Are Heptazine-Based Organic Light-Emitting Diode (OLED) Chromophores

Thermally Activated Delayed Fluorescence (TADF) or Inverted Singlet-Triplet (IST)

Systems?

Andrzej L. Sobolewski1 and Wolfgang Domcke2

¹ Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

² Department of Chemistry, Technical University of Munich, Garching, Germany

Supporting Information

Table S1. Vertical excitation energies (ΔE) and oscillator strengths (f) of the lowest excited states of HAP-3MF, determined with the TDDFT/B3LYP/cc-pVDZ method at the DFT-D3/B3LYP/cc-pVDZ equilibrium geometry of the electronic ground state.

state	$\Delta E/eV$	f
$^{3}A'(\pi\pi^{*})$	2.64	-
$^{1}A'(\pi\pi^{*})$	2.81	0.0
${}^{3}E'(\pi\pi^{*})$	2.94	-
$^{3}A''(n\pi^{*})$	3.45	-
${}^{1}E'(\pi\pi^{*})$	3.52	0.880
${}^{3}E''(n\pi^{*})$	3.54	-
${}^{1}A''(n\pi^{*})$	3.55	0.0
${}^{1}E''(n\pi^{*})$	3.65	0.0

Table S2. Vertical excitation energies (ΔE) and oscillator strengths (f) of the lowest excited states of HAP-3TPA and truncated HAP-3TPA (HAP-3TPA-t), determined with the TDDFT/B3LYP/cc-pVDZ method at the DFT-D3/B3LYP/cc-pVDZ equilibrium geometry of the electronic ground state.

	HAP-3TPA		HAP-3TPA-t	
state	$\Delta E/eV$	f	$\Delta E/eV$	f
$^{3}E(\pi\pi^{*})$	2.15	-	2.22	-
$^{3}A_{1}(\pi\pi^{*})$	2.20	-	2.27	-
$^{1}E(\pi\pi^{*})$	2.43	1.607	2.52	1.530
$^{3}A_{2}(\pi\pi^{*})$	2.65	-	2.65	-
$^{1}A_{1}(\pi\pi^{*})$	2.65	0.0	2.74	0.0
$^{1}A_{2}(\pi\pi^{*})$	2.81	0.0	2.81	0.0

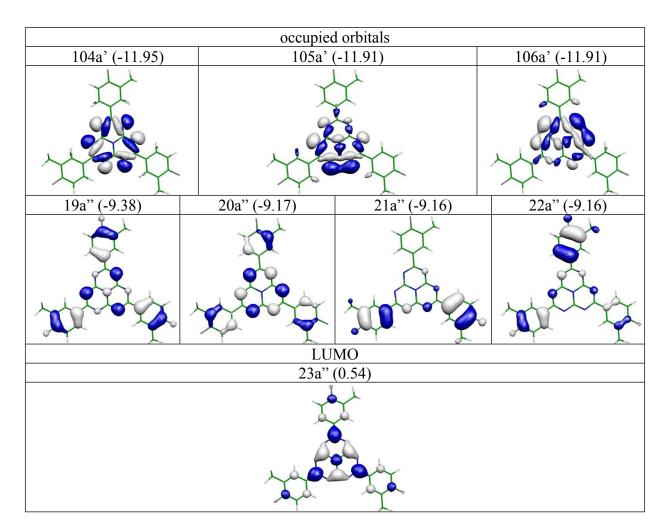


Figure S1. The highest occupied and lowest unoccupied Hartree-Fock orbitals involved in the lowest electronic excitations of HAP-3MF at the ground-state equilibrium geometry. The orbital energies (in eV) are shown in parentheses. Orbitals were plotted with an isosurface value of 0.03.

state	occ no.	hole	electron
¹ A'	0.951		
³ A'	0.960	The th	The st

Figure S2. Occupation numbers and natural transition orbitals involved in the excitation to the ${}^{1}A'$ and ${}^{3}A'$ excited states of HAP-3MF at the ground-state equilibrium geometry. Orbitals were plotted with an isosurface value of 0.03.

state	E _{ad} /eV	E _{em} /eV	occ. no.	hole	electron
C _{3h} symmetry				4	John L
¹ A'	2.47	2.42	0.951		
³ A'	2.72	2.67	0.974	LI CAL	Lasta
Δ_{ST}	-0.25	-0.25		Y Y	A T
C ₃ symmetry		$\downarrow \downarrow \downarrow$, de la		
\mathbf{S}_1	2.43	2.06	0.955		
T ₁	2.69	2.36	0.957	LI THE	LACEA
$\Delta_{\rm ST}$	-0.26	-0.30		$\downarrow \downarrow \bullet \downarrow$	the the

Figure S3. Adiabatic excitation energies (E_{ad}), vertical emission energies (E_{em}), natural occupation numbers, and natural transition orbitals of the lowest excited states of HAP-3MF, determined with the ADC(2)/cc-pVDZ method with the indicated symmetry constraints. Orbitals were plotted with an isosurface value of 0.03.

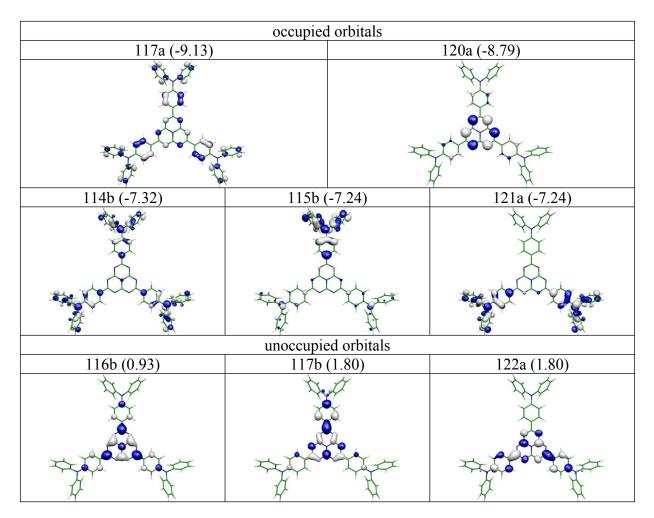


Figure S4. The highest occupied and lowest unoccupied Hartree-Fock orbitals involved in the lowest electronic excitations of HAP-3TPA-t at the ground-state equilibrium geometry. The orbital energies (in eV) are shown in parentheses. Orbitals were plotted with an isosurface value of 0.03.

state	occ no.	hole	electron
¹ A ₁	0.949	×++	
${}^{3}A_{1}$	0.957		
¹ E _x	0.831		
³ E _x	0.770	A the second	
¹ E _y	0.827	A HA	
³ E _y	0.759		

Figure S5. Occupation numbers and natural transition orbitals involved in the excitation to the lowest excited electronic states of HAP-3TPA-t at the ground-state equilibrium geometry. Orbitals were plotted with an isosurface value of 0.03.

state	E _{ad} /eV	E _{em} /eV	occ. no.	hole	electron
¹ B	2.50	2.42	0.950		
${}^{3}E_{x}$	2.49	2.36	0.947	100 m	
				-	and the second
³ E _y	2.55	2.48	0.768	₩¢¢	₩.
					A A

Figure S6. Adiabatic excitation energies (E_{ad}) vertical emission energies (E_{em}) , natural occupation numbers, and natural transition orbitals of the lowest excited states of HAP-3TPA-t determined with the ADC(2)/def-SV(P) method at the equilibrium geometry of a given excited state. Orbitals were plotted with an isosurface value of 0.03.