (q, J = 7.2 Hz, 2H), 1.81 (t, J = 2.6 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H), 0.01 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 209.8,

166.5, 142.2, 129.4×2 , 128.2, 125.9×2 , 102.1, 77.7, 60.8, 18.2, 14.3, -1.1×3 . HRMS (ESI) m/z: [M + H]⁺ Calcd for $C_{16}H_{23}O_2Si$ 275.1462; Found: 275.1467.

(2-(3-Bromophenyl)buta-2,3-dien-1-yl)trimethylsilane (1j)

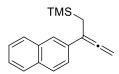
The title compound was prepared according to GP1 and isolated as a colorless oil (787.6 mg, 2.80 mmol, 56%). ¹H NMR (400 MHz, Chloroform-d) δ 7.55 (t, J = 2.0 Hz, 1H), 7.31 (ddt, J = 8.9, 6.0, 1.3 Hz, 2H, 7.16 (t, J = 7.9 Hz, 1H), 5.07 (t, J = 2.5 Hz, 2H), 1.76 (t, J = 2.6 Hz, 2Hz)

2H), 0.02 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 209.2, 139.8, 129.6, 129.3, 129.1, 124.6, 122.4, 101.5, 77.9, 18.3, -1.1 × 3. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{13}H_{18}^{79}BrSi$ 281.0356; Found: 281.0361.

(2-(2-Fluorophenyl)buta-2,3-dien-1-yl)trimethylsilane (1k)

The title compound was prepared according to GP1 and isolated as a colorless oil (517.8 mg, 2.35 mmol, 47%). ¹H NMR (400 MHz, Chloroform-d) δ 7.31 – 7.29 (m, 1H), 7.19 (dddd, J = 8.1, 7.0, 5.0, 1.8 Hz, 1H), 7.08 (td, J = 7.5, 1.3 Hz, 1H), 7.01 (ddd, J = 11.1, 8.1, 1.3 Hz, 1H), 4.88 (t, J = 2.6 Hz, 2H), 1.84 (td, J = 2.6, 0.9 Hz, 2H), -0.04 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 209.4 (d, J = 1.4 Hz), 160.0 (d, J = 248.4 Hz), 129.7 (d, J = 3.9 Hz), 128.3 (d, J = 8.3 Hz), 126.5 (d, J = 12.5 Hz),

123.8 (d, J = 3.8 Hz), 115.9 (d, J = 22.7 Hz), 97.8, 75.1 (d, J = 1.5 Hz), 21.0 (d, J = 2.9 Hz), -1.3 × 3. ¹⁹F NMR (377) MHz, Chloroform-*d*) δ -112.96. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₈FSi 221.1156; Found: 221.1161.


Trimethyl(2-(o-tolyl)buta-2,3-dien-1-yl)silane (11)

The title compound was prepared according to GP1 and isolated as a colorless oil (586.4 mg, 2.71 mmol, 54%). ¹H NMR (400 MHz, Chloroform-*a*) δ 7.28 – 7.23 (m, 1H), 7.21 – 7.13 (m, 3H), 4.78 (t, J = 2.7 Hz, 2H), 2.40 (s, 3H), 1.78 (t, J = 2.7 Hz, 2H), -0.00 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 207.5, 138.6, 135.5, 130.5, 127.9, 126.7, 125.7, 101.1, 74.6, 23.0, 20.5, -1.2 ×

3. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{14}H_{21}Si$ 217.1407; Found: 217.1413.

Trimethyl(2-(naphthalen-2-yl)buta-2,3-dien-1-yl)silane (1m)

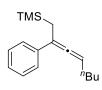
The title compound was prepared according to GP1 and isolated as a colorless oil (517.5 mg, 2.05 mmol, 41%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (ddd, J = 6.9, 4.6, 1.8 Hz, 2H), 7.75 - 7.70 (m, 2H), 7.62 (dd, J = 8.6, 1.9 Hz, 1H), 7.48 - 7.37 (m, 2H), 5.10 (t, J = 2.6Hz, 2H), 1.92 (t, J = 2.6 Hz, 2H), 0.04 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 209.9, 134.5, 133.4, 132.2,

127.9, 127.5, 127.5, 126.0, 125.5, 125.3, 123.9, 102.6, 77.7, 18.4, -1.0 × 3. HRMS (ESI) m/z: [M + H]+ Calcd for C₁₇H₂₁Si 253.1407; Found: 253.1413.

Trimethyl(2-(thiophen-3-yl)buta-2,3-dien-1-yl)silane (1n)

The title compound was prepared according to GP1 and isolated as a colorless oil (427.2 mg, 2.05 mmol, 41%). ¹H NMR (400 MHz, Chloroform-d) δ 7.24 (dd, J = 5.0, 2.9 Hz, 1H), 7.12 (dd, J = 5.0) = 5.0, 1.3 Hz, 1H), 7.01 (dt, J = 3.0, 1.2 Hz, 1H), 5.00 (td, J = 2.5, 0.9 Hz, 2H), 1.74 (t, J = 2.6 Hz,

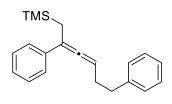
2H), 0.03 (s, 9H). ¹³ C NMR (101 MHz, Chloroform-*d*) δ 209.5, 139.3, 126.9, 125.1, 119.2, 98.6, 77.1, 19.3, -1.1 × 3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₇SSi 209.0815; Found: 209.0820.


Trimethyl(2-phenylhepta-2,3-dien-1-yl)silane (1o)

TMS

The title compound was prepared according to **GP2** and isolated as a colorless oil (974.5 mg, 3.99 mmol, 40%). ¹H NMR (400 MHz, Chloroform-d) δ 7.40 (dd, J = 8.5, 1.4 Hz, 2H), 7.29 (dd, J = 8.5, 7.0 Hz, 2H), 7.20 – 7.14 (m, 1H), 5.41 (tt, J = 6.9, 2.4 Hz, 1H), 2.09 (dt, J = 7.7, 6.9 Hz, 2H), 1.80 (dd, J = 4.6, 2.4 Hz, 2H), 1.51 (h, J = 7.4 Hz, 2H), 0.97 (t, J = 7.3 Hz, 3H),

0.01 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 204.2, 138.5, 128.0, 126.1 × 2, 126.1 × 2, 102.4, 93.1, 31.6, 22.7, 19.0, 13.9, -1.1 × 3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₂₅Si 245.1720; Found: 245.1725.


Trimethyl(2-phenylocta-2,3-dien-1-yl)silane (1p)

The title compound was prepared according to **GP2** and isolated as a colorless oil (784.7 mg, 3.04 mmol, 30%). 1 H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.37 (m, 2H), 7.32 – 7.28 (m, 2H), 7.20 – 7.13 (m, 1H), 5.46 – 5.37 (m, 1H), 2.11 (q, J = 7.1 Hz, 2H), 1.85 – 1.74 (m, 2H), 1.49 – 1.36 (m, 4H), 0.91 (t, J = 7.2 Hz, 3H), 0.01 (s, 9H). 13 C NMR (101 MHz, Chloroform-*d*)

 δ 204.1, 138.5, 128.0 × 2, 126.1, 126.1 × 2, 102.5, 93.3, 31.6, 29.2, 22.4, 19.0, 14.0, -1.1 × 3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₇Si 259.1877; Found: 259.1882.

(2,5-Diphenylpenta-2,3-dien-1-yl)trimethylsilane (1q)

The title compound was prepared according to **GP2** and isolated as a colorless oil (1.26 g, 4.11 mmol, 41%). 1 H NMR (400 MHz, Chloroform-d) δ 7.38 – 7.31 (m, 6H), 7.31 – 7.21 (m, 4H), 5.51 (tt, J = 6.7, 2.4 Hz, 1H), 2.86 (td, J = 7.5, 2.1 Hz, 2H), 2.56 – 2.44 (m, 2H), 1.82 (d, J = 2.5 Hz, 2H), 0.07 (s, 9H). 13 C NMR (101 MHz,

Chloroform-*d*) δ 204.3, 141.7, 138.1, 128.6 × 2, 128.3 × 2, 128.0 × 2, 126.2, 126.1 × 2, 125.8, 103.0, 92.5, 35.7, 31.5, 18.9, -1.1 × 3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₇Si 307.1877; Found: 307.1882.

3.2 Preparation of tertiary hydrocarbons 2b-2q

Compounds **2b–2d**, **2f**, **2k**, and **2l** were commercial available. Compounds **2e**, **2g–2j** were prepared according to the general procedure 3.^[2] Compound **2m**^[3], **2n**^[4], and **2o**^[5] were prepared according to the known procedures. Compounds **2p** and **2q** were prepared according to the general procedure 4.^[6]

3.2.1 The general procedure 3 (GP3) for the synthesis of 2e, 2g-2j[2]

EtO₂C
$$CO_2$$
Et + R-Br NaH EtO₂C CO_2 Et

To a stirred solution of diethyl malonate (1.60 g, 10 mmol, 1.0 equiv) in THF (10 mL) was added NaH (60% in mineral oil, 0.42 mg, 10.5 mmol, 1.05 equiv) in several portions at room temperature. The mixture was stirred at this temperature for 10 min. R-Br (1.0 equiv, 10 mmol) was slowly added to the mixture, then the solution was stirred for 12 h at room temperature. After completion of the reaction (as judged by TLC), the reaction mixture was quenched with saturated aqueous NH₄Cl (10 mL) and extracted with EtOAc (30 mL × 3). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc) to give α-substituted malonates 2e, 2g–2j.

Diethyl 2-(2-oxopropyl)malonate (2e)

The title compound was prepared according to **GP3** and isolated as a colorless oil (1.54 g, 7.12 mmol, 71%). ¹H NMR (400 MHz, Chloroform-d) δ 4.20 (qd, J = 7.1, 2.4 Hz, 4H), 3.85 (t, J = 7.2 Hz, 1H), 3.06 (d, J = 7.1 Hz, 2H), 2.21 (s, 3H), 1.27 (t, J = 7.2 Hz, 6H). The spectral data matched those reported previously. ^[7]

Diethyl 2-(cyclopropylmethyl)malonate (2g)

The title compound was prepared according to **GP3** and isolated as a colorless oil (1.61 g, 7.51 mmol, 75%). 1 H NMR (400 MHz, Chloroform-*d*) δ 4.20 (q, J = 7.1 Hz, 4H), 3.44 (t, J = 7.5 Hz, 1H), 1.80 (t, J = 7.3 Hz, 2H), 1.27 (t, J = 7.1 Hz, 6H), 0.79 – 0.68 (m, 1H), 0.49 – 0.41 (m, 2H), 0.12 – 0.06 (m, 2H). The spectral data matched those reported previously. $^{[2]}$

Diethyl 2-(cyclopentylmethyl)malonate (2h)

EtO₂C CO₂Et The title compound was prepared according to **GP3** and isolated as a colorless oil (1.52 g, 6.27 mmol, 63%). 1 H NMR (400 MHz, Chloroform-*d*) δ 4.19 (q, J = 7.2 Hz, 4H), 3.44 (t, J = 7.7 Hz, 1H), 1.79 (t, J = 7.3 Hz, 2H), 1.75 – 1.65 (m, 4H), 1.26 (t, J = 7.1 Hz, 6H), 1.22 – 1.10 (m, 3H), 0.91 (dd, J = 12.9, 9.7 Hz, 2H). The spectral data matched those reported previously. $^{[2]}$

Triethyl butane-1,1,4-tricarboxylate (2i)

EtO₂C CO₂Et The title compound was prepared according to **GP3** and isolated as a colorless oil (1.46 g, 5.32 mmol, 53%). 1 H NMR (400 MHz, Chloroform-*d*) δ 4.25 – 4.15 (m, 4H), 4.11 (q, J = 7.1 Hz, 2H), 3.33 (t, J = 7.5 Hz, 1H), 2.33 (t, J = 7.5 Hz, 2H), 1.97 – 1.87 (m, 2H), 1.69 – 1.60 (m, 2H), 1.31 – 1.20 (m, 9H). The spectral data matched those reported previously. $^{[8]}$

Diethyl 2-(2-((tert-butyldimethylsilyl)oxy)ethyl)malonate (2j)

The title compound was prepared according to **GP3** and isolated as a colorless oil (2.32 g, 7.28 mmol, 73%). 1 H NMR (400 MHz, Chloroform-*d*) δ 4.23 – 4.14 (m, 4H), 3.65 (t, J = 5.7 Hz, OTBS 2H), 3.58 (t, J = 7.2 Hz, 1H), 2.10 (q, J = 6.2 Hz, 2H), 1.26 (t, J = 7.1 Hz, 6H), 0.87 (s, 9H), 0.02 (s, 6H). The spectral data matched those reported previously. $^{[9]}$

3.2.2 Synthesis of 2m[3]

Ona + Me
$$CO_2Et$$
 Br $DMF, rt, 4 h$ Me CO_2Et DMF

To a solution of sodium benzenesulfinate (0.82 g, 5 mmol, 1.0 equiv) in DMF (30 mL) was added ethyl 2-bromopropionate (1.09 g, 6 mmol, 1.2 equiv), tetrabutylammonium iodide (184.7 mg, 0.5 mmol, 0.1 equiv), potassium iodide (1.00 g, 6 mmol, 1.2 equiv). The reaction mixture was stirred at room temperature for 4 h and then quenched with saturated aqueous NaHCO₃ (10 mL). The mixture was extracted with CH₂Cl₂ (20 mL × 3). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄. Removal of the solvent in vacuo gave **2m** (831.1 mg, 3.43 mmol, 69%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (dd, J = 8.4, 1.3 Hz, 2H), 7.74 – 7.66 (m,1H), 7.58 (t, J = 7.7 Hz, 2H), 4.11 (q, J = 7.1 Hz, 2H), 4.05 (q, J = 7.2 Hz, 1H), 1.57 (d, J = 7.1 Hz, 3H), 1.16 (t, J = 7.2 Hz, 3H). The spectral data matched those reported previously.^[3]

3.2.3 Synthesis of 2n[4]

To a stirred solution of tosylacetonitrile (390.5 mg, 2 mmol, 1.0 equiv) and DBU (334.9 mg, 2 mmol, 1.1 equiv) in benezene (10 mL) was added CH₃I (567.8 mg, 4 mmol, 2.0 equiv) and the solution was stirred at room temperature for 1 h. The precipitated DBU-HI salt was removed by filtration and the residue was concentrated in vacuo to give the crude product. The crude product was purified by flash column chromatography (petroleum ether/EtOAc) to give a colorless liquid **2n** (226.0 mg, 1.08 mmol, 54%). ¹H NMR (400 MHz, Chloroform-d) δ 7.88 (d, J = 8.1 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 3.97 (q, J = 7.2 Hz, 1H), 2.48 (s, 3H), 1.69 (d, J = 7.2 Hz, 3H).

3.2.3 Synthesis of 20^[5]

NC CN
$$CH_3I$$
, DIPEA CH_3CI_2 , 0 °C to rt, 6 h CH_3

To a solution of malononitrile (330.3 mg, 5 mmol, 1.0 equiv) and N, N-diisopropylethylamine (DIPEA, 646.2 mg, 5 mmol, 1.0 equiv) in CH₂Cl₂ (10 mL) was added CH₃I (709.7 mg, 5 mmol, 1.0 equiv) at 0 °C, then the solution was allowed to warm to room temperature and stirred for 4 h. The reaction mixture was concentrated in vacuo to give crude product, which was purified by flash column chromatography (petroleum ether/EtOAc) to afford a colorless liquid **2o** (152.2 mg, 1.9 mmol, 38%) ¹H NMR (400 MHz, Chloroform-d) δ 3.79 (q, J = 7.3 Hz, 1H), 1.79 (d, J = 7.3 Hz, 3H). The spectral data matched those reported previously. ^[5]

3.2.4 The general procedure 4 (GP4) for the synthesis of 2p and 2q[6]

To a stirred suspension of NaH (60% in mineral oil, 0.40 g, 10 mmol, 1.0 equiv) in THF (30 mL) at 0 °C was added a solution of malononitrile (0.65 g, 10 mmol, 1.0 equiv) in THF (10 mL). After 30 min, DMSO (5 mL) and a solution of alkyl bromide (10 mmol 1.0 equiv) in THF (10 mL) were added, and the mixture was heated to 60 °C and stirred for 4 h. The reaction mixture was quenched with saturated aqueous NH₄Cl (10 mL), and extracted with Et₂O (30 mL × 3). The organic layer was washed with H₂O (10 mL) and brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc) to give **2p** and **2q**.

2-(2-(1,3-Dioxolan-2-yl)ethyl)malononitrile (2p)

The title compound was prepared according to **GP4** and isolated as a colorless oil (701.3 mg, 4.22 mmol, 42%). 1 H NMR (400 MHz, Chloroform-d) δ 4.93 (t, J = 3.8 Hz, 1H), 4.05 (t, J = 7.5 Hz, 1H), 4.02 – 3.93 (m, 2H), 3.92 – 3.81 (m, 2H), 2.19 (q, J = 7.1 Hz, 2H), 1.99 (td, J = 6.9, 3.8 Hz, 2H). 13 C NMR (101 MHz, Chloroform-d) δ 112.8 × 2, 102.7, 65.2 × 2, 29.4, 25.4, 22.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₈H₁₁N₂O₂ 167.0815; Found: 167.0820.

2-(5-Fluoropentyl)malononitrile (2q)

The title compound was prepared according to **GP4** and isolated as a colorless oil (591.5 mg, 3.84 mmol, 38%). ¹H NMR (400 MHz, Chloroform-d) δ 4.46 (dt, J = 47.2, 5.8 Hz, 2H), 3.72 (t, J = 6.8 Hz, 1H), 2.13 – 1.88 (m, 2H), 1.83 – 1.61 (m, 4H), 1.55 – 1.48 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 112.4 × 2, 83.5 (d, J = 165.2 Hz), 30.7, 29.8 (d, J = 19.8 Hz), 26.2, 24.3 (d, J = 4.8 Hz), 22.5. ¹⁹F NMR (377 MHz, Chloroform-d) δ -218.96. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₈H₁₂FN₂ 155.0979; Found: 155.0982.

4. The general procedure 5 (GP5) for the synthesis of 3

An oven-dried 10 mL Schlenk tube equipped with a stir bar was charged with CuBr₂ (13.4 mg, 0.06 mmol, 40 mol%) and the tube was evacuated and backfilled with N₂ for 3 times. **1** (0.21 mmol, 1.4 equiv), **2** (0.15 mmol, 1.0 equiv), DTBP (65.8 mg, 0.45 mmol, 3.0 equiv) and DMSO (1.5 mL) were successively added via syringe under N₂ atmosphere. The sealed tube was placed into a preheated oil bath at 60 °C with stirring for 12 h. After cooling to room temperature, the mixture was diluted with water (10 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were rinsed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The resultant residue was purified by flash column chromatography (petroleum ether/EtOAc) on silica gel to afford **3**.

5. Scale-up synthesis of product 3aa

An oven-dried 50 mL Schlenk tube equipped with a stir bar was charged with $CuBr_2$ (89.3 mg, 0.4 mmol, 40 mol%) and the tube was evacuated and backfilled with N_2 for 3 times. **1a** (283.3 mg, 1.4 mmol, 1.4 equiv), **2a**

(174.2 mg, 1 mmol, 1.0 equiv), DTBP (438.7 mg, 3 mmol, 3.0 equiv) and DMSO (10 mL) were successively added via syringe under N₂ atmosphere. The sealed tube was placed into a preheated oil bath at 60 °C with stirring for 12 h. After cooling to room temperature, the mixture was diluted with water (40 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (30 mL × 3). The combined organic layers were rinsed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered and the filtrate was concentrated in vacuo. The resultant residue was purified by flash column chromatography (petroleum ether/EtOAc) on silica gel to afford the coupling product 3aa (214.7 mg, 0.71 mmol, 71%).

6. Derivatization reactions of product 3aa

6.1 Synthesis of compound 4

To a solution of **3aa** (30.2 mg, 0.10 mmol, 1.0 equiv) in toluene (3.0 mL) was added *N*-phenylmaleimide (34.6 mg, 0.20 mmol, 2.0 equiv), then the mixture was stirred at 170 °C for 24 h. Toluene was removed in vacuo, and the reaction mixture was purified by flash column chromatography (petroleum ether/EtOAc) on silica gel to afford the compound **4** as a colorless oil (38.5 mg, 0.081 mmol, 81%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.43 (m, 2H), 7.42 – 7.36 (m, 1H), 7.35 – 7.29 (m, 2H), 7.27 (t, J = 1.6 Hz, 1H), 7.24 – 7.15 (m, 2H), 7.15 – 7.04 (m, 2H), 3.89 (q, J = 7.1 Hz, 2H), 3.68 – 3.47 (m, 2H), 3.37 – 3.28 (m, 2H), 2.90 (dd, J = 15.0, 3.0 Hz, 1H), 2.73 – 2.66 (m, 2H), 2.61 – 2.49 (m, 1H), 1.43 (s, 3H), 1.14 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.6, 178.2, 170.7, 170.5, 141.2, 137.6, 132.1, 131.4, 129.2 × 2, 128.7, 128.3 × 2, 127.9 × 2, 127.2, 126.6 × 2, 62.61, 61.4, 59.9, 40.2, 40.1, 34.1, 29.3, 22.4, 13.8, 13.6. HRMS (ESI) m/z: [M + H]+ Calcd for C₂₈H₃₀NO₆ 476.2068; Found: 476.2073.

6.2 Synthesis of compound 5

To a solution of **3aa** (30.2 mg, 0.10 mmol, 1.0 equiv) in toluene (3 mL), maleic anhydride (19.6 mg, 0.20 mmol, 2.0 equiv) was added, then the mixture stirred at 170 °C for 36 h. Toluene was removed in vacuo, and the reaction mixture was purified by flash column chromatography (petroleum ether/EtOAc) on silica gel to afford the compound

5 as a colorless oil (29.0 mg, 0.072 mmol, 72%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (d, J = 6.7 Hz, 2H), 7.24 - 7.18 (m, 1H), 7.09 - 6.99 (m, 2H), 3.94 - 3.86 (m, 1H), 3.84 - 3.75 (m, 3H), 3.50 - 3.40 (m, 2H), 2.79 (dd, J = 15.0, 2.4 Hz, 1H), 2.70 - 2.60 (m, 2H), 2.60 - 2.51 (m, 1H), 1.38 (s, 3H), 1.16 (dt, J = 13.9, 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.7, 173.4, 170.6, 170.4, 140.9, 137.8, 131.7, 128.1 × 2, 128.0 × 2, 127.5, 61.7, 61.7, 60.0, 40.8, 40.4, 33.4, 29.4, 22.1, 13.7, 13.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₅O₇ 401.1595; Found: 401.1600.

6.3 Synthesis of compound 6

To a solution of **3aa** (30.2 mg, 0.10 mmol, 1.0 equiv) in toluene (3 mL) was added tetracyanoethylene (25.6 mg, 0.20 mmol, 2.0 equiv), then the mixture stirred at 160 °C for 12 h. Toluene was removed in vacuo, and the reaction mixture was purified by flash column chromatography (petroleum ether/EtOAc) on silica gel to afford the compound **6** as a colorless oil (30.5 mg, 0.071 mmol, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.32 (m, 3H), 7.09 (dd, J = 6.6, 2.9 Hz, 2H), 4.21 – 3.89 (m, 4H), 3.31 (s, 2H), 3.27 (s, 2H), 1.28 – 1.22 (m, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.6 × 2, 137.0, 131.9, 129.1, 128.9 × 2, 128.1 × 2, 126.2, 110.4 × 2, 110.2 × 2, 62.4 × 2, 59.5, 40.5, 38.0, 37.7, 35.1, 22.1, 13.8 × 2. HRMS (ESI) m/z: [M + H]+ Calcd for C₂₄H₂₃N₄O₄ 431.1714; Found: 431.1719.

6.4 Synthesis of compound 7

$$\begin{array}{c|c} \text{Me} & \text{CO}_2\text{Et} \\ \text{CO}_2\text{Et} & \text{Et}_2\text{O}, 0 \text{ °C to rt, 2 h} \\ \\ \text{3aa} & \textbf{7, 91}\% \\ \end{array}$$

Lithium aluminium hydride (11.4 mg, 0.30 mmol, 3.0 equiv) was taken up in Et₂O (1 mL) and then cooled to 0 °C. To the 0 °C stirred grey mixture was added dropwise **3aa** (30.2 mg, 0.1 mmol, 1.0 equiv) in a solution of Et₂O (1 mL). The resulting mixture was warmed to room temperature and stirred for 2 h. The mixture was cooled back to 0 °C and carefully quenched with H₂O (5 mL) to give a white milky mixture, which was then extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine (5 mL) and purified by flash column chromatography (CH₂Cl₂/CH₃OH) on silica gel to afford the compound **7** as a colorless oil (19.9 mg, 0.091 mmol, 91%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.38 (m, 2H), 7.34 – 7.27 (m, 3H), 5.38 (d, J = 1.5 Hz, 1H), 5.36 (d, J = 1.8 Hz, 1H), 5.27 (d, J = 1.6 Hz, 1H), 5.09 (d, J = 1.8 Hz, 1H), 3.59 (d, J = 11.2 Hz, 2H), 3.48 (d, J = 11.0

Hz, 2H), 2.04 (br s, 2H), 0.93 (s, 3H). 13 C NMR (101 MHz, Chloroform-d) δ 151.5, 150.7, 140.4, 128.5 × 2, 128.0, 126.3 × 2, 117.3, 115.8, 68.3 × 2, 45.8, 19.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₉O₂ 219.1380; Found: 219.1385.

6.5 Synthesis of compound 8

To a solution of **3aa** (30.2 mg, 0.10 mmol, 1.0 equiv) in acetonitrile (2 mL) was added boron trifluoride etherate (14.6 mg, 0.10 mmol, 1.0 equiv, 46.5% in Et₂O). Then, the mixture stirred at 100 °C for 10 h under N₂ atmosphere. Acetonitrile was removed in vacuo and the reaction mixture was purified by flash column chromatography (petroleum ether/EtOAc) on silica gel to afford the compound **8** as a colorless oil (22.4 mg, 0.074 mmol, 74%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, J = 7.3 Hz, 1H), 7.33 – 7.28 (m, 2H), 7.20 – 7.16 (m, 1H), 4.30 – 4.12 (m, 4H), 3.43 (d, J = 2.3 Hz, 2H), 2.05 (t, J = 2.2 Hz, 3H), 1.77 (s, 3H), 1.25 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.5 × 2, 146.9, 141.7, 137.0, 136.9, 126.2, 124.8, 123.1, 118.8, 61.7 × 2, 56.0, 39.7, 22.5, 14.0 × 2, 12.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₃O₄ 303.1591; Found: 303.1596.

7. Mechanistic exploration experiments

7.1 Radical trapping experiments

An oven-dried 10 mL Schlenk tube equipped with a stir bar was charged with CuBr₂ (13.4 mg, 0.06 mmol, 40 mol%), 2,2,6,6-tetramethylpiperidine *N*-oxide (TEMPO, 70.3 mg, 0.45 mmol, 3.0 equiv) and the tube was evacuated and backfilled with N₂ for 3 times. **1a** (42.5 mg, 0.21 mmol, 1.4 equiv), **2a** (26.1 mg, 0.15 mmol, 1.0 equiv), DTBP (65.8 mg, 0.45 mmol, 3.0 equiv) and DMSO (1.5 mL) were successively added via syringe under N₂ atmosphere. The mixture was stirred at 60 °C for 12 h under N₂ atmosphere. After cooling to room temperature, the mixture was diluted with water (10 mL). The layer was separated and the aqueous layer was extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were rinsed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Traces of the coupling product **3aa** was observed by TLC analysis. The resultant residue was purified by flash column chromatography (petroleum ether/EtOAc) on silica gel to afford **9** (42.5 mg, 0.129 mmol, 86%). ¹H NMR

(400 MHz, Chloroform-*d*) δ 4.63 – 4.01 (m, 4H), 1.73 (s, 3H), 1.65 – 1.38 (m, 6H), 1.27 (t, J = 7.2 Hz, 6H), 1.22 (s, 6H), 1.02 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.2 × 2, 85.3, 61.5 × 2, 60.1 × 2, 40.6 × 2, 32.9 × 2, 20.5 × 2, 17.8, 16.8, 13.9 × 2. HRMS (ESI) m/z: [M + H]+ Calcd for C₁₇H₃₂NO₅ 330.2275; Found: 330.2281.

An oven-dried 10 mL Schlenk tube equipped with a stir bar was charged with CuBr₂ (13.4 mg, 0.06 mmol, 40 mol%), 2,6-di-*tert*-butyl-4-methylphenol (BHT, 33.1 mg, 0.15 mmol, 1.0 equiv) and the tube was evacuated and backfilled with N₂ for 3 times. **1a** (42.5 mg, 0.21 mmol, 1.4 equiv), **2a** (26.1 mg, 0.15 mmol, 1.0 equiv), DTBP (65.8 mg, 0.45 mmol, 3.0 equiv) and DMSO (1.5 mL) were successively added via syringe under N₂ atmosphere. The mixture was stirred at 60 °C for 12 h under N₂ atmosphere. After cooling to room temperature, the mixture was diluted with water (10 mL). The layer was separated and the aqueous layer was extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were rinsed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Traces of the desired product **3aa** was observed from ¹H NMR spectrometry of the crude mixture.

7.2 By-product tracking experiment

Following the standard conditions for the preparation of **3aa**, by-product **10** in the reaction crude mixture was detected by GC-MS analysis (CH₂Cl₂ as solvent) in comparison with commercial available *tert*-butoxytrimethylsilane.

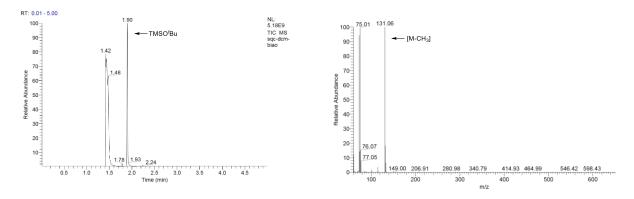


Figure S1. GC-MS spectrum for commercial available tert-butoxytrimethylsilane

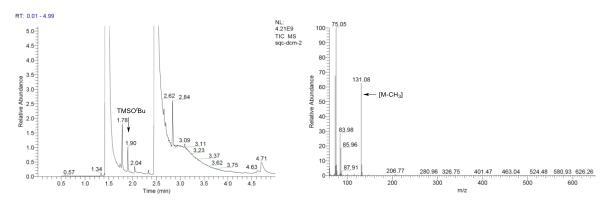


Figure S2. GC-MS spectrum of the reaction mixture

8. NMR data of the products

Diethyl 2-methyl-2-(3-phenylbuta-1,3-dien-2-yl)malonate (3aa)

The title compound was prepared according to **GP5** and isolated as a yellow oil (31.8 mg, 0.105 mmol, 70%). 1 H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.35 (m, 2H), 7.32 – 7.25 (m, 3H), 5.44 (s, 1H), 5.37 (d, J = 1.3 Hz, 1H), 5.32 (s, 1H), 5.22 (d, J = 1.4 Hz, 1H), 4.09 (dddd, J = 17.9, 10.7, 7.1, 3.6 Hz, 4H), 1.52 (s, 3H), 1.21 (t, J = 7.1 Hz, 6H). 13 C NMR (101 MHz, Chloroform-*d*) δ 171.1 × 2, 148.8, 146.4, 140.6, 128.0 × 2, 127.6, 127.2 × 2, 120.5, 116.0, 61.5 × 2, 59.4, 22.0, 13.9 × 2. HRMS (ESI) m/z: [M + H]+ Calcd for C₁₈H₂₃O₄ 303.1591; Found: 303.1588.

Diethyl 2-methyl-2-(3-(p-tolyl)buta-1,3-dien-2-yl)malonate (3ba)

The title compound was prepared according to **GP5** and isolated as a yellow oil (33.5 mg, 0.106 mmol, 71%). 1 H NMR (400 MHz, Chloroform-d) δ 7.29 (d, J = 8.2 Hz, 2H), 7.10 (d, J = 7.9 Hz, 2H), 5.44 (d, J = 0.6 Hz, 1H), 5.36 (d, J = 1.5 Hz, 1H), 5.33 (s, 1H), 5.18 (d, J = 1.5 Hz, 1H), 4.20 – 4.03 (m, 4H), 2.33 (s, 3H), 1.53 (s, 3H), 1.23 (t, J = 7.1 Hz, 6H). 13 C NMR (101 MHz, Chloroform-d) δ 171.2 × 2, 148.6, 146.4, 137.7, 137.4, 128.7 × 2, 127.1 × 2, 120.3, 115.2, 61.5 × 2, 59.3, 21.9, 21.1, 13.9 × 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₅O₄ 317.1747; Found: 317.1753.

Diethyl 2-(3-(4-(tert-butyl)phenyl)buta-1,3-dien-2-yl)-2-methylmalonate (3ca)

The title compound was prepared according to **GP5** and isolated as a yellow oil CO_2Et (35.1 mg, 0.098 mmol, 65%). 1H NMR (400 MHz, Chloroform-d) δ 7.35 - 7.29 (m, 4H), 5.44 (d, 4H), 5.44 (d, 4H), 5.38 (d, 4H), 5.38 (d, 4H), 5.39 (d, 4H), 5.49 (qq, 4H), 1.55 (s, 3H), 1.31 (s, 9H), 1.21 (t, 4H), 1.30 NMR (101 MHz, Chloroform- 4H) δ 171.2 \times 2, 150.6, 148.5, 146.4, 137.6, 126.8 \times 2, 124.9 \times 2, 120.3, 115.3, 61.5 \times 2, 59.4, 34.5, 31.3 \times 3, 22.0, 13.9 \times 2. HRMS (ESI) m/z: [M + H]+ Calcd for $C_{22}H_{31}O_4$ 359.2217; Found: 359.2222.

Diethyl 2-(3-(3-methoxyphenyl)buta-1,3-dien-2-yl)-2-methylmalonate (3da)

MeO The title compound was prepared according to **GP5** and isolated as a yellow oil
$$CO_2Et$$
 (31.3 mg, 0.094 mmol, 63%). ¹H NMR (400 MHz, Chloroform- d) δ 7.21 (t, J = 7.9 Hz, 1H), 6.99 (dt, J = 7.7, 1.3 Hz, 1H), 6.95 (dd, J = 2.6, 1.7 Hz, 1H), 6.81 (ddd, J

= 8.1, 2.6, 0.9 Hz, 1H), 5.45 (s, 1H), 5.40 (d, J = 1.4 Hz, 1H), 5.35 (s, 1H), 5.23 (d, J = 1.5 Hz, 1H), 4.19 – 4.03 (m, 4H), 3.80 (s, 3H), 1.53 (s, 3H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.1 × 2, 159.3, 148.6, 146.2, 142.0, 129.0, 120.6, 119.7, 116.1, 113.1, 112.9, 61.5 × 2, 59.3, 55.2, 21.9, 13.8 × 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₅O₅ 333.1697; Found: 333.1702.

Diethyl 2-(3-(4-chlorophenyl)buta-1,3-dien-2-yl)-2-methylmalonate (3ea)

The title compound was prepared according to **GP5** and isolated as a yellow oil (32.3 mg, 0.096 mmol, 64%). 1 H NMR (400 MHz, Chloroform-d) δ 7.35 – 7.31 (m, 2H), 7.27 – 7.25 (m, 2H), 5.46 (s, 1H), 5.37 (d, J = 1.3 Hz, 1H), 5.32 (s, 1H), 5.24 (d, J = 1.2 Hz, 1H), 4.20 – 3.99 (m, 4H), 1.53 (s, 3H), 1.22 (t, J = 7.1 Hz, 6H). 13 C NMR (101 MHz, Chloroform-d) δ 171.0 × 2, 147.7, 146.0, 139.1, 133.5, 128.6 × 2, 128.2 × 2, 120.8, 116.5, 61.6 × 2, 59.3, 22.0, 13.9 × 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₂CIO₄ 337.1201; Found: 337.1207.

Diethyl 2-(3-(4-cyanophenyl)buta-1,3-dien-2-yl)-2-methylmalonate (3fa)

The title compound was prepared according to **GP5** and isolated as a yellow oil CO₂Et (27.8 mg, 0.085 mmol, 57%). H NMR (400 MHz, Chloroform-d) δ 7.63 – 7.56 (m, NC 2H), 7.54 – 7.48 (m, 2H), 5.52 (s, 1H), 5.49 (d, J = 0.9 Hz, 1H), 5.39 (d, J = 1.0 Hz, 1H), 5.32 (s, 1H), 4.11 (qq, J = 10.7, 7.1 Hz, 4H), 1.54 (s, 3H), 1.22 (t, J = 7.1 Hz, 6H). NMR (101 MHz, Chloroform-d) δ 170.8 × 2, 147.4, 145.5, 145.3, 132.0 × 2, 127.8 × 2, 121.5, 118.8, 118.7, 111.2, 61.7 × 2, 59.3, 22.2, 13.9 × 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₂NO₄ 328.1543; Found: 328.1549.

Diethyl 2-methyl-2-(3-(4-(trifluoromethyl)phenyl)buta-1,3-dien-2-yl)malonate (3ga)

The title compound was prepared according to **GP5** and isolated as a yellow oil CO_2Et (31.2 mg, 0.084 mmol, 56%). ¹H NMR (400 MHz, Chloroform-d) δ 7.60 – 7.46 (m, δ 4H), 5.50 (s, 1H), 5.45 (d, δ = 1.1 Hz, 1H), 5.34 (d, δ = 1.1 Hz, 1H), 5.33 (s, 1H), 4.10 (qq, δ = 10.8, 7.1 Hz, 4H), 1.55 (s, 3H), 1.22 (t, δ = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform- δ) δ 171.1 × 2, 147.8, 146.0, 144.4 (q, δ = 1.3 Hz), 129.7 (q, δ = 32.4 Hz), 127.7 × 2, 125.2 × 2 (q, δ = 4.1 Hz), 124.3 (q, δ = 272.1 Hz), 121.3, 117.9, 61.7 × 2, 59.4, 22.3, 14.0 × 2. ¹⁹F NMR (376 MHz, Chloroform- δ) δ -62.38. HRMS (ESI) m/z: [M + H]⁺ Calcd for δ 371.1465; Found: 371.1470.

Diethyl 2-methyl-2-(3-(4-nitrophenyl)buta-1,3-dien-2-yl)malonate (3ha)

The title compound was prepared according to **GP5** and isolated as a yellow oil (19.9 mg, 0.057 mmol, 38%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 – 8.14 (m, 2H), 7.65 – 7.54 (m, 2H), 5.55 – 5.52 (m, 2H), 5.43 (d, J = 0.9 Hz, 1H), 5.34 (s,

1H), 4.20 - 4.00 (m, 4H), 1.56 (s, 3H), 1.22 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.8 × 2, 147.3, 147.1, 145.5, 128.0 × 2, 123.4 × 2, 121.7, 119.2, 61.7 × 2, 59.3, 22.2, 13.9 × 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₂NO₆ 348.1442; Found: 348.1447.

Diethyl 2-(3-(4-(ethoxycarbonyl)phenyl)buta-1,3-dien-2-yl)-2-methylmalonate (3ia)

The title compound was prepared according to **GP5** and isolated as a yellow oil (35.9 mg, 0.096 mmol, 64%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 5.51 – 5.46 (m, 2H), 5.34 (s, 2H), 4.37 (q, J = 7.1 Hz, 2H), 4.17 – 4.04 (m, 4H), 1.53 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H), 1.22

(t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.0 × 2, 166.4, 148.1, 145.9, 145.1, 129.5, 129.4 × 2, 127.1 × 2, 121.0, 117.7, 61.6 × 2, 60.9, 59.3, 22.0, 14.3, 13.9 × 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₇O₆ 375.1802; Found: 375.1808.

Diethyl 2-(3-(3-bromophenyl)buta-1,3-dien-2-yl)-2-methylmalonate (3ja)

The title compound was prepared according to **GP5** and isolated as a yellow oil (31.9 mg, 0.084 mmol, 56%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (t, J = 1.9 Hz, 1H), 7.39 (ddd, J = 7.9, 2.0, 1.1 Hz, 1H), 7.32 (dt, J = 7.8, 1.3 Hz, 1H), 7.17 (t, J = 7.9 Hz,

1H), 5.47 (s, 1H), 5.39 (d, J = 1.2 Hz, 1H), 5.33 (s, 1H), 5.27 (d, J = 1.2 Hz, 1H), 4.23 – 3.96 (m, 4H), 1.54 (s, 3H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.0 × 2, 147.6, 145.9, 142.8, 130.6, 130.2, 129.6, 125.9, 122.2, 121.0, 117.2, 61.6 × 2, 59.2, 22.1, 13.9 × 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₂⁷⁹BrO₄ 381.0696; Found: 381.0702.

Diethyl 2-(3-(2-fluorophenyl)buta-1,3-dien-2-yl)-2-methylmalonate (3ka)

$$\begin{tabular}{|c|c|c|c|c|}\hline & Me & CO_2Et \\ \hline & CO_2Et \\ \hline \end{tabular}$$

The title compound was prepared according to modified **GP5** as the reaction was carried out at 80 °C and isolated as a yellow oil (29.4 mg, 0.092 mmol, 61%). 1 H NMR (400 MHz, Chloroform-*d*) δ 7.26 (d, J = 1.8 Hz, 1H), 7.24 – 7.19 (m, 1H), 7.07 (dd, J = 7.5, 1.2 Hz,

1H), 7.05 - 6.98 (m, 1H), 5.40 (d, J = 1.0 Hz, 1H), 5.34 (d, J = 1.3 Hz, 1H), 5.31 (s, 1H), 5.23 (s, 1H), 4.21 - 4.05 (m, 4H), 1.62 (s, 3H), 1.22 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.1 × 2, 159.8 (d, J = 248.8 Hz), 146.3, 142.4, 131.0 (d, J = 3.5 Hz), 129.1 (d, J = 8.2 Hz), 128.8 (d, J = 13.6 Hz), 123.6 (d, J = 3.8 Hz), 119.8, 119.6 (d, J = 3.4 Hz), 115.7 (d, J = 22.2 Hz), 61.6×2 , 59.1, 21.9, 13.8×2 . ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 114.05. HRMS (ESI) m/z: [M + H]⁺ Calcd for $C_{18}H_{22}FO_4$ 321.1497; Found: 321.1502.

Diethyl 2-methyl-2-(3-(o-tolyl)buta-1,3-dien-2-yl)malonate (3la)

The title compound was prepared according to modified **GP5** as the reaction was carried out at 80 °C and isolated as a yellow oil (16.1 mg, 0.051 mmol, 34%). ¹H NMR (400 MHz, Chloroform-d) δ 7.23 – 7.00 (m, 4H), 5.30 (s, 1H), 5.18 (d, J = 1.1 Hz, 1H), 5.06 (s, 1H),

4.93 (s, 1H), 4.22 – 4.13 (m, 4H), 2.24 (s, 3H), 1.75 (s, 3H), 1.26 (t, J= 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.3 × 2, 147.1, 146.0, 141.6, 136.1, 129.8, 129.7, 127.2, 125.3, 119.5, 117.1, 61.6 × 2, 59.1, 22.3, 19.7, 13.9 × 2. HRMS (ESI) m/z: [M + H]+ Calcd for C₁₉H₂₅O₄ 317.1747; Found: 317.1753.

Diethyl 2-methyl-2-(3-(naphthalen-2-yl)buta-1,3-dien-2-yl)malonate (3ma)

The title compound was prepared according to **GP5** and isolated as a yellow oil (36.9 mg, 0.105 mmol, 70%). 1 H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.76 (m, 4H), 7.56 (dd, J = 8.6, 1.8 Hz, 1H), 7.49 – 7.43 (m, 2H), 5.53 (s, 2H), 5.42 (s, 1H),

5.34 (d, J= 1.2 Hz, 1H), 4.19 – 4.00 (m, 4H), 1.57 (s, 3H), 1.21 (t, J= 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.2 × 2, 148.7, 146.3, 137.9, 133.1, 132.8, 128.2, 127.7, 127.5, 126.4, 126.1, 126.0, 125.3, 120.8, 116.5, 61.5 × 2, 59.4, 22.0, 13.8 × 2. HRMS (ESI) m/z: [M + H]+ Calcd for C₂₂H₂₅O₄ 353.1747; Found: 353.1753.

Diethyl 2-methyl-2-(3-(thiophen-3-yl)buta-1,3-dien-2-yl)malonate (3na)

The title compound was prepared according to **GP5** and isolated as a yellow oil (23.2 mg, 0.075 mmol, 50%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 (dd, J = 5.0, 3.1 Hz, 1H), 7.20 (dd, J = 3.0, 1.3 Hz, 1H), 7.18 (dd, J = 4.9, 1.4 Hz, 1H), 5.45 – 5.43 (m, 2H), 5.37 (d,

J = 0.6 Hz, 1H), 5.14 (d, J = 1.4 Hz, 1H), 4.19 – 4.08 (m, 4H), 1.56 (s, 3H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.3 × 2, 146.3, 143.2, 142.4, 126.2, 125.7, 123.0, 120.0, 114.4, 61.7 × 2, 59.5, 21.8, 14.0 × 2. HRMS (ESI) m/z: [M + H]+ Calcd for C₁₆H₂₁O₄S 309.1155; Found: 309.1161.

Diethyl 2-methyl-2-(2-phenylhepta-1,3-dien-3-yl)malonate (3oa)

The title compound was prepared according to **GP5** and isolated as a yellow oil (34.8 mg, 0.100 mmol, 67%, E/Z = 9.1:1). ¹H NMR (400 MHz, Chloroform-d) δ 7.46 – 7.42 (m, 2H), 7.34 – 7.27 (m, 3H), 5.83 (t, J = 7.3 Hz, 1H), 5.69 (d, J = 1.7 Hz, 1H), 5.12 (d, J = 1.6 Hz, 1H), 4.13 – 4.05 (m, 4H), 2.05 – 1.99 (m, 2H), 1.43 (s, 3H), 1.38 (dd, J = 14.6,

7.3 Hz, 2H), 1.21 (d, J = 7.1 Hz, 6H), 0.87 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.8 × 2, 145.1, 139.6, 136.4, 134.6, 128.3 × 2, 127.7, 126.3 × 2, 116.3, 61.4 × 2, 59.9, 31.9, 22.7, 21.7, 14.0, 13.9 × 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₉O₄ 345.2060; Found: 345.2066.

Diethyl 2-methyl-2-(2-phenylocta-1,3-dien-3-yl)malonate (3pa)

The title compound was prepared according to GP5 and isolated as a yellow oil (34.1 mg, 0.095 mmol, 63%, E/Z = 10:1). ¹H NMR (400 MHz, Chloroform-*a*) δ 7.49 – 7.41 (m, 2H), 7.33 - 7.28 (m, 3H), 5.82 (t, J = 7.3 Hz, 1H), 5.69 (d, J = 1.6 Hz, 1H), 5.12 (d, J =1.5 Hz, 1H), 4.13 – 4.06 (m, 4H), 2.07 – 2.02 (m, 2H), 1.43 (s, 3H), 1.38 – 1.28 (m, 4H),

1.22 (d, J = 7.1 Hz, 6H), 0.84 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.7 × 2, 144.9, 139.5, 136.0, 134.6, 128.2 × 2, 127.6, 126.2 × 2, 116.2, 61.3 × 2, 59.7, 31.6, 29.5, 22.3, 21.5, 14.0, 13.9 × 2. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{22}H_{31}O_4$ 359.2217; Found: 359.2223.

Diethyl 2-(2,5-diphenylpenta-1,3-dien-3-yl)-2-methylmalonate (3qa)

The title compound was prepared according to GP5 and isolated as a yellow oil (33.7 mg, 0.083 mmol, 55%, E/Z = 10:1). ¹H NMR (400 MHz, Chloroform-d) δ 7.38 – 7.34 (m, 2H), 7.29 (dd, J = 2.6, 1.8 Hz, 1H), 7.24 – 7.22 (m, 3H), 7.19 – 7.13 (m, 2H), 7.11 – 7.08 (m, 2H), 5.88 (t, J = 7.3 Hz, 1H), 5.65 (d, J = 1.6 Hz, 1H), 5.02 (d, J = 1.5 Hz, 1H), 4.07(ddd, J = 10.7, 7.1, 3.5 Hz, 4H), 2.67 (dd, J = 8.6, 6.8 Hz, 2H), 2.39 - 2.34 (m, 2H), 1.42(s, 3H), 1.20 (d, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.5 × 2, 144.7,

 $141.6, 139.3, 137.0, 133.2, 128.5 \times 2, 128.3, 128.2 \times 2, 128.2 \times 2, 127.6, 126.1 \times 2, 125.8, 61.3 \times 2, 59.6, 35.7,$ 31.9, 21.5, 13.9 \times 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₃₁O₄ 407.2217; Found: 407.2222.

Dimethyl 2-methyl-2-(3-phenylbuta-1,3-dien-2-yl)malonate (3ab)

$$\begin{array}{c|c} & \operatorname{Me} \operatorname{CO}_2\operatorname{Me} \\ & \operatorname{CO}_2\operatorname{Me} \end{array}$$

The title compound was prepared according to GP5 and isolated as a yellow oil (26.4 mg, 0.096 mmol, 64%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.33 (m, 2H), 7.32 – 7.25 (m, 3H), 5.41 (s, 1H), 5.37 (d, J = 1.2 Hz, 1H), 5.34 (s, 1H), 5.20 (d, J = 1.2 Hz, 1H), 3.62 (s, 6H), 1.54 (s, 3H). 13 C NMR (101 MHz, Chloroform-*d*) δ 171.5 × 2, 148.7, 146.2, 140.4, 128.1 × 2, 127.7, 127.2

× 2, 120.5, 116.3, 59.4 × 2, 52.6, 21.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₉O₄ 275.1278; Found: 275.1283.

Diethyl 2-ethyl-2-(3-phenylbuta-1,3-dien-2-yl)malonate (3ac)

The title compound was prepared according to modified GP5 as the reaction was carried out at 70 °C and isolated as a yellow oil (31.3 mg, 0.099 mmol, 66%). ^{1}H NMR (400 MHz, Chloroform-d) δ 7.40 – 7.34 (m, 2H), 7.31 – 7.25 (m, 3H), 5.60 (d, J = 0.9 Hz, 1H), 5.35 (d,

J = 0.9 Hz, 1H), 5.30 (d, J = 1.3 Hz, 1H), 5.19 (d, J = 1.4 Hz, 1H), 4.10 – 3.94 (m, 4H), 2.02 (q, J = 7.4 Hz, 2H), 1.18 (t, J = 7.1 Hz, 6H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform- σ) δ 170.1 × 2, 149.3, 145.0, $140.7, 127.9 \times 2, 127.6, 127.3 \times 2, 121.3, 115.9, 63.3, 61.1 \times 2, 28.4, 13.9 \times 2, 9.6$. HRMS (ESI) m/z: [M + H]⁺ Calcd for $C_{19}H_{25}O_4$ 317.1747; Found: 317.1753.

Diethyl 2-benzyl-2-(3-phenylbuta-1,3-dien-2-yl)malonate (3ad)

$$\begin{array}{c|c} & \text{Ph} \\ & \text{CO}_2\text{Et} \\ & \text{CO}_2\text{Et} \end{array}$$

The title compound was prepared according to **GP5** and isolated as a yellow oil (35.1 mg, 0.093 mmol, 62%). 1 H NMR (400 MHz, Chloroform-d) δ 7.45 – 7.39 (m, 2H), 7.34 – 7.27 (m, 3H), 7.23 – 7.17 (m, 5H), 5.41 (s, 1H), 5.38 (d, J = 1.2 Hz, 1H), 5.34 (s, 1H), 5.25 (d, J = 1.2

Hz, 1H), 4.03 - 3.84 (m, 4H), 3.40 (s, 2H), 1.10 (t, J = 7.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.6 × 2, 149.4, 144.1, 140.7, 136.6, 130.6 × 2, 127.9 × 2, 127.8 × 2, 127.6, 127.5 × 2, 126.8, 122.3, 115.9, 64.4, 61.2 × 2, 41.3, 13.7 × 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for $C_{24}H_{27}O_4$ 379.1904; Found: 379.1909.

Diethyl 2-(2-oxopropyl)-2-(3-phenylbuta-1,3-dien-2-yl)malonate (3ae)

The title compound was prepared according to **GP5** and isolated as a yellow oil (32.1 mg, CO_2Et CO_2ET C

Diethyl 2-fluoro-2-(3-phenylbuta-1,3-dien-2-yl)malonate (3af)

The title compound was prepared according to **GP5** and isolated as a yellow oil (29.4 mg, CO_2Et 0.096 mmol, 64%). ¹H NMR (400 MHz, Chloroform-d) δ 7.40 – 7.22 (m, 5H), 5.57 (d, J = 3.0 Hz, 1H), 5.48 – 5.40 (m, 2H), 5.35 (d, J = 2.0 Hz, 1H), 4.30 – 4.15 (m, 4H), 1.27 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.4 × 2 (d, J = 26.9 Hz), 146.1, 142.1 (d, J = 19.7 Hz), 140.4, 128.1 × 2, 127.9 × 2, 127.8, 123.1 (d, J = 7.2 Hz), 116.8 (d, J = 2.4 Hz), 95.1 (d, J = 199.4 Hz), 62.8 × 2, 13.8 × 2. ¹⁹F NMR (376 MHz, Chloroform-d) δ -150.84. HRMS (ESI) m/z: [M + H]⁺ Calcd for $C_{17}H_{20}FO_4$ 307.1340; Found: 307.1342.

Diethyl 2-(cyclopropylmethyl)-2-(3-phenylbuta-1,3-dien-2-yl)malonate (3ag)

The title compound was prepared according to **GP5** and isolated as a yellow oil (30.5 mg, 0.089 mmol, 59%). 1 H NMR (400 MHz, Chloroform-d) δ 7.40 – 7.34 (m, 2H), 7.30 – 7.25 (m, CO₂Et 3H), 5.69 (d, J = 0.9 Hz, 1H), 5.36 (d, J = 1.1 Hz, 1H), 5.31 (d, J = 1.4 Hz, 1H), 5.21 (d, J = 1.4 Hz, 1H), 4.13 – 3.89 (m, 4H), 1.94 (d, J = 6.6 Hz, 2H), 1.18 (t, J = 7.1 Hz, 6H), 0.90 – 0.78 (m, 1H), 0.42 – 0.36 (m, 2H), 0.04 – -0.01 (m, 2H). 13 C NMR (101 MHz, Chloroform-d) δ 170.2 × 2, 149.4, 145.3, 140.7, 127.9 × 2, 127.6, 127.3 × 2, 121.4, 115.9, 62.7, 61.1 × 2, 40.3, 13.8 × 2, 6.9, 4.6 × 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₇O₄ 343.1904; Found: 343.1909.

Diethyl 2-(cyclopentylmethyl)-2-(3-phenylbuta-1,3-dien-2-yl)malonate (3ah)

The title compound was prepared according to modified GP5 as the reaction was carried out at 80 °C and isolated

as a yellow oil (36.5 mg, 0.099 mmol, 66%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.34 (m, 2H), 7.30 – 7.22 (m, 3H), 5.73 (d, J = 0.9 Hz, 1H), 5.35 (d, J = 0.9 Hz, 1H), 5.29 (d, J = 1.4 Hz, 1H), 5.19 (d, J = 1.4 Hz, 1H), 4.08 – 3.88 (m, 4H), 1.93 (d, J = 5.5 Hz, 2H), 1.64 – 1.57 (m, 4H), 1.16 (t, J = 7.2 Hz, 6H), 1.13 – 1.02 (m, 1H), 0.94 – 0.85 (m, 2H). ¹³C NMR

(101 MHz, Chloroform-d) δ 170.4 × 2, 149.6, 145.3, 140.9, 128.0 × 2, 127.6, 127.5 × 2, 121.5, 116.1, 61.8 × 2, 61.1, 42.3, 34.4 × 2, 34.3, 26.5, 26.3, 13.9 × 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₃₁O₄ 371.2217; Found: 371.2223.

Triethyl 5-methylene-6-phenylhept-6-ene-1,4,4-tricarboxylate (3ai)

The title compound was prepared according to **GP5** and isolated as a yellow oil (40.0 mg, 0.099 mmol, 66%). 1 H NMR (400 MHz, Chloroform-d) δ 7.38 - 7.33 (m, 2H), 7.30 - 7.25 (m, 2H), 7.25 - 7.22 (m, 1H), 5.62 (s, 1H), 5.36 (d, J = 0.9 Hz, 1H), 5.30 (d, J = 1.4 Hz, 1H), 5.19 (d, J = 1.4 Hz, 1H), 4.11 - 4.03 (m, 4H), 4.02 - 3.94 (m, 2H), 2.21 (t, J = 7.5 Hz, 2H), 2.03 - 1.91 (m, 2H), 1.68 - 1.60 (m, 2H), 1.23 - 1.16 (m, 9H). 13 C NMR (101 MHz, Chloroform-d) δ 173.1, 169.9 × 2, 149.2, 144.7, 140.6, 127.9 × 2, 127.6, 127.3 × 2, 121.6, 116.1, 62.6, 61.3 × 2, 60.2, 34.4, 34.4, 20.6, 14.2, 13.8 × 2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₃₁O₆ 403.2115; Found: 403.2121.

Diethyl 2-(2-((tert-butyldimethylsilyl)oxy)ethyl)-2-(3-phenylbuta-1,3-dien-2-yl)malonate (3aj)

The title compound was prepared according to **GP5** and isolated as a yellow oil (46.7 $^{\text{CO}_2\text{Et}}$ mg, 0.105 mmol, 70%). ^{1}H NMR (400 MHz, Chloroform-*d*) δ 7.38 (dd, J = 8.1, 1.6 Hz, 2H), 7.32 – 7.26 (m, 3H), 5.63 (d, J = 0.8 Hz, 1H), 5.38 (d, J = 0.8 Hz, 1H), 5.33 (d, J = 1.3 Hz, 1H), 5.20 (d, J = 1.3 Hz, 1H), 4.09 – 3.96 (m, 4H), 3.73 – 3.65 (m, 2H), 2.34 – 2.23 (m, 2H), 1.18 (t, J = 7.1 Hz, 6H), 0.86 (s, 9H), 0.02 (s, 6H). ^{13}C NMR (101 MHz, Chloroform-*d*) δ 169.9 × 2, 149.2, 144.7, 140.6, 127.9 × 2, 127.6, 127.4 × 2, 121.6, 116.0, 61.3 × 2, 60.9, 59.9, 37.7, 25.9 × 3, 18.3, 13.8 × 2, -5.3 × 2. HRMS (ESI) m/z: [M + H]^+ Calcd for $\text{C}_{25}\text{H}_{39}\text{O}_5\text{Si}$ 447.2561; Found: 447.2566.

Ethyl 2-acetyl-2-methyl-3-methylene-4-phenylpent-4-enoate (3ak)

The title compound was prepared according to **GP5** and isolated as a yellow oil (15.5 mg, 0.057 mmol, 38%). 1 H NMR (400 MHz, Chloroform-d) δ 7.39 – 7.34 (m, 2H), 7.34 – 7.27 (m, 3H), 5.41 (d, J = 0.6 Hz, 1H), 5.36 (d, J = 1.2 Hz, 1H), 5.33 (d, J = 0.6 Hz, 1H), 5.16 (d, J = 1.2 Hz, 1H), 4.09 (qd, J = 7.1, 1.9Hz, 2H), 2.29 (s, 3H), 1.44 (s, 3H), 1.25 – 1.18 (m, 3H). 13 C NMR (101 MHz, Chloroform-d) δ 204.8, 171.4, 149.0, 146.6, 140.4, 128.2 × 2, 127.8, 127.3 × 2, 121.3, 116.0, 65.3, 61.5, 26.9, 20.6, 13.9. HRMS (ESI) m/z: [M + H]+ Calcd for $C_{17}H_{21}O_3$ 273.1485; Found: 273.1491.

Ethyl 2-cyano-2-methyl-3-methylene-4-phenylpent-4-enoate (3al)

The title compound was prepared according to modified GP5 as the reaction was carried out at 70 °C and isolated as a yellow oil (23.7 mg, 0.093 mmol, 62%). ¹H NMR (400 MHz, Chloroform-d) δ 7.37 – 7.27 (m, 5H), 5.77 (s, 1H), 5.43 (d, J = 0.9 Hz, 1H), 5.42 (s, 1H), 5.32

(d, J = 0.9 Hz, 1H), 4.05 - 3.97 (m, 1H), 3.94 - 3.86 (m, 1H), 1.72 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (101) MHz, Chloroform-d) δ 167.4, 146.8, 143.7, 139.4, 128.2 × 2, 128.1, 127.3 × 2, 120.4, 119.2, 117.6, 63.0, 48.2, 23.3, 13.7. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{18}NO_2$ 256.1332; Found: 256.1338.

Ethyl 2-methyl-3-methylene-4-phenyl-2-(phenylsulfonyl)pent-4-enoate (3am)

The title compound was prepared according to modified GP5 as the reaction was carried out at 50 °C and isolated as a yellow oil (34.1 mg, 0.092 mmol, 61%). ¹H NMR (400 MHz, Chloroform-*a*) δ 7.97 (dd, J = 8.4, 1.3 Hz, 2H), 7.69 – 7.62 (m, 1H), 7.53 (dd, J = 8.4, 7.1

Hz, 2H), 7.26 (s, 5H), 5.97 (d, J = 0.8 Hz, 1H), 5.58 (d, J = 0.7 Hz, 1H), 5.32 (d, J = 1.4 Hz, 1H), 4.93 (d, J = 1.3Hz, 1H), 4.01 - 3.68 (m, 2H), 1.80 (s, 3H), 1.06 (t, J = 7.2 Hz, 3H). 13 C NMR (101 MHz, Chloroform-d) δ 167.5, 148.6, 142.4, 139.5, 136.6, 133.8, 132.0 × 2, 128.2 × 2, 128.1 × 2, 127.9, 126.8 × 2, 125.4, 116.4, 76.5, 62.2, 20.5, 13.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃O₄S 371.1312; Found: 371.1317.

2-Methyl-3-methylene-4-phenyl-2-tosylpent-4-enenitrile (3an)

The title compound was prepared according to GP5 and isolated as a yellow oil (34.1 mg, 0.100 Ts mmol, 67%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.36 - 7.26 (m, 5H), 5.83 (s, 1H), 5.64 (s, 1H), 5.55 (s, 1H), 5.21 (s, 1H), 2.48 (s, 3H), 1.66 (s, 3H). 13 C NMR (101 MHz, Chloroform-d) δ 146.5, 146.2, 139.2, 139.1, 131.3 × 2, 130.6, 129.7 × 2, 128.6 × 2, 128.3, 126.8, 126.4 × 2, 118.8, 117.7, 65.7, 21.8, 20.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₀NO₂S 338.1209;

Found: 338.1215.

2-Methyl-2-(3-phenylbuta-1,3-dien-2-yl)malononitrile (3ao)

The title compound was prepared according to GP5 and isolated as a yellow oil (23.5 mg, 0.113 mmol, 75%). 1 H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.32 (m, 5H), 5.96 (d, J = 0.5 Hz, 1H), 5.64 (d, J = 0.6 Hz, 1H), 5.58 (s, 1H), 5.49 (s, 1H), 1.84 (s, 3H). ¹³C NMR (101 MHz,

Chloroform-d) δ 144.8, 140.8, 138.3, 128.8, 128.7 × 2, 127.1 × 2, 121.7, 119.5, 115.1 × 2, 36.3, 26.0. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{14}H_{13}N_2$ 209.1073; Found: 209.1079.

Diethyl 2-(3-(1,3-dioxolan-2-yl)propyl)-2-(3-phenylbuta-1,3-dien-2-yl)malonate (3ap)

The title compound was prepared according to GP5 and isolated as a yellow oil (26.9 mg, 0.091 mmol, 61%). 1 H NMR (400 MHz, Chloroform-*a*) δ 7.39 – 7.33 (m, 5H), 5.93 (s, 1H), 5.59 (s, 2H), 5.45 (s, 1H), 4.87 (t, J = 4.0 Hz, 1H), 3.92 - 3.75 (m, 4H), 2.17 - 2.08 (m,

2H), 1.98 - 1.93 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.0, 139.8, 138.3, 128.8, 128.6 × 2, 127.2 × 2, 122.4, 119.6, 114.1 × 2, 102.2, 65.1 × 2, 41.8, 32.2, 29.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₉N₂O₂ 295.1441; Found: 295.1447.

Diethyl 2-(5-fluoropentyl)-2-(3-phenylbuta-1,3-dien-2-yl)malonate (3aq)

The title compound was prepared according to **GP5** and isolated as a yellow oil (30.2 mg, 0.107 mmol, 71%).
1
H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.31 (m, 5H), 5.94 (s, 1H), 5.59 (s, 2H), 5.43 (d, J = 0.8 Hz, 1H), 4.40 (dt, J = 47.3, 5. 9 Hz, 2H), 2.00 –

1.88 (m, 2H), 1.72 – 1.58 (m, 4H), 1.42 – 1.31 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.1, 139.9, 138.3, 128.8 × 2, 128.6 × 2, 127.1, 122.2, 119.7, 114.3 × 2, 83.5 (d, J = 164.8 Hz), 42.3, 37.9, 29.8 (d, J = 19.9 Hz), 25.1, 24.4 (d, J = 5.0 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₀FN₂ 283.1605; Found: 283.1610.

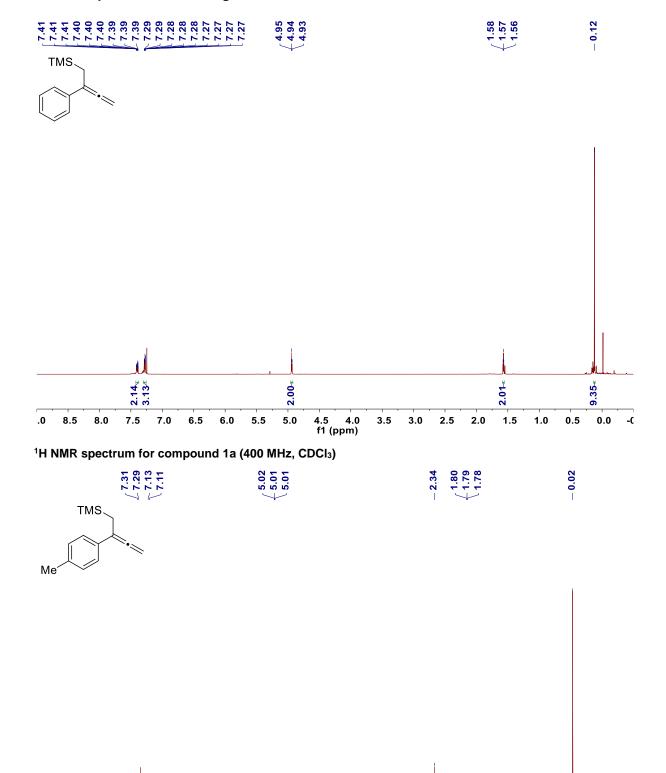
9. References

- [1] Pacheco, M. C.; Gouverneur, V. Electrophilic Fluorodesilylation of Allenylmethylsilanes: A Novel Entry to 2-Fluoro-1,3-dienes. *Org. Lett.* **2005**, *7*, 1267–1270.
- [2] Tian, M.-Q.; Wang, C.; Hu, X.-H.; Loh, T.-P. Divergent C-H Oxidative Radical Functionalization of Olefins to Install Tertiary Alkyl Motifs Enabled by Copper Catalysis. *Org. Lett.* **2019**, *21*, 1607–1611.
- [3] Wang, C.; Liu, R.-H.; Tian, M.-Q.; Hu, X.-H.; Loh, T.-P. Regioselective Copper-Catalyzed Oxidative Coupling of α-Alkylated Styrenes with Tertiary Alkyl Radicals. *Org. Lett.* **2018**, *20*, 4032–4035.
- [4] Ono, N.; Tamura, R.; Tanikaga, R.; Kaji, A. Selective Monoalkylation of Tosylacetonitrile. *Synthesis* **1977**, *10*, 690–691.
- [5] Ghorai, M. K.; Talukdar, R.; Tiwari, D. P. A Route to Highly Functionalized β-Enaminoesters via a Domino Ring-Opening Cyclization/Decarboxylative Tautomerization Sequence of Donor–Acceptor Cyclopropanes with Substituted Malononitriles. *Org. Lett.* **2014**, *16*, 2204–2207.
- [6] Hu, C.; Hong, G.; Qian, X.; Kim, K. R.; Zhu, X.; Wang, L. AlCl₃ catalyzed coupling of N-benzylic sulfonamides with 2-substituted cyanoacetates through carbon–nitrogen bond cleavage. *Org. Biomol. Chem.* **2017**, *15*, 4984–4971.
- [7] Arceo, E.; Montroni, E.; Melchiorre, P. Photo-Organocatalysis of Atom-Transfer Radical Additions to Alkenes. *Angew. Chem., Int. Ed.* **2014**, *53*, 12064–12068.
- [8] Ma, Y.; Ding, Y.; Cai, Y.; Lei, C.; Zhu, D.; Li, T. Synthesis and neuroprotective effect of nNOS PDZ structural domain inhibitors. *Acta Univ. Med. Nanjing (Natural Science)* **2014**, *34*, 314–322.
- [9] Tian, M.-Q.; Shen, Z.-Y.; Zhao, X.; Walsh, P. J.; Hu, X.-H. Iron-Catalyzed Tertiary Alkylation of Terminal Alkynes with 1,3-Diesters via a Functionalized Alkyl Radical. *Angew. Chem., Int. Ed.* **2021**, *60*, 9706–9711.

10. NMR spectra of the starting materials

2.06± 2.07±

7.0


6.5

6.0

7.5

8.5

8.0

4.5 4.0 3.5 f1 (ppm)

2.00∓

5.0

5.5

2.07₁

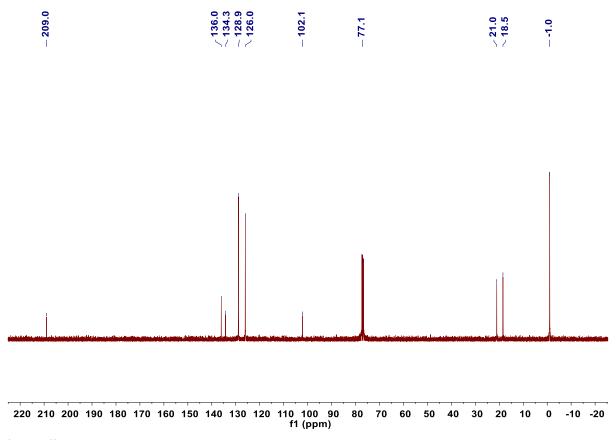
1.5

1.0

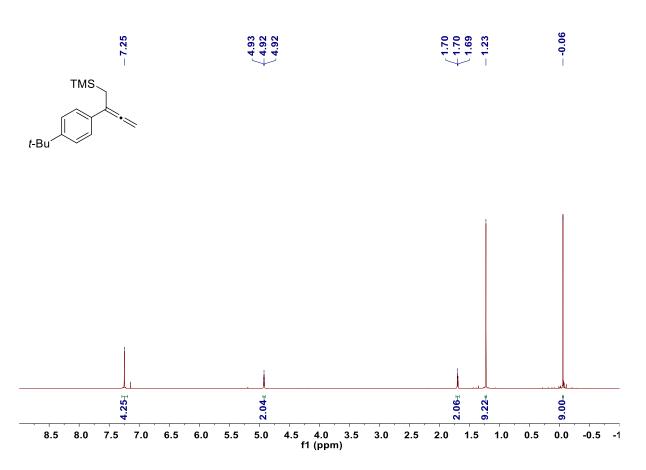
2.0

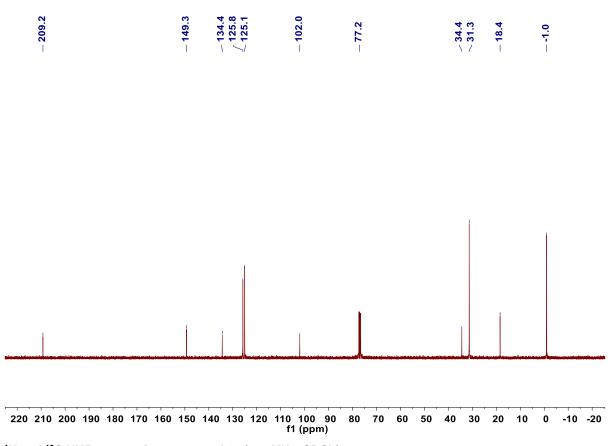
9.32-

0.0

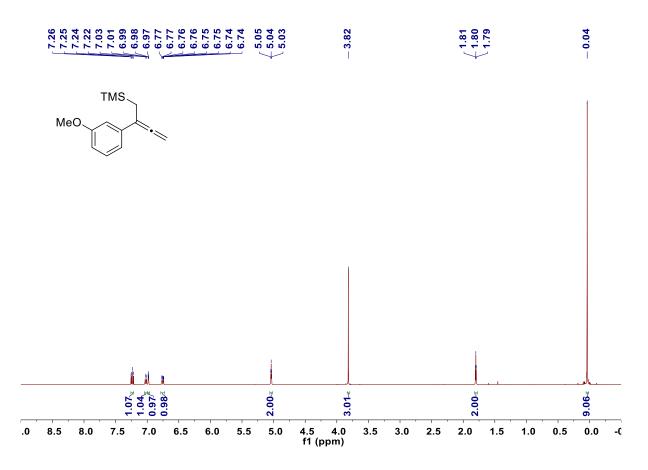

-0.5 -1

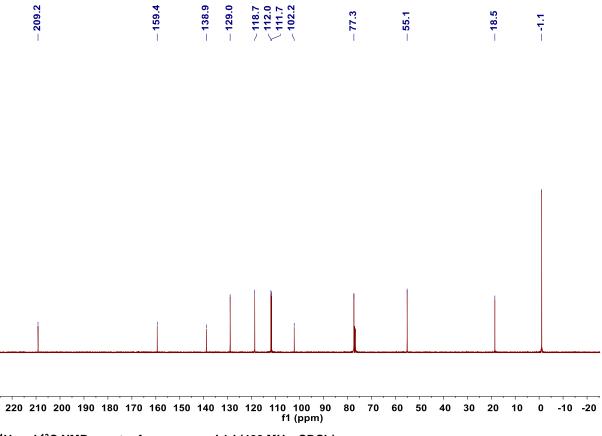
0.5

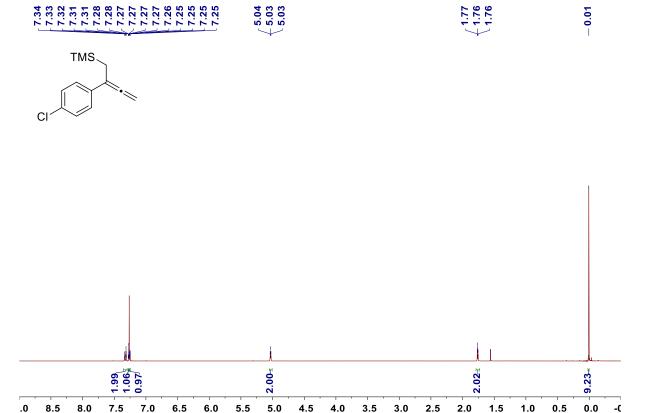

3.02±

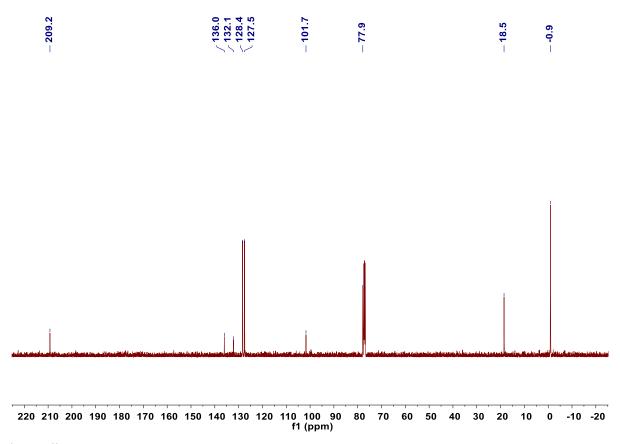

2.5

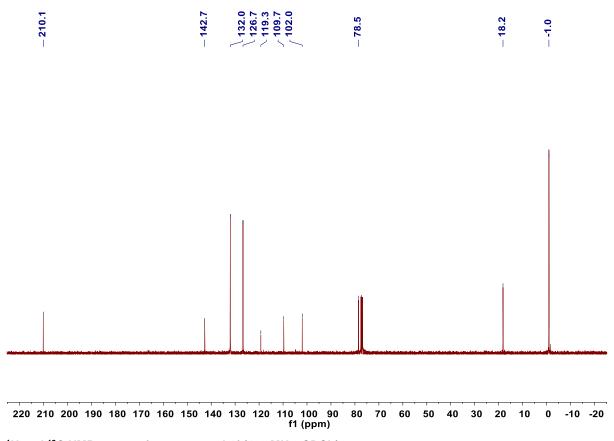
3.0

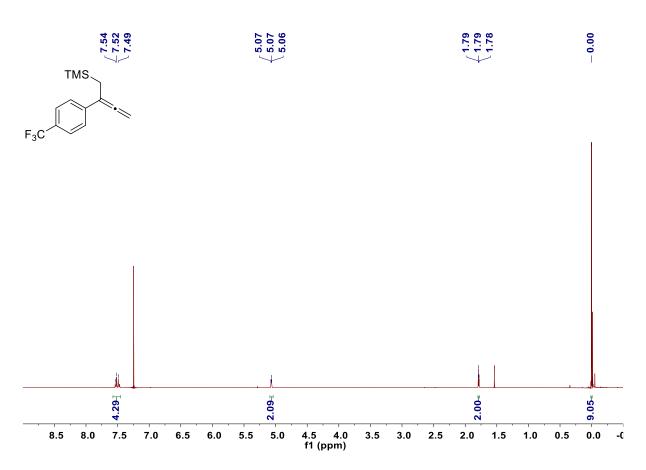


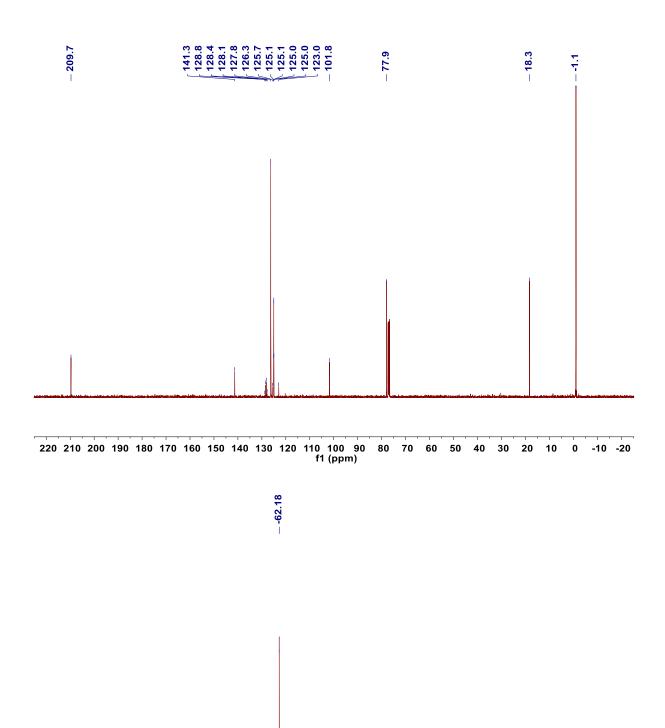

¹H and ¹³C NMR spectra for compound 1b (400 MHz, CDCl₃)

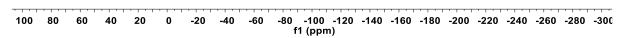


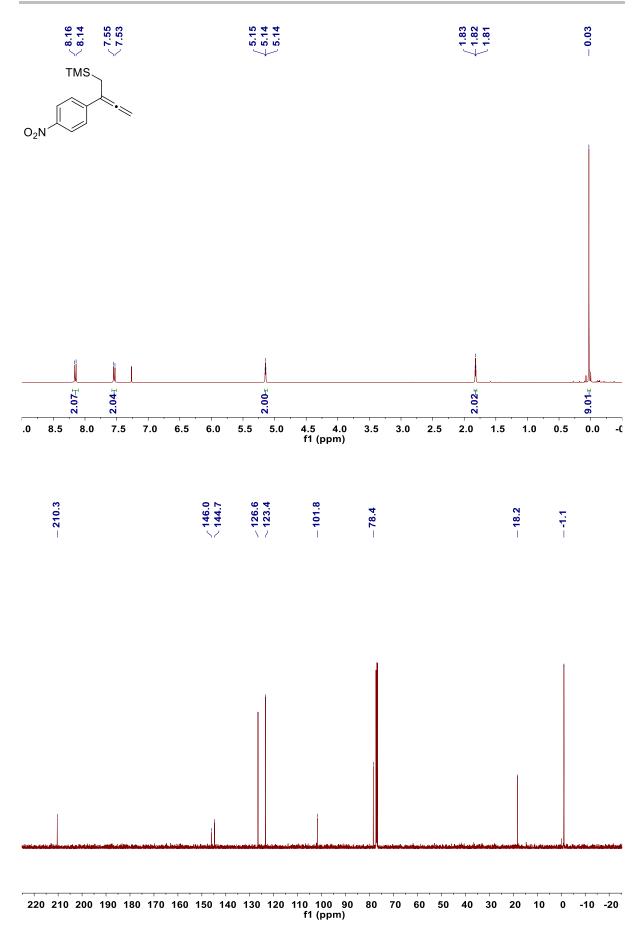

¹H and ¹³C NMR spectra for compound 1c (400 MHz, CDCI₃)

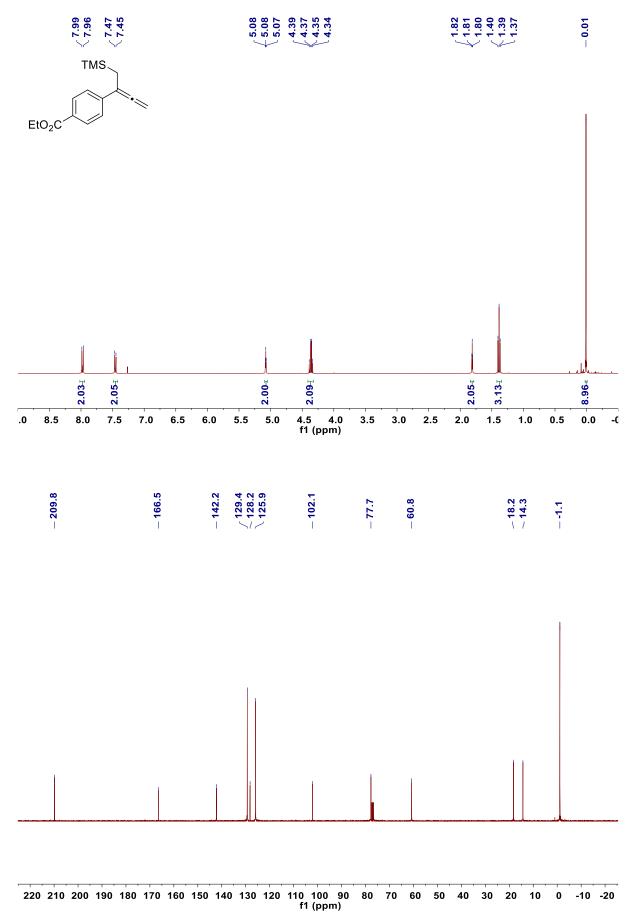

¹H and ¹³C NMR spectra for compound 1d (400 MHz, CDCl₃)

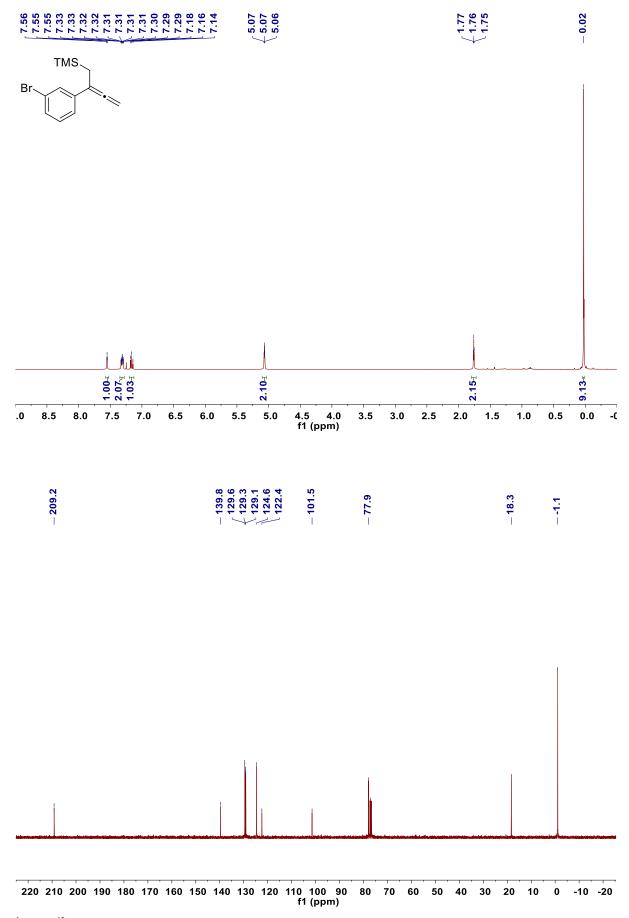


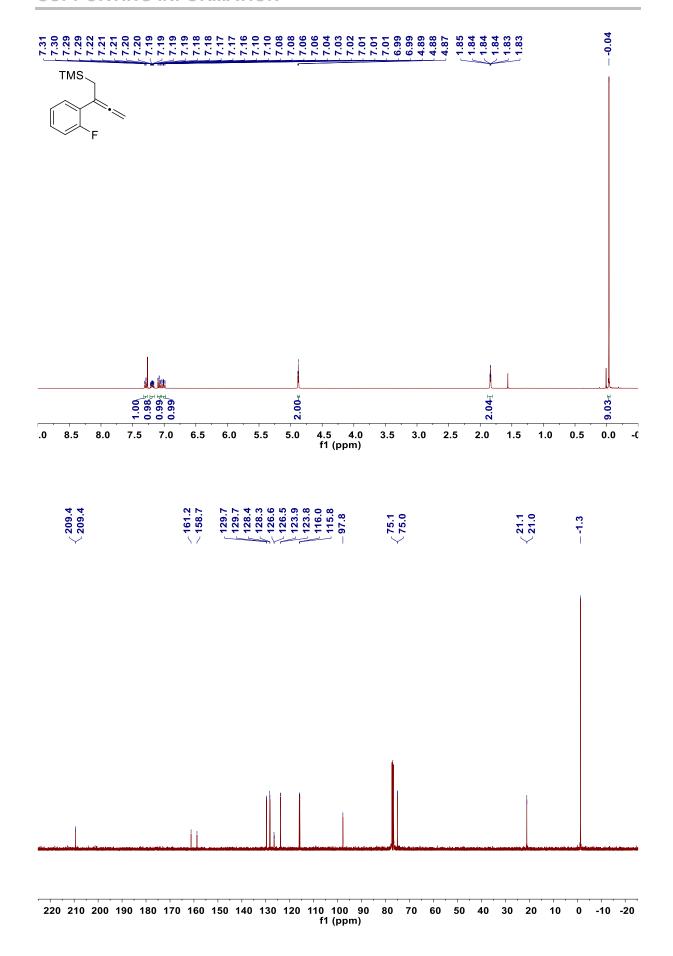

¹H and ¹³C NMR spectra for compound 1e (400 MHz, CDCI₃)

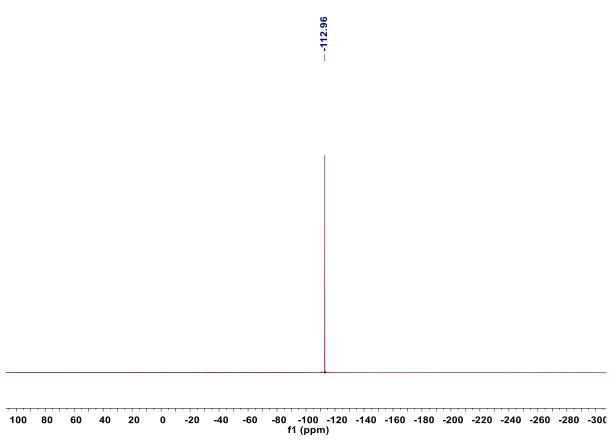


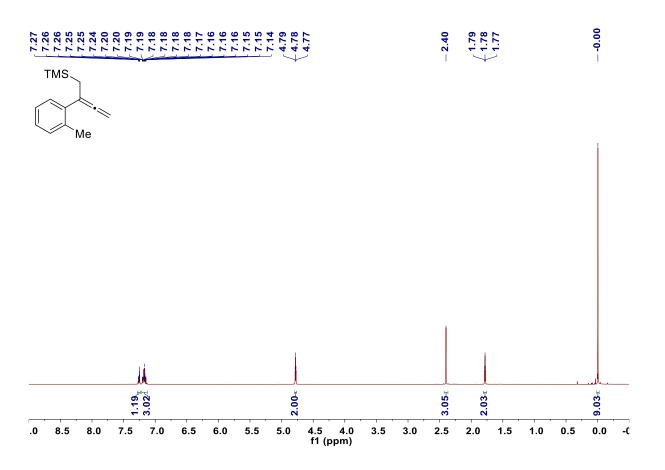

¹H and ¹³C NMR spectra for compound 1f (400 MHz, CDCl₃)

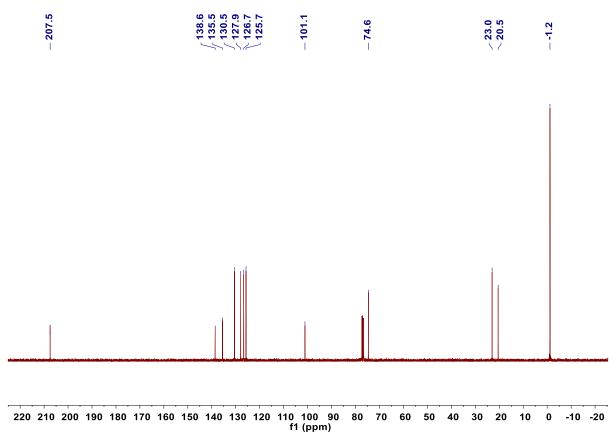


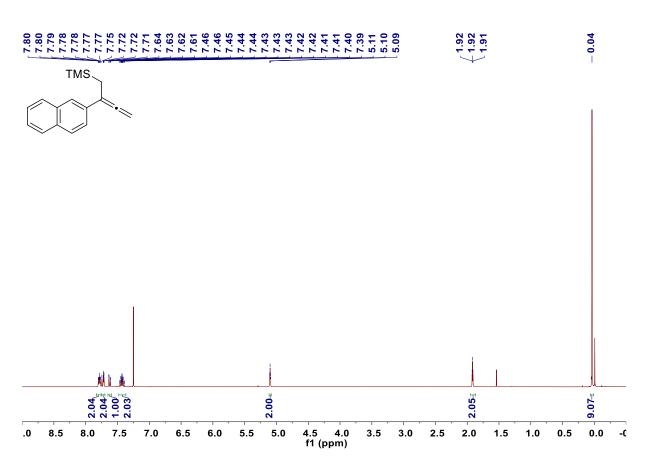

 $^{1}\text{H},\,^{13}\text{C}$ and ^{19}F NMR spectra for compound 1g (400 MHz, CDCl₃)

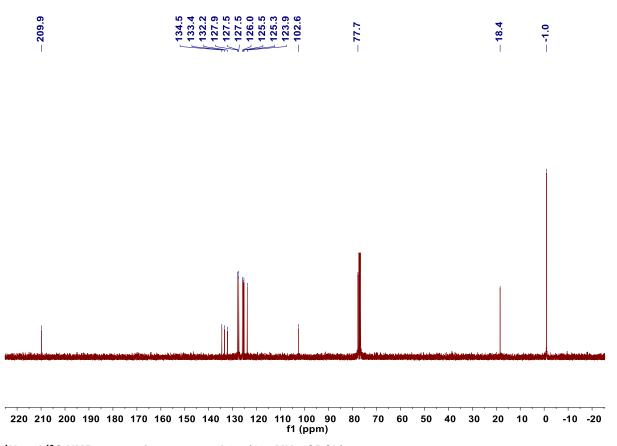


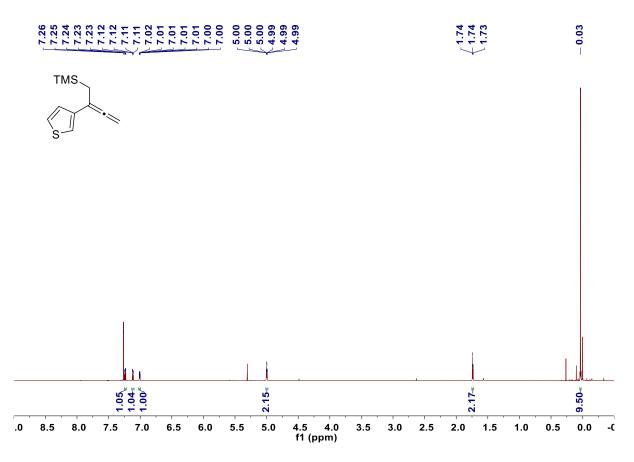

 ^{1}H and ^{13}C NMR spectra for compound 1h (400 MHz, CDCl₃)

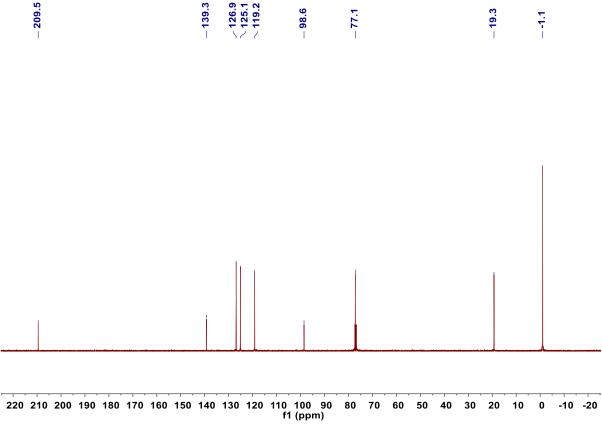

 ^{1}H and ^{13}C NMR spectra for compound 1i (400 MHz, CDCl₃)

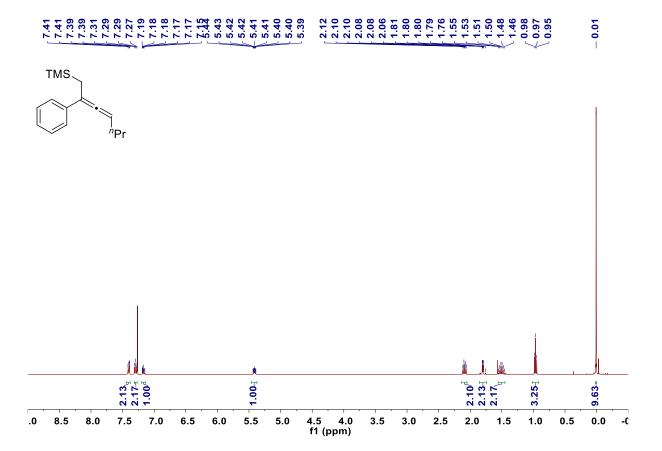


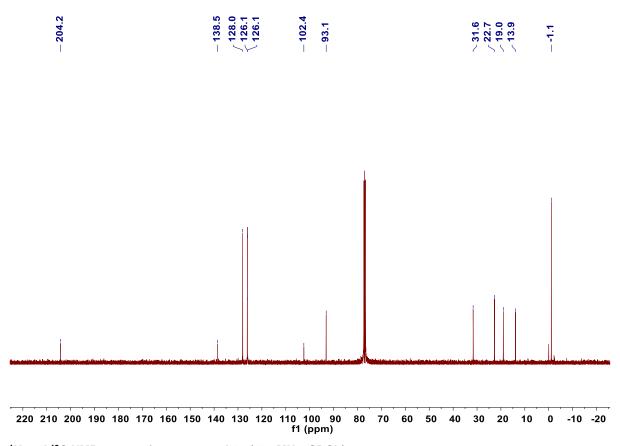


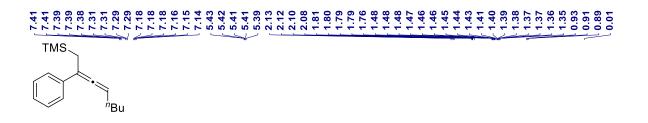

 $^{1}\text{H},\,^{13}\text{C}$ and ^{19}F NMR spectra for compound 1k (400 MHz, CDCl₃)

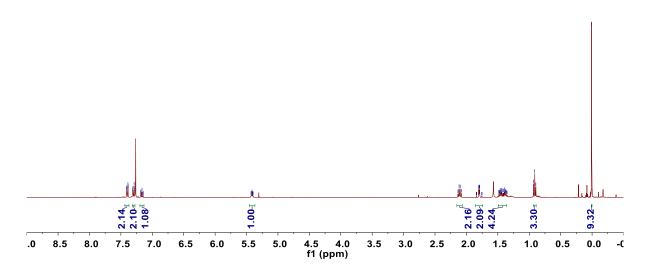


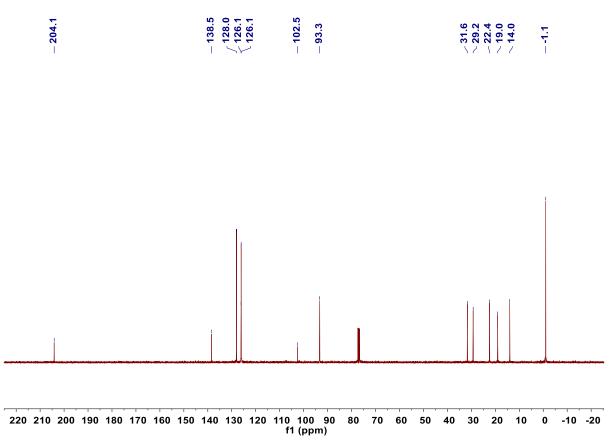

¹H and ¹³C NMR spectra for compound 1I (400 MHz, CDCl₃)



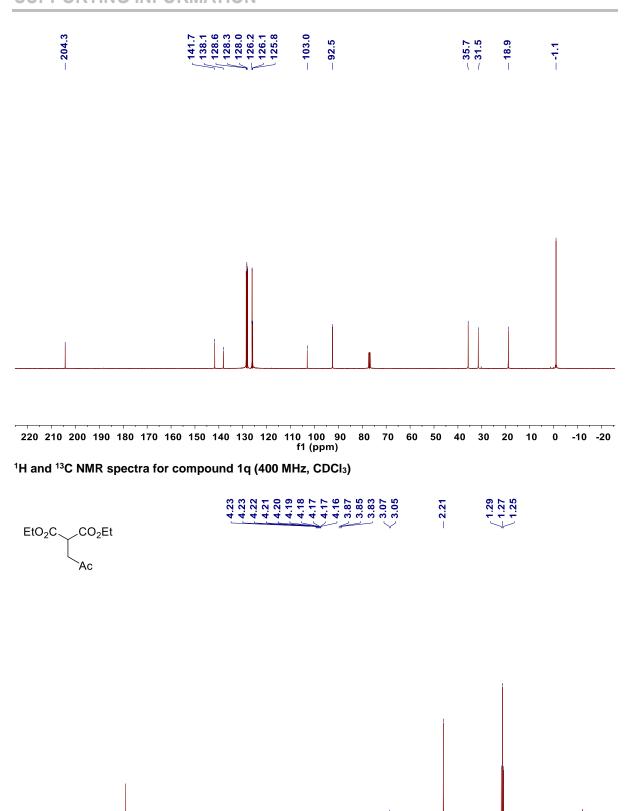

¹H and ¹³C NMR spectra for compound 1m (400 MHz, CDCl₃)




¹H and ¹³C NMR spectra for compound 1n (400 MHz, CDCl₃)



¹H and ¹³C NMR spectra for compound 10 (400 MHz, CDCI₃)



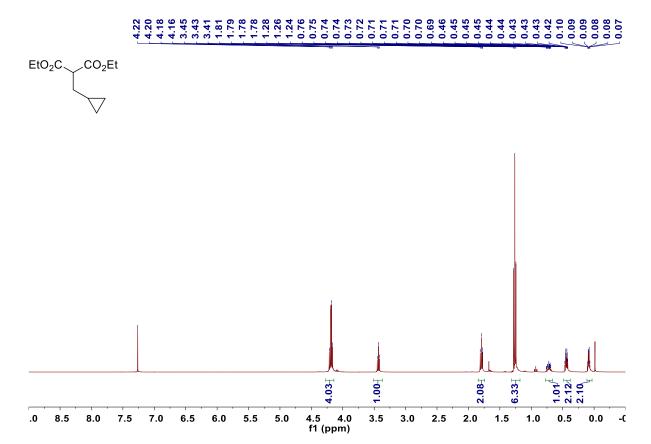
¹H and ¹³C NMR spectra for compound 1p (400 MHz, CDCl₃)

¹H NMR spectrum for compound 2e (400 MHz, CDCl₃)

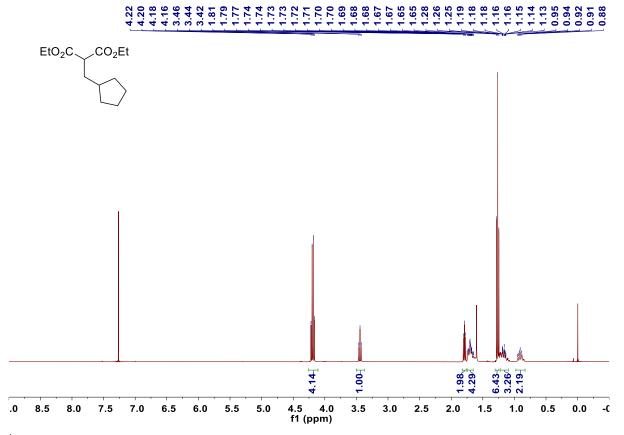
8.5

8.0

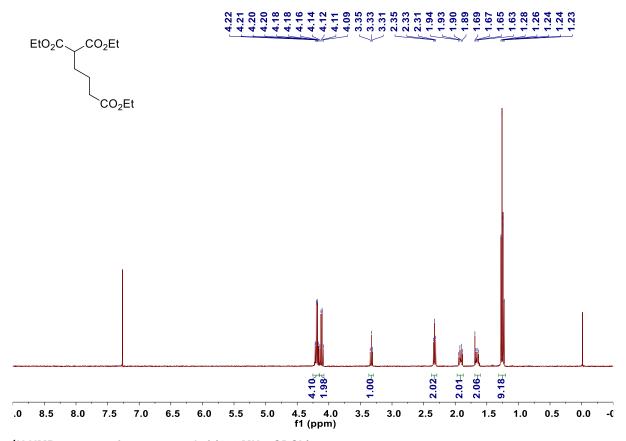
7.5

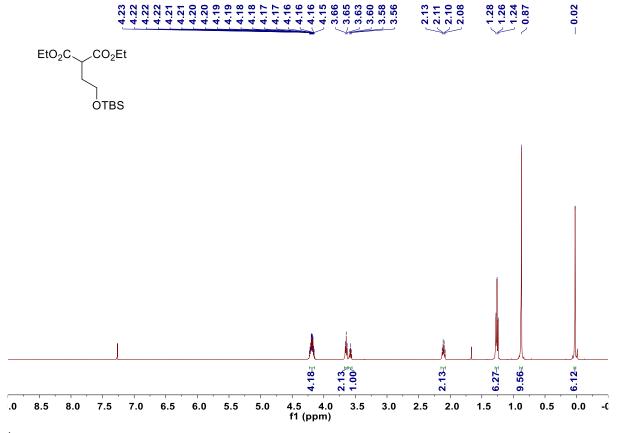

2.00₁

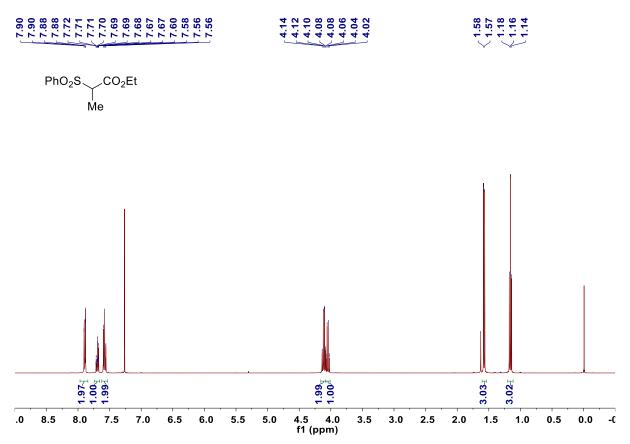
3.0

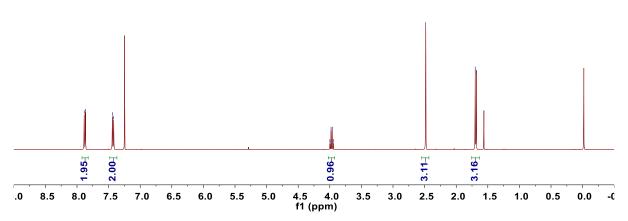

2.5

1.5


3.5


¹H NMR spectrum for compound 2g (400 MHz, CDCI₃)

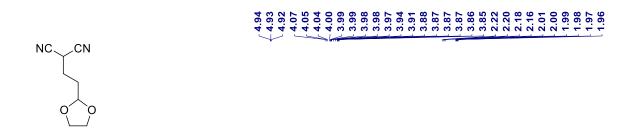

¹H NMR spectrum for compound 2h (400 MHz, CDCI₃)


¹H NMR spectrum for compound 2i (400 MHz, CDCI₃)


¹H NMR spectrum for compound 2j (400 MHz, CDCl₃)

¹H NMR spectrum for compound 2m (400 MHz, CDCI₃)

¹H NMR spectrum for compound 2n (400 MHz, CDCI₃)


¹H NMR spectrum for compound 20 (400 MHz, CDCI₃)

6.5

6.0

7.0

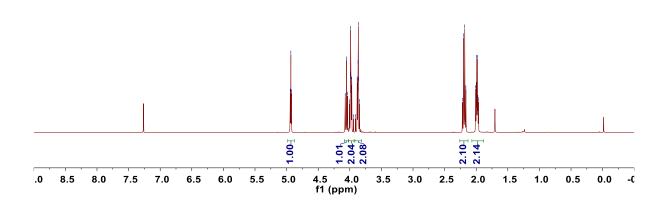
7.5

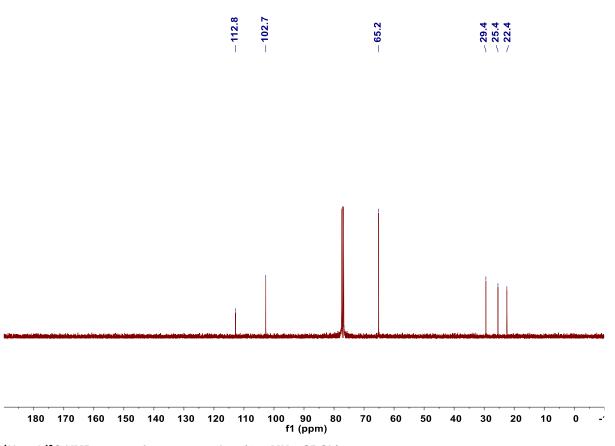
4.5 4.0 f1 (ppm)

3.5

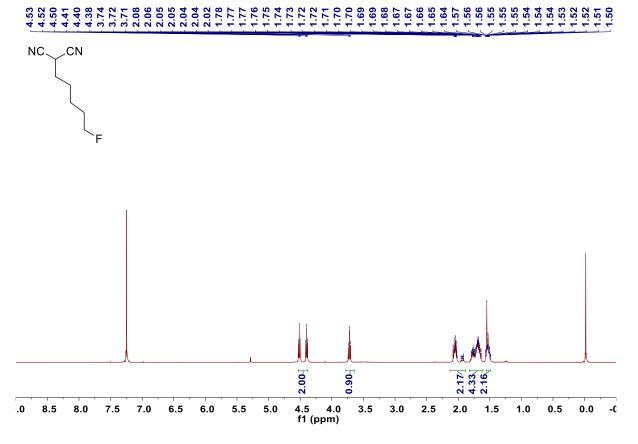
3.0

2.5

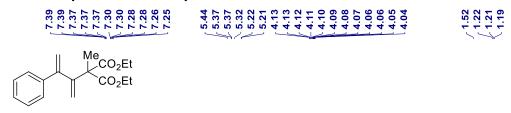

2.0

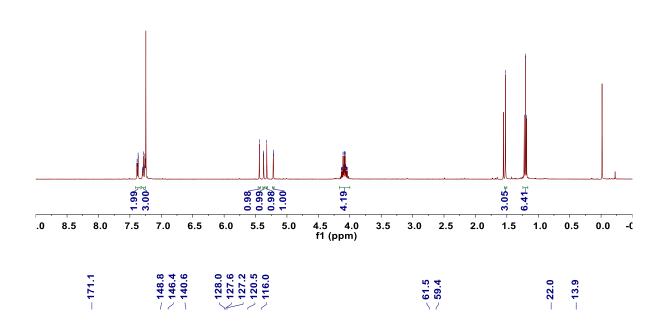

1.5

1.0


0.5

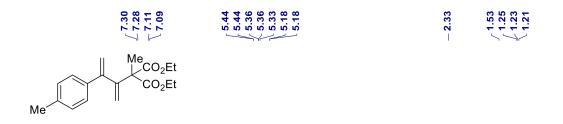
0.0 -0

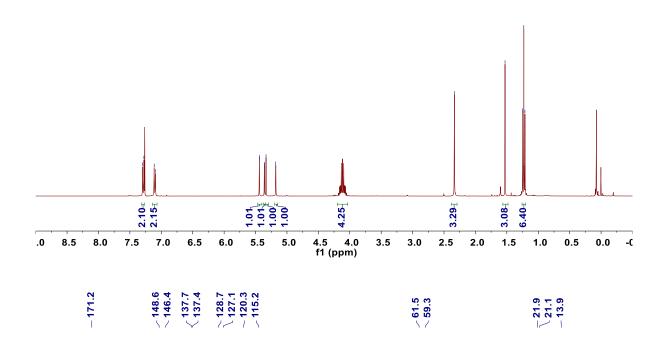

¹H and ¹³C NMR spectra for compound 2p (400 MHz, CDCl₃)

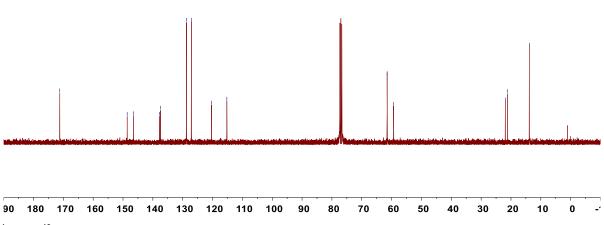


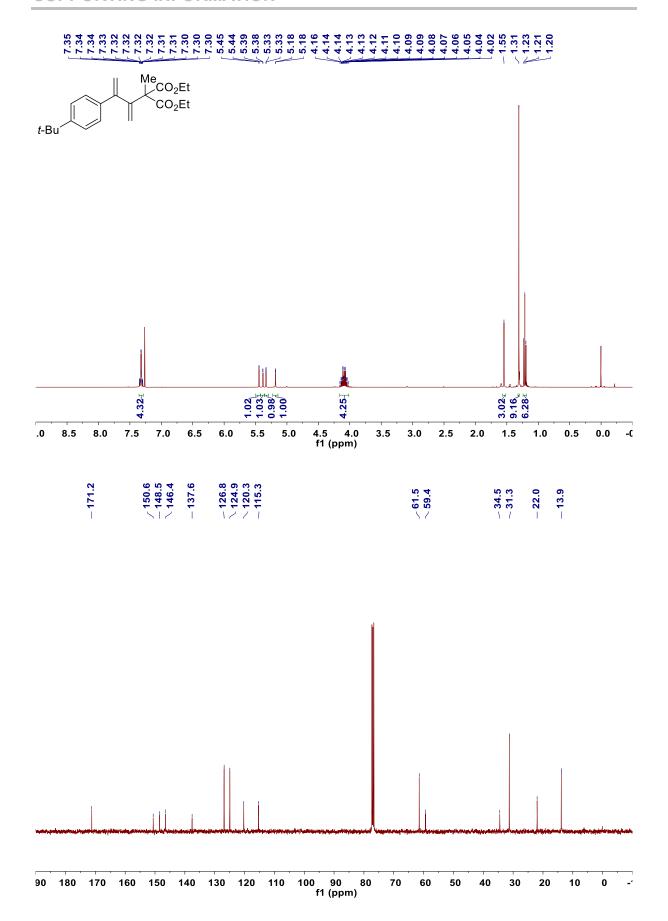


 $^{1}\text{H},\,^{13}\text{C}$ and ^{19}F NMR spectra for compound 2q (400 MHz, CDCl₃)

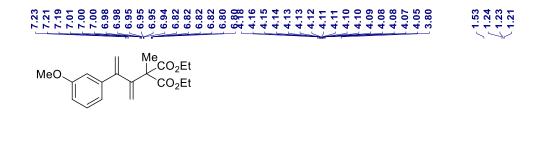

11. NMR spectra of all the products

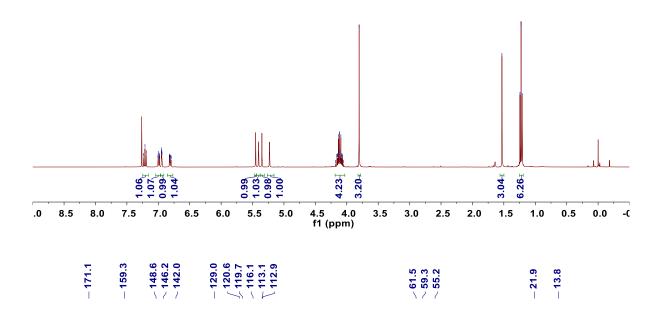


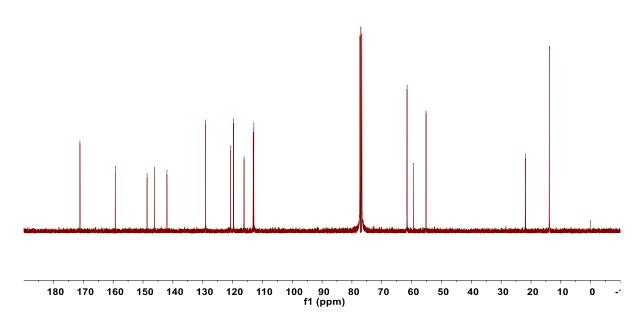


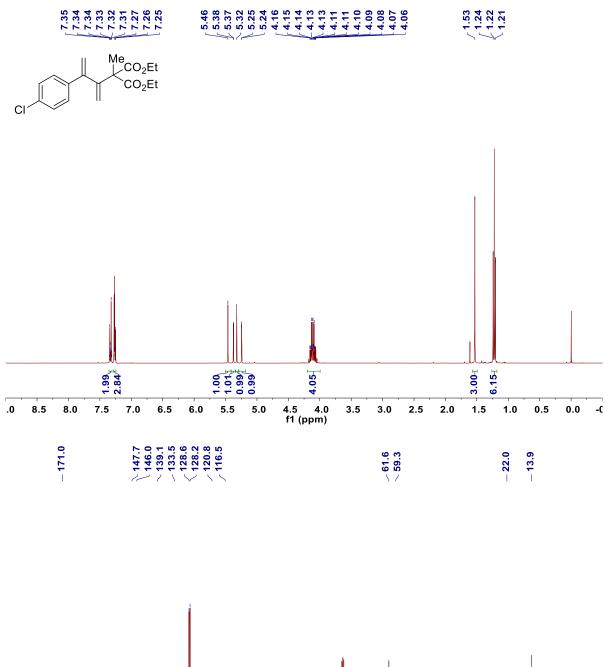


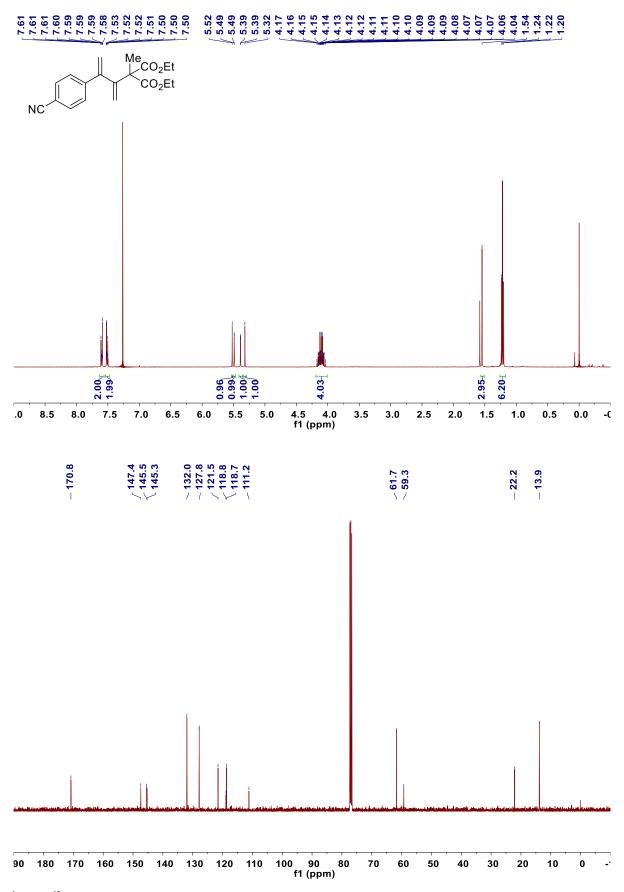
¹H and ¹³C NMR spectra for product 3aa (400 MHz, CDCl₃)



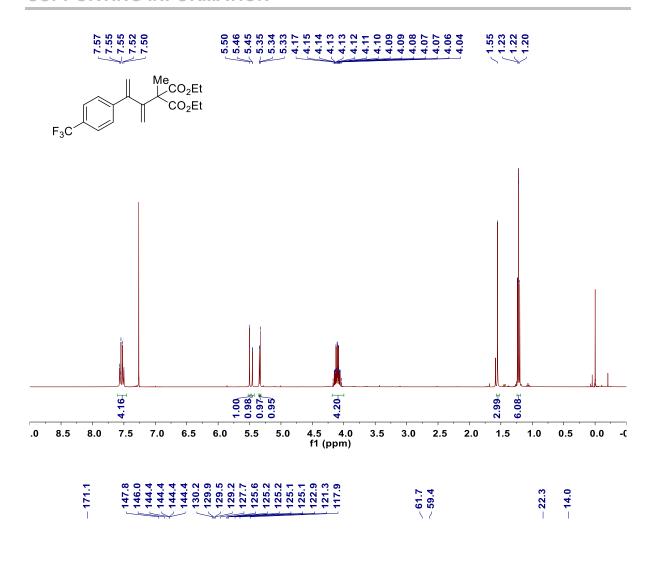


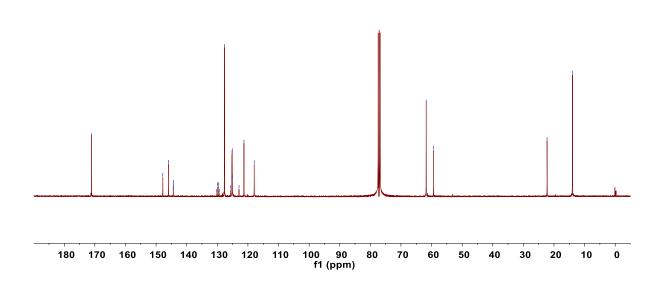


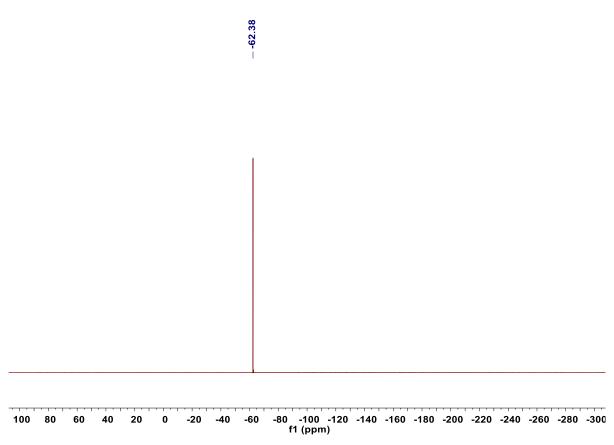

 ^{1}H and ^{13}C NMR spectra for product 3ca (400 MHz, CDCl₃)

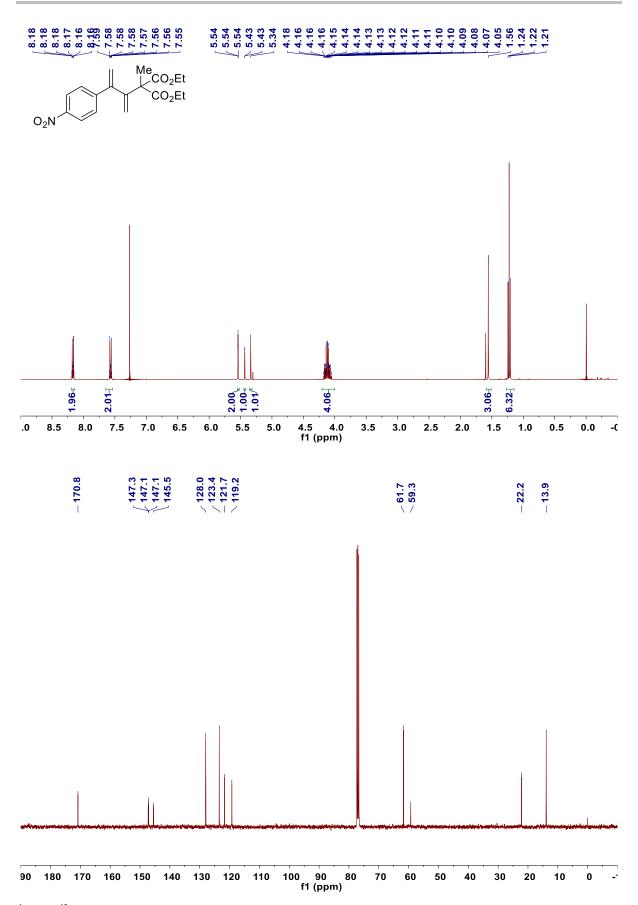


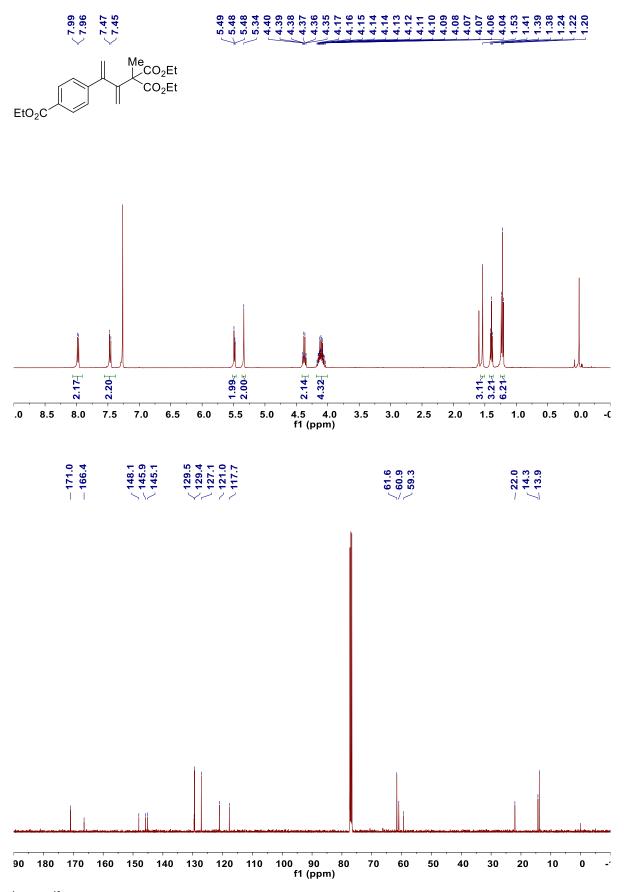
¹H and ¹³C NMR spectra for product 3da (400 MHz, CDCl₃)

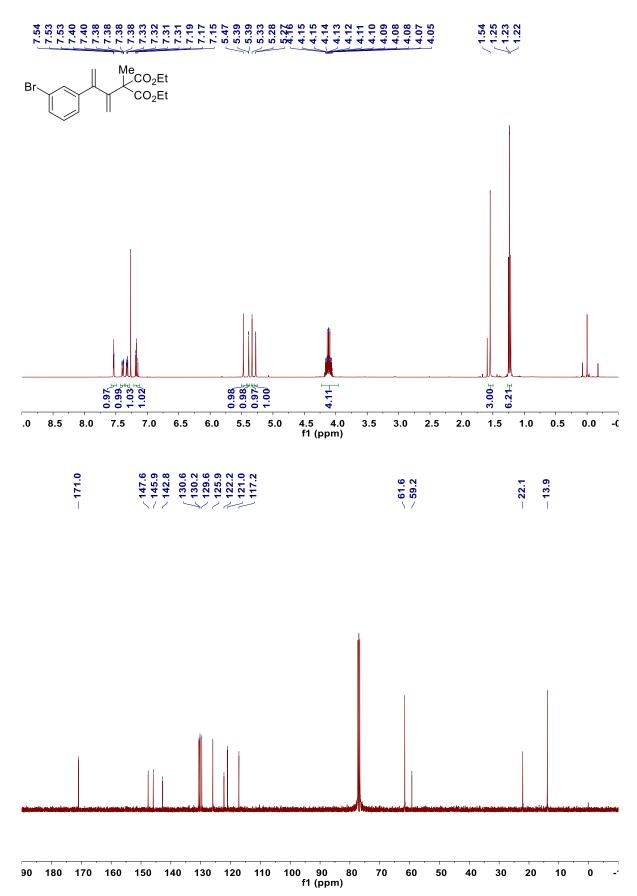


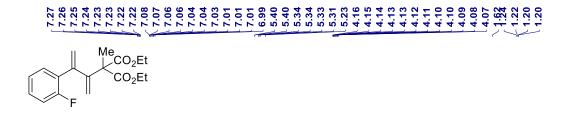

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

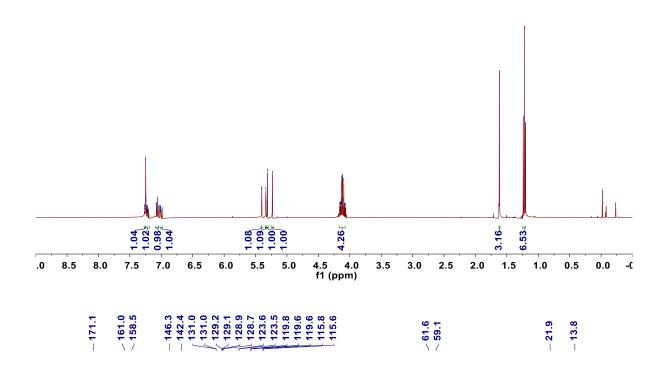

 ^{1}H and ^{13}C NMR spectra for product 3ea (400 MHz, CDCl₃)

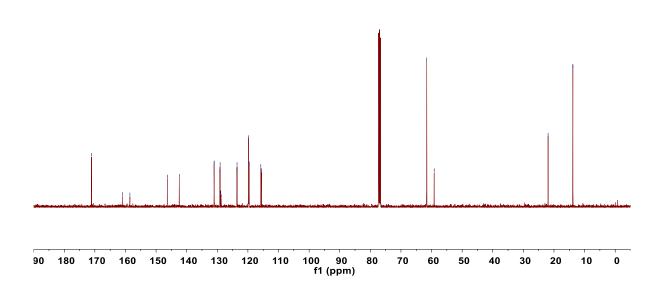

 ^{1}H and ^{13}C NMR spectra for product 3fa (400 MHz, CDCl₃)

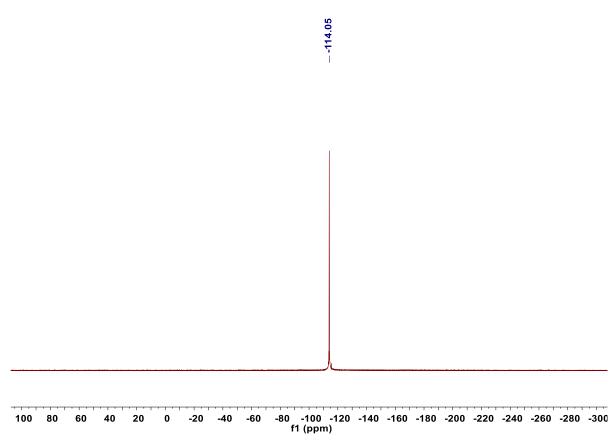



¹H, ¹³C and ¹⁹F NMR spectra for product 3ga (400 MHz, CDCl₃)

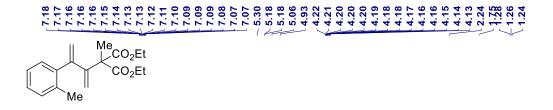

 ^{1}H and ^{13}C NMR spectra for product 3ha (400 MHz, CDCl₃)

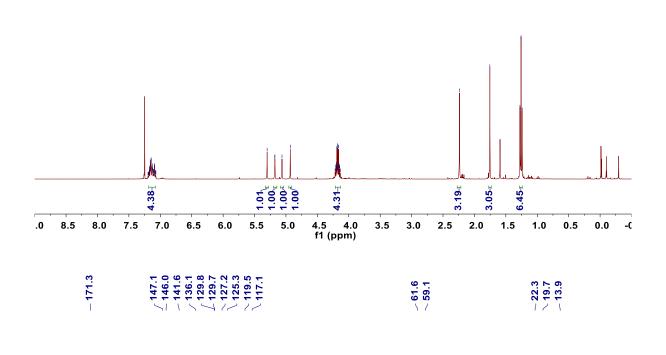


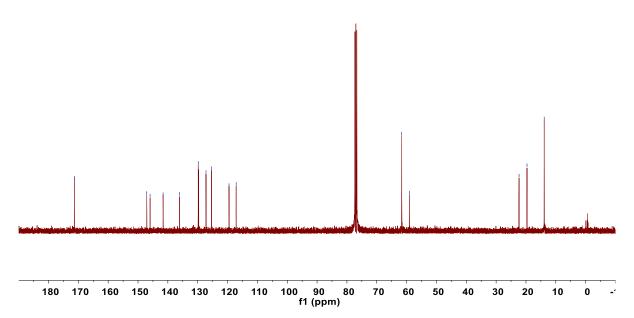

 ^{1}H and ^{13}C NMR spectra for product 3ia (400 MHz, CDCI₃)

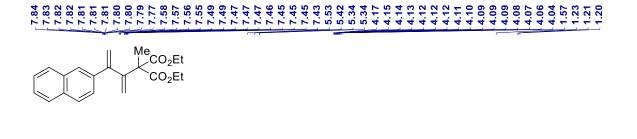


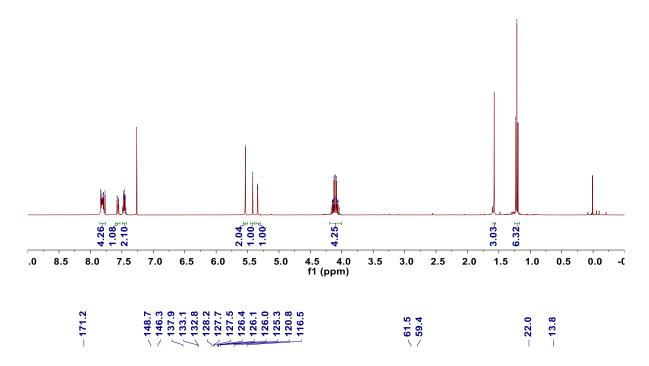
¹H and ¹³C NMR spectra for product 3ja (400 MHz, CDCl₃)

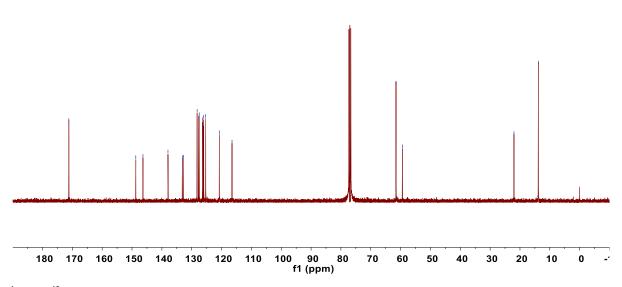


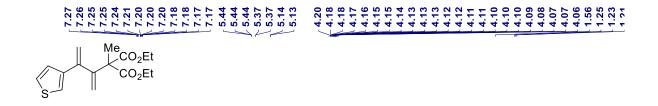


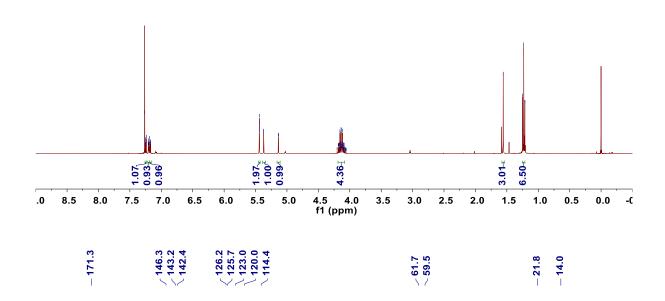


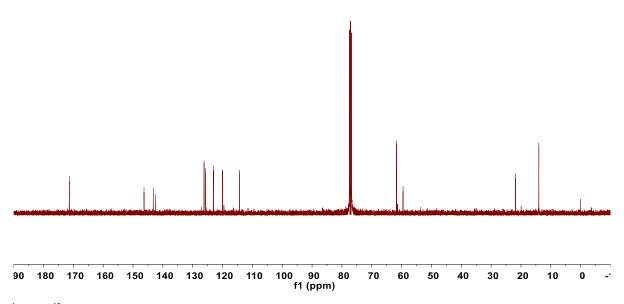

¹H, ¹³C and ¹⁹F NMR spectra for product 3ka (400 MHz, CDCl₃)

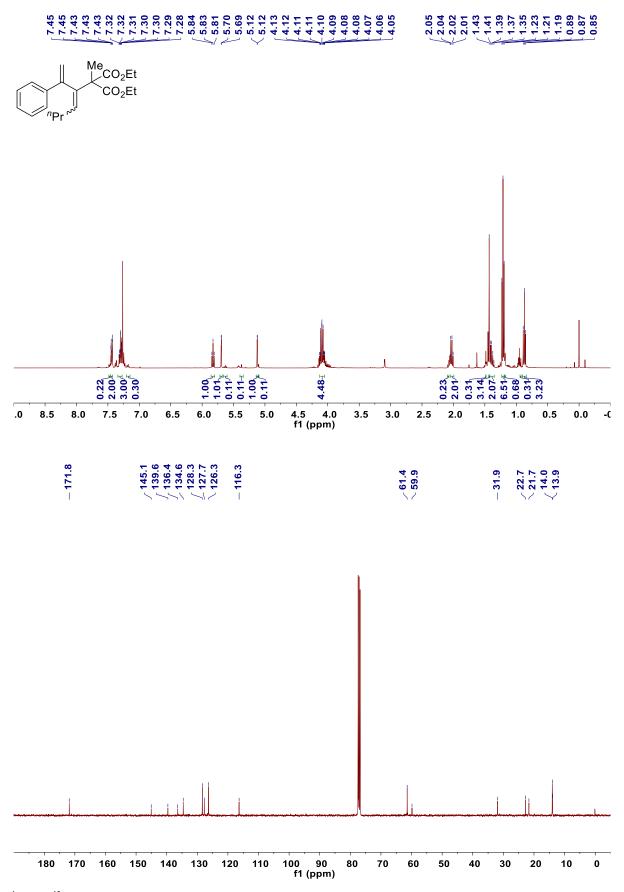


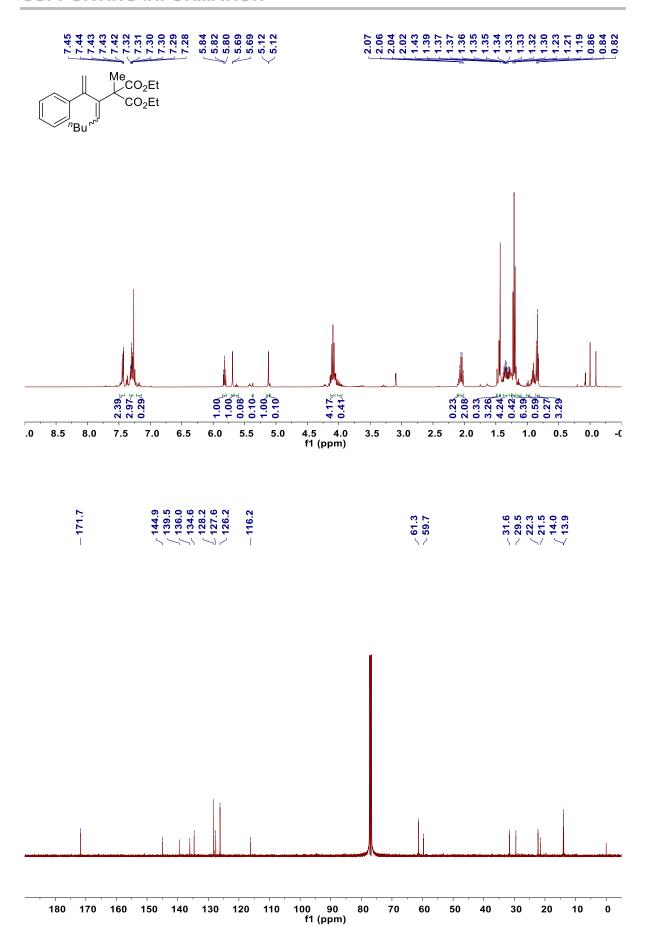


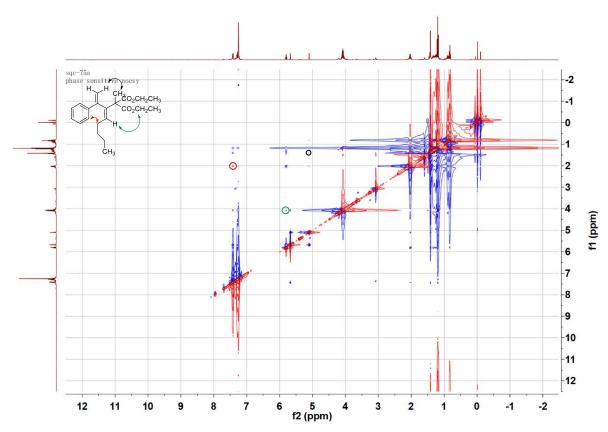

 ^{1}H and ^{13}C NMR spectra for product 3Ia (400 MHz, CDCI₃)



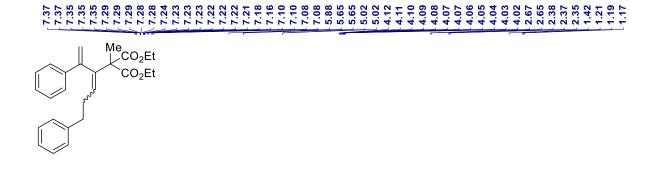


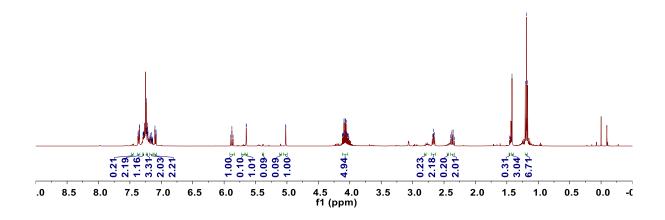

 ^{1}H and ^{13}C NMR spectra for product 3ma (400 MHz, CDCl₃)

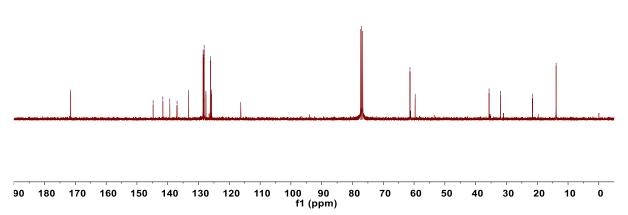




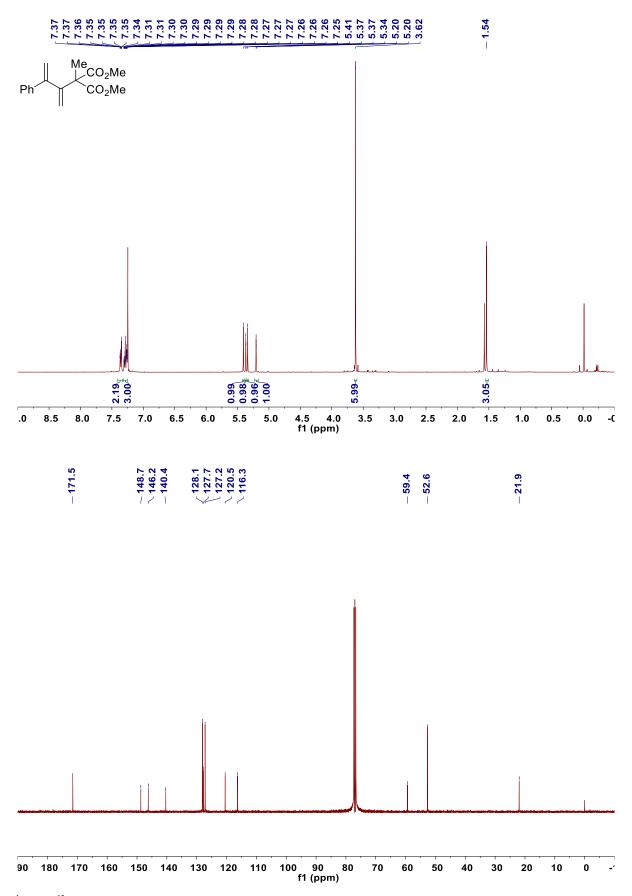
¹H and ¹³C NMR spectra for product 3na (400 MHz, CDCl₃)

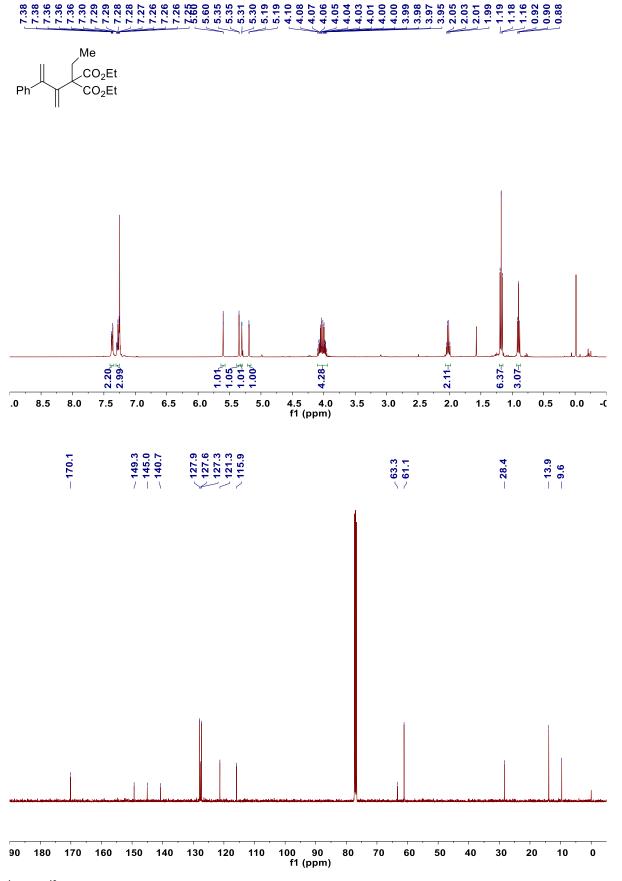


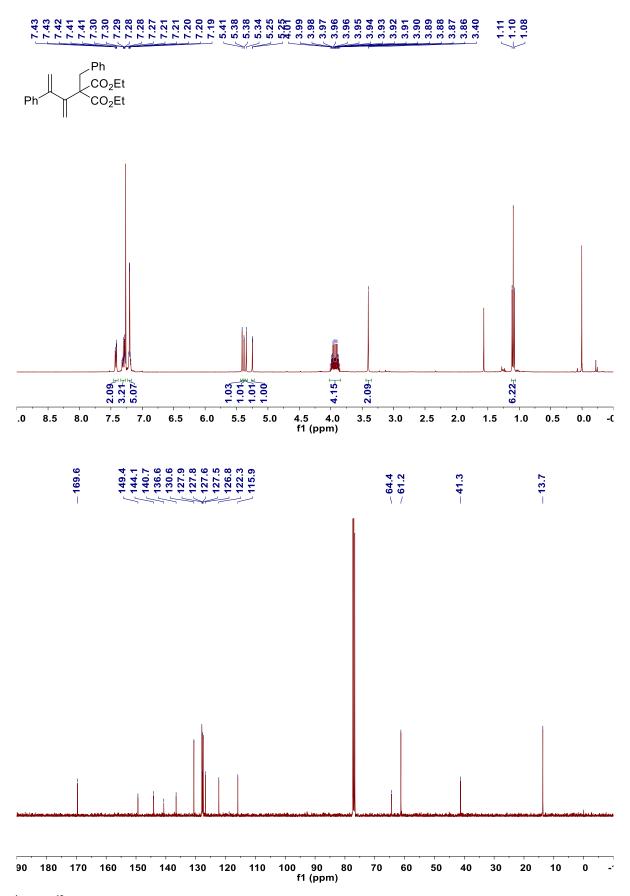

¹H and ¹³C NMR a spectra for product 3oa (400 MHz, CDCl₃)

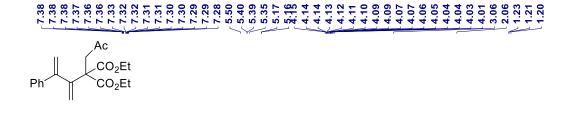


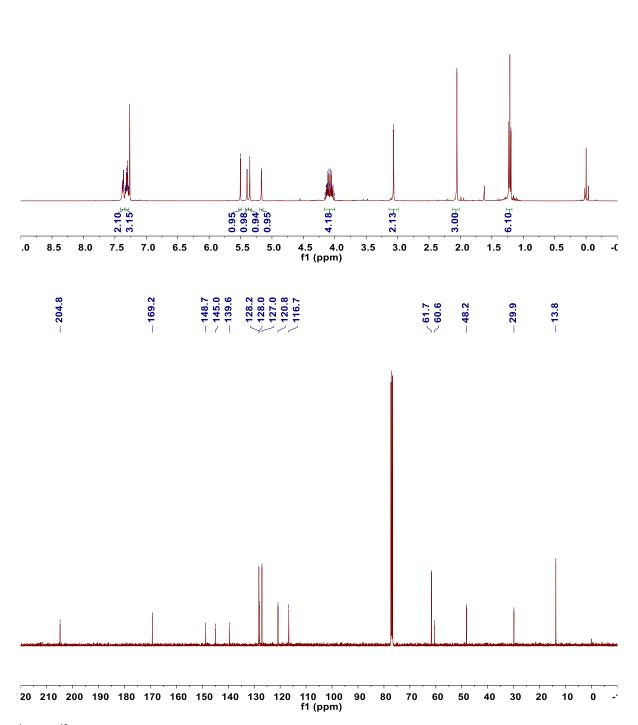
¹H, ¹³C NMR and NOESY spectra for product 3pa (400 MHz, CDCl₃)



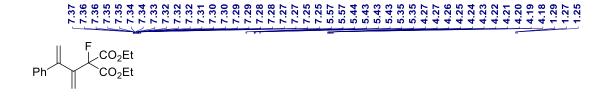


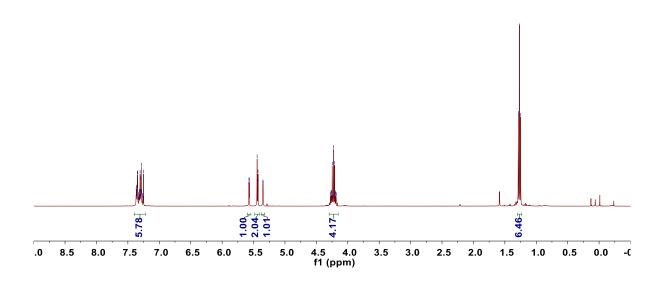

¹H and ¹³C NMR spectra for product 3qa (400 MHz, CDCI₃)

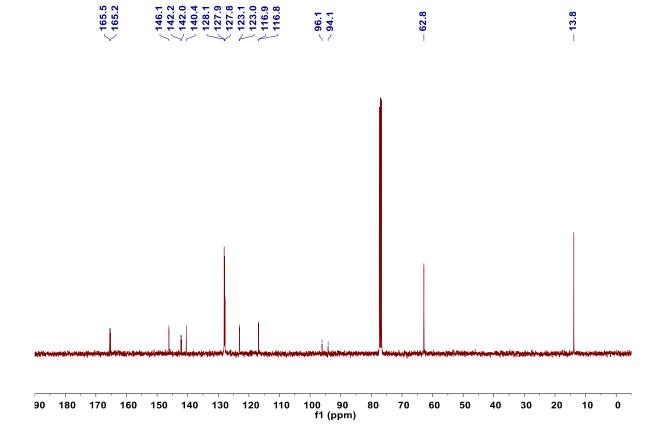

 ^{1}H and ^{13}C NMR spectra for product 3ab (400 MHz, CDCl₃)

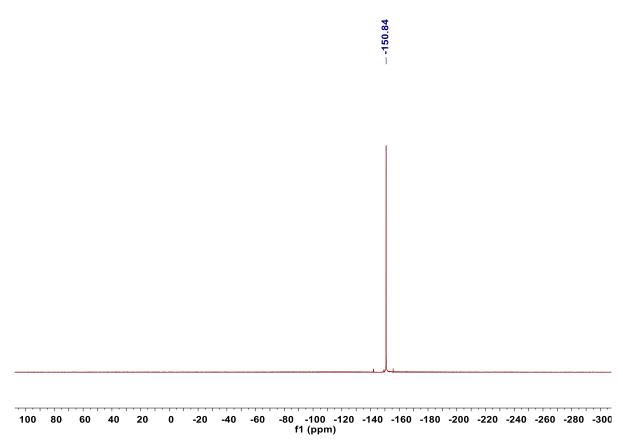


¹H and ¹³C NMR spectra for product 3ac (400 MHz, CDCl₃)

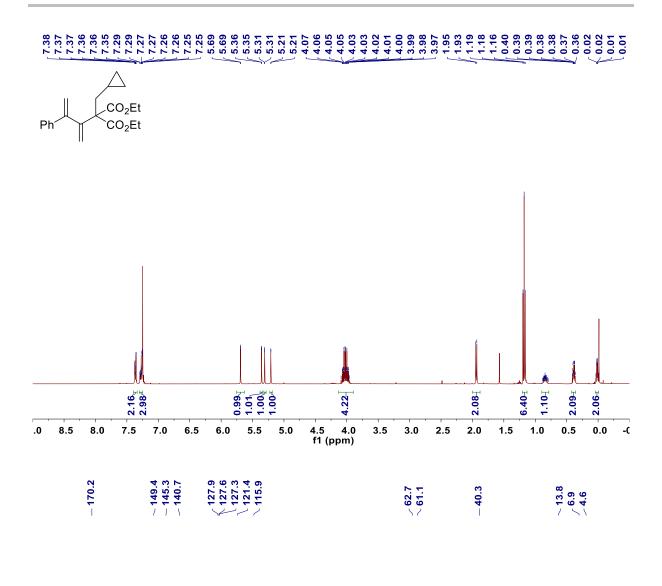


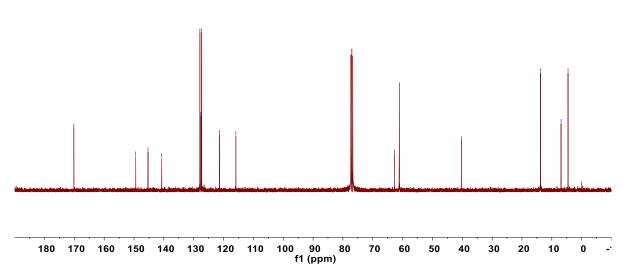

¹H and ¹³C NMR spectra for product 3ad (400 MHz, CDCl₃)

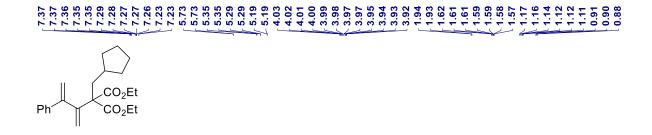


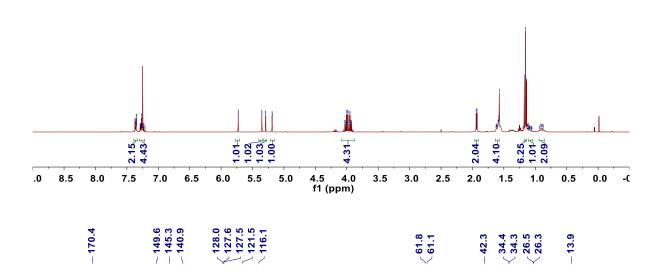


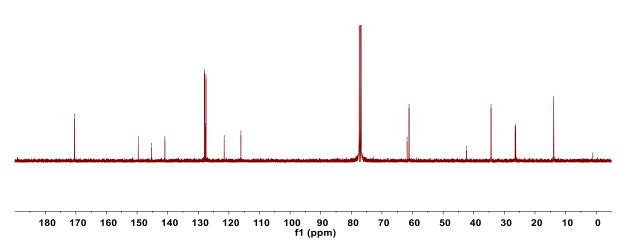
 ^{1}H and ^{13}C NMR spectra for product 3ae (400 MHz, CDCl₃)

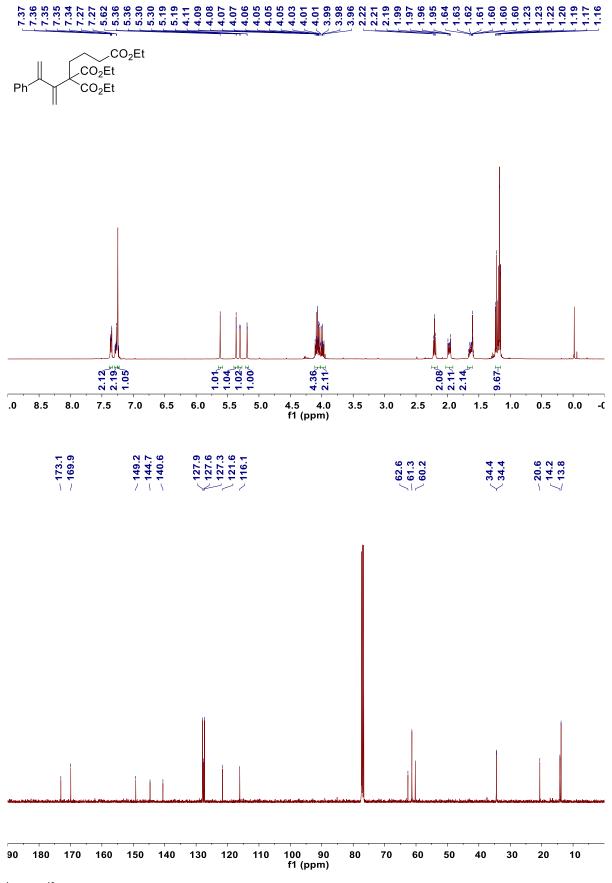


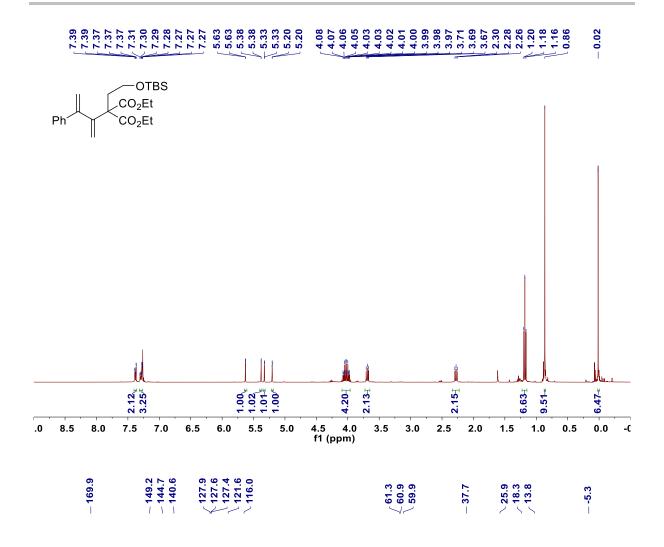


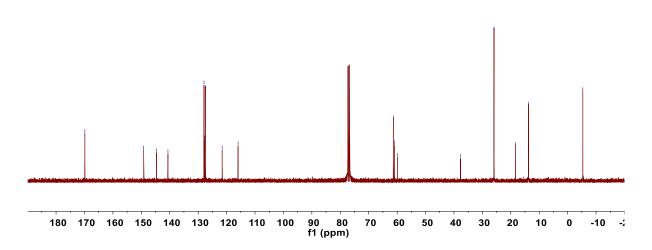



¹H, ¹³C and ¹⁹F NMR spectra for product 3af (400 MHz, CDCl₃)

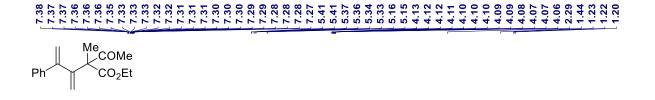


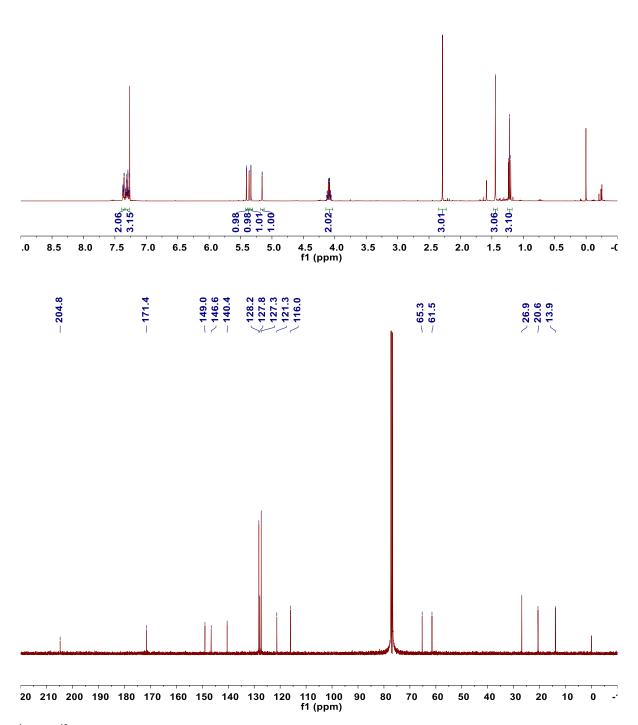

¹H and ¹³C NMR spectra for product 3ag (400 MHz, CDCl₃)

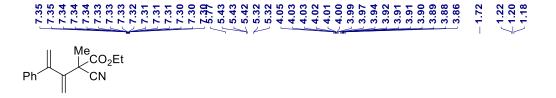


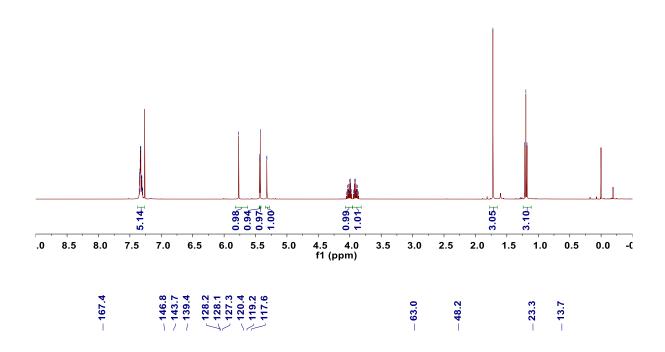


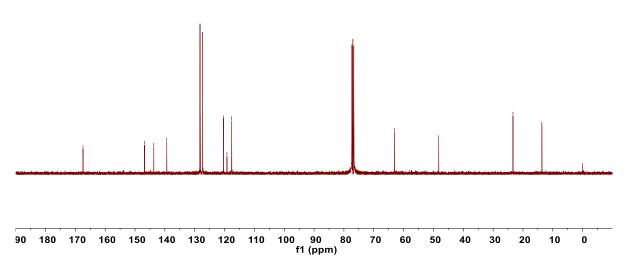
¹H and ¹³C NMR spectra for product 3ah (400 MHz, CDCl₃)

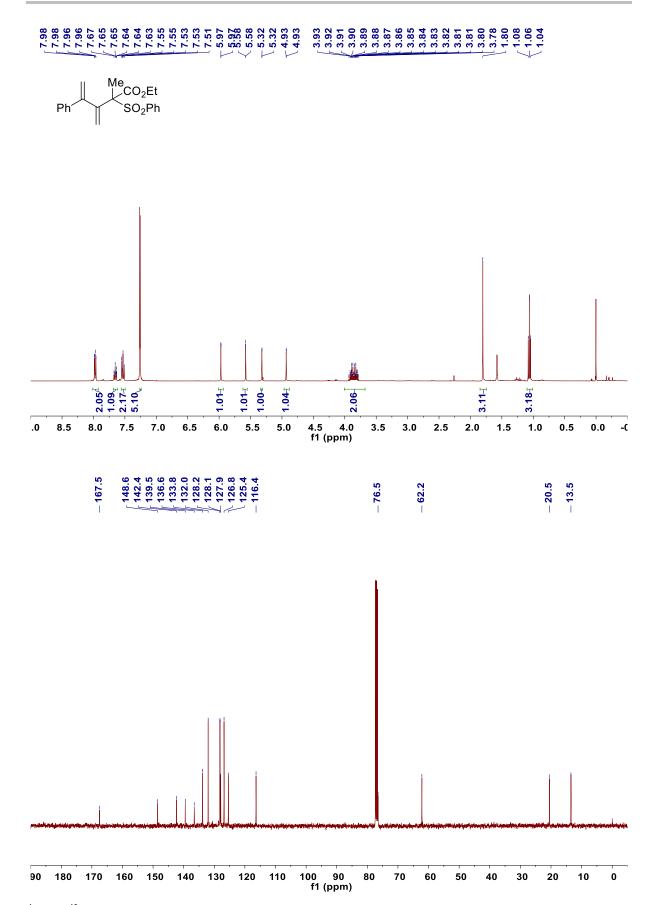


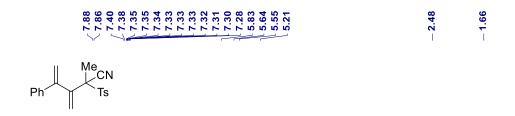

¹H and ¹³C NMR spectra for product 3ai (400 MHz, CDCl₃)

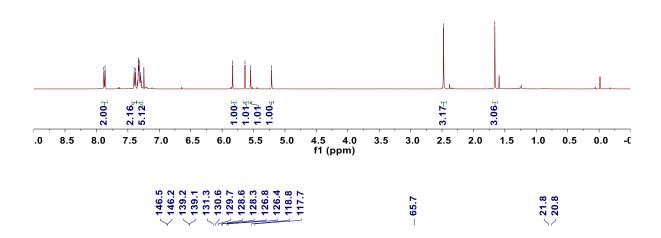


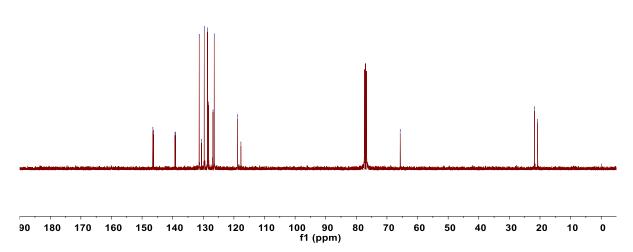

¹H and ¹³C NMR spectra for product 3aj (400 MHz, CDCl₃)

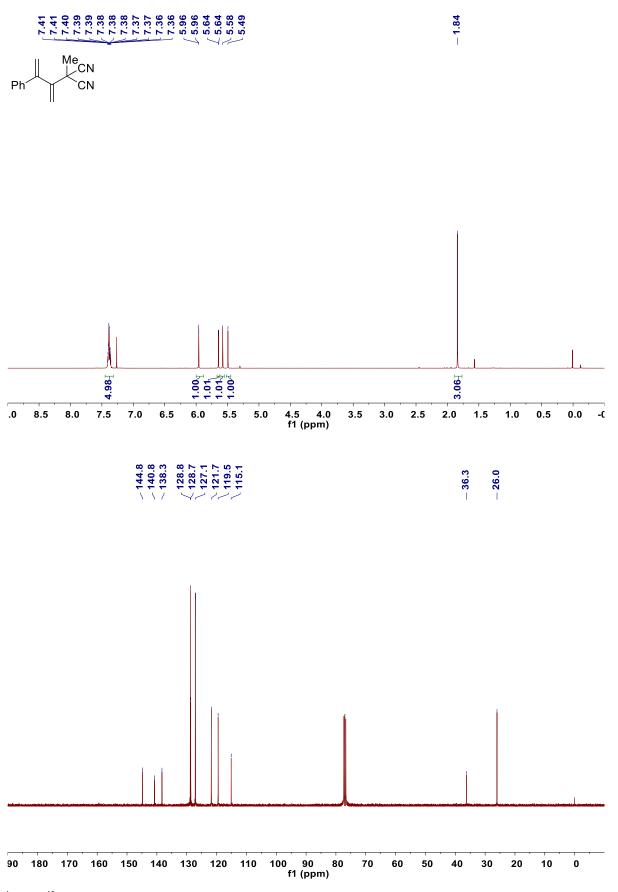


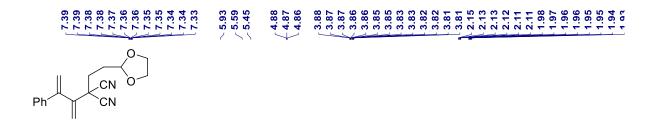

 ^{1}H and ^{13}C NMR spectra for product 3ak (400 MHz, CDCl₃)

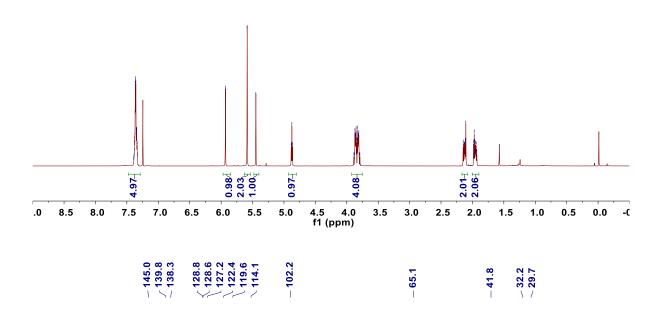


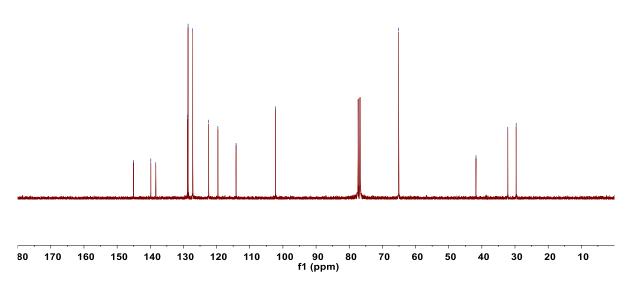


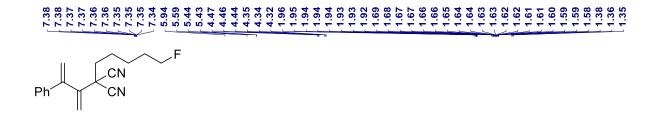

¹H and ¹³C NMR spectra for product 3al (400 MHz, CDCl₃)

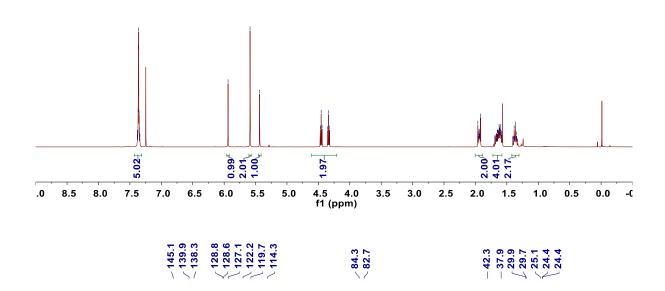

¹H and ¹³C NMR spectra for product 3am (400 MHz, CDCl₃)

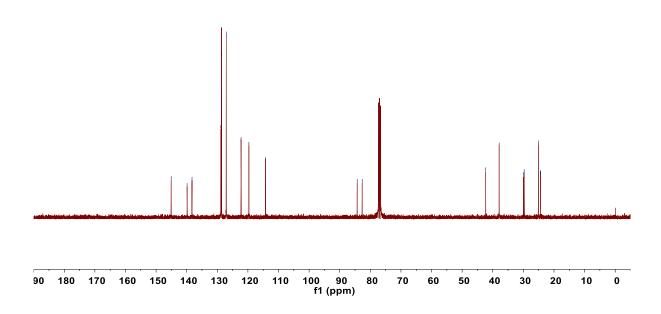


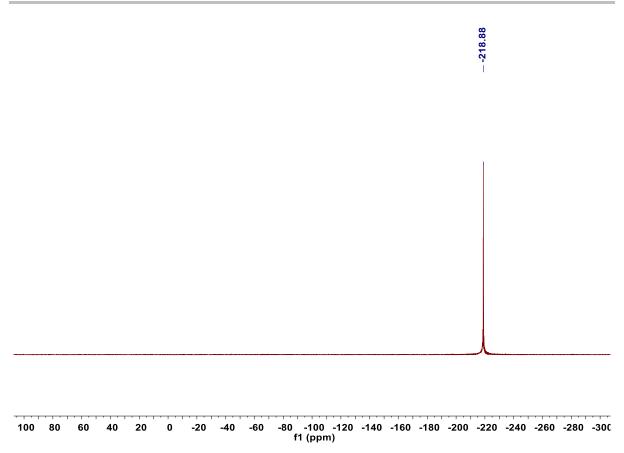



 ^{1}H and ^{13}C NMR spectra for product 3an (400 MHz, CDCl₃)

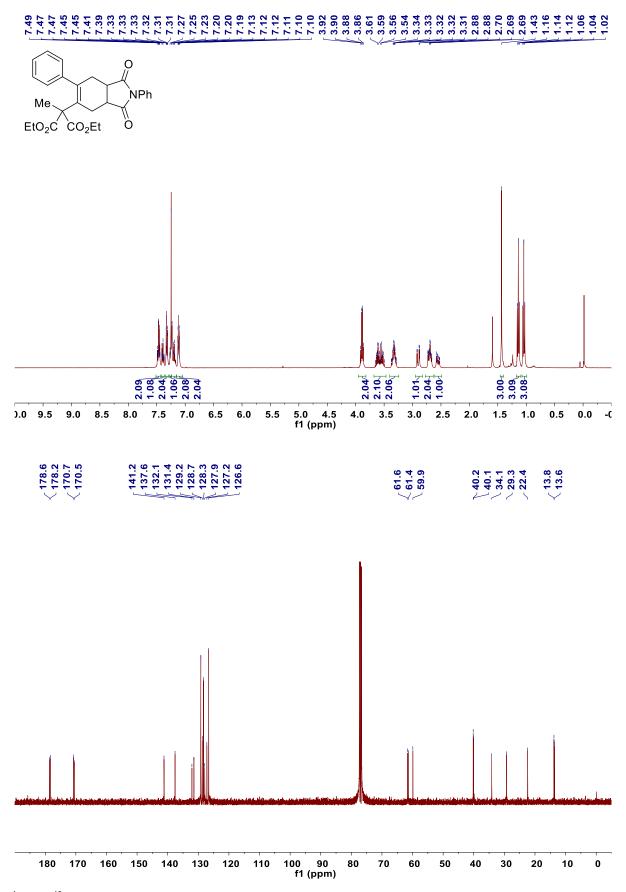

 ^{1}H and ^{13}C NMR spectra for product 3ao (400 MHz, CDCl₃)

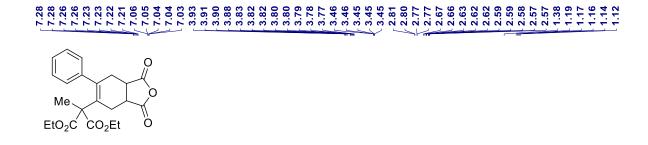


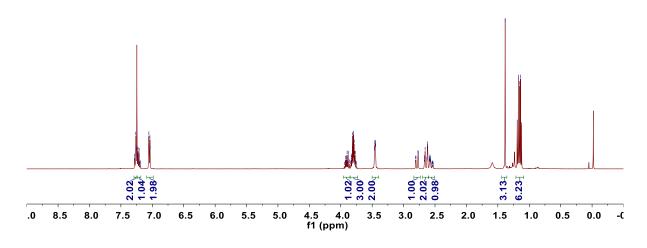


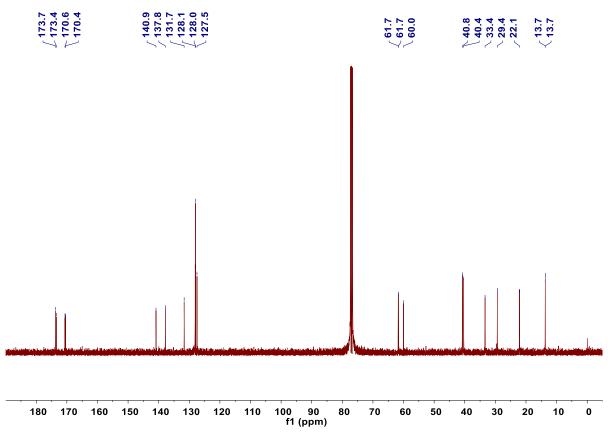


 ^{1}H and ^{13}C NMR spectra for product 3ap (400 MHz, CDCl₃)

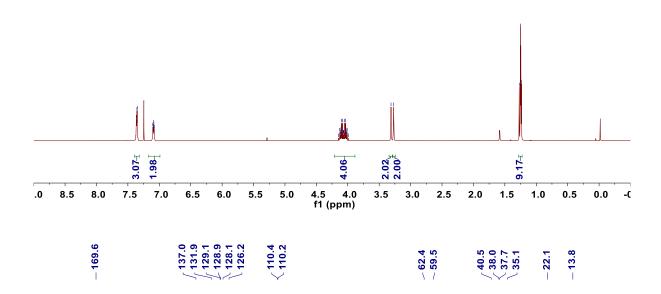


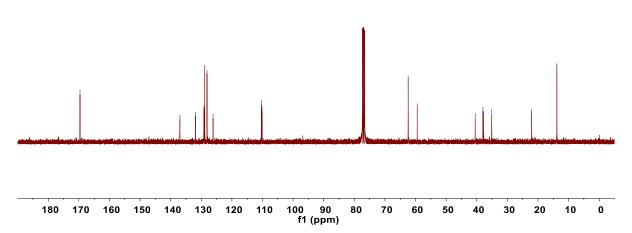


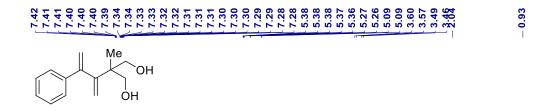


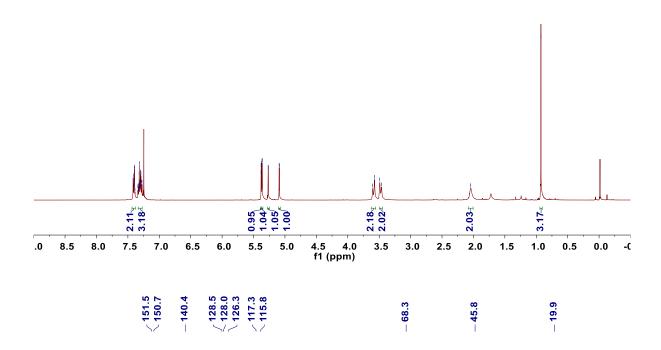

¹H, ¹³C and ¹⁹F NMR spectra for product 3aq (400 MHz, CDCl₃)

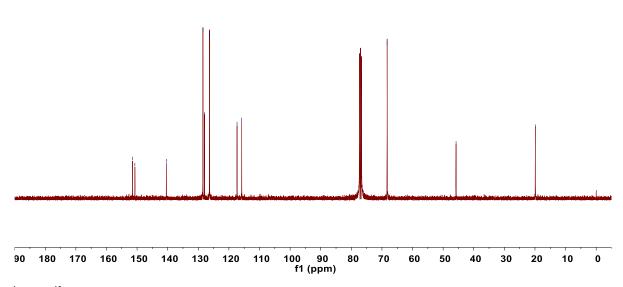
¹H and ¹³C NMR spectra for product 4 (400 MHz, CDCl₃)

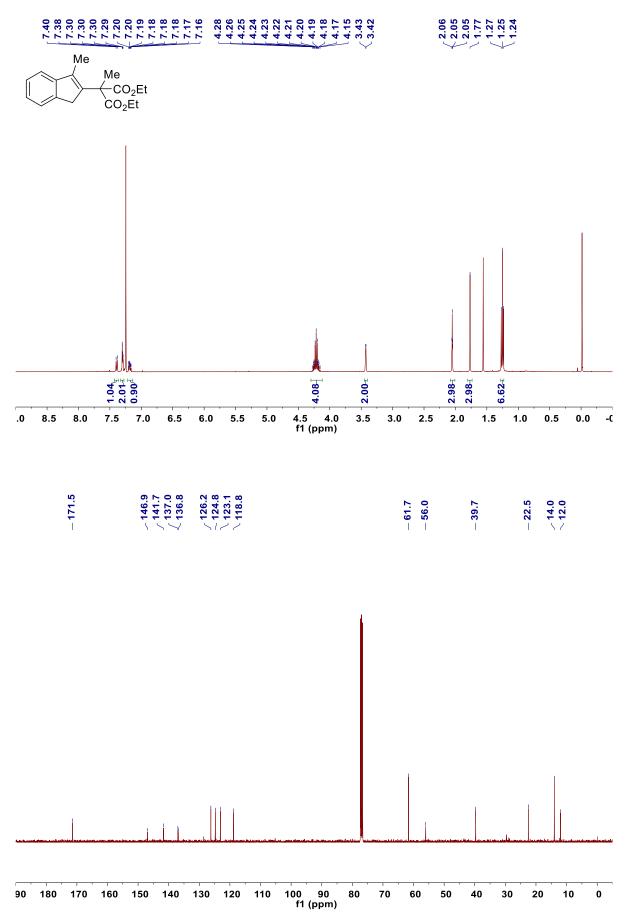




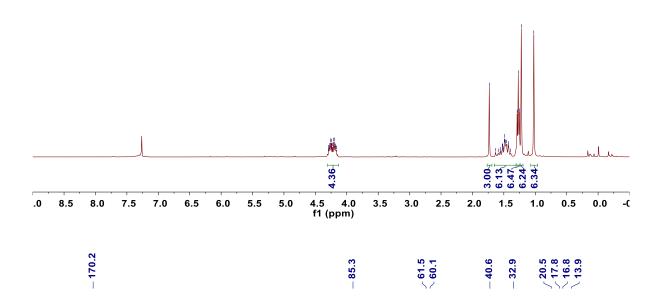

¹H and ¹³C NMR spectra for product 5 (400 MHz, CDCl₃)

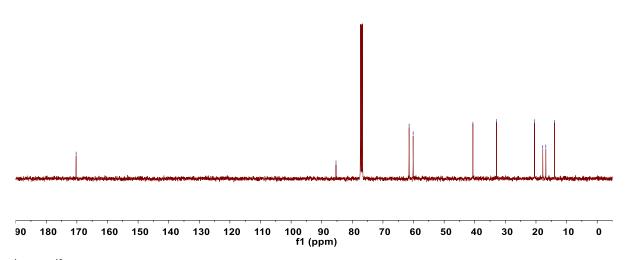





 ^{1}H and ^{13}C NMR spectra for product 6 (400 MHz, CDCl₃)




¹H and ¹³C NMR spectra for product 7 (400 MHz, CDCl₃)



 ^{1}H and ^{13}C NMR spectra for product 8 (400 MHz, CDCl₃)

 ^{1}H and ^{13}C NMR spectra for product 9 (400 MHz, CDCl₃)