Supporting Information

Discovery of Selective Small Molecule Inhibitors for the ENL YEATS Domain
Xinyu R. Ma, ${ }^{1,7}$ Longxia Xu, ${ }^{2,7}$ Shiqing Xu, ${ }^{1}$ Brianna J. Klein, ${ }^{3}$ Hongkuan Wang, ${ }^{2}$ Sukant Das, ${ }^{1}$ Kuai Li, ${ }^{2}$ Kai S. Yang, ${ }^{1}$ Sana Sohail, ${ }^{2}$ Andrew Chapman, ${ }^{1}$ Tatiana G. Kutateladze, ${ }^{3}$ Xiaobing Shi, ${ }^{2}$ Wenshe Ray Liu, ${ }^{1,4,5,6, *}$ and Hong Wen ${ }^{2, *}$
${ }^{1}$ Texas A\&M Drug Discovery Laboratory, Department of Chemistry, Texas A\&M University, College Station, TX 77843, USA
${ }^{2}$ Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
${ }^{3}$ Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
${ }^{4}$ Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A\&M University, Houston, TX 77030, USA
${ }^{5}$ Department of Biochemistry and Biophysics, Texas A\&M University, College Station, TX 77843, USA
${ }^{6}$ Department of Molecular and Cellular Medicine, College of Medicine, Texas A\&M University, College Station, TX 77843, USA
${ }^{7}$ These authors contributed equally
*Correspondence: wliu@chem.tamu.edu (W.R.L), Hong.Wen@vai.org (H.W.)

Content of Supporting Information

Pages

Figure S1. Development of an AlphaScreen assay detecting the interaction between His-ENL YEATS domain and biotinylated H3K9ac peptide.
Figure S2. IC_{50} determination of compounds 1-15, 20-24 and 26 by AlphaScreen
assay.
Figure S3. SPR and NMR analysis of compound 11, 24 or 7.
S4
Figure S4. ENL inhibition by compound 7 in MLL-rearranged leukemia cells. S5
Figure S5. The triazolopyridine pharmacophore of compounds 1, 7, 11 and 24 S6 adopt comformations to form stronger pi-pi interactions with H56 residue in ENL than in AF9 YEATS domain.
Figure S6. HPLC chromotagraph, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 7 . S7
Figure S7. HPLC chromotagraph, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 11 . S8
Figure S8. HPLC chromotagraph, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $12 . \quad \mathrm{S} 9$
Figure S9. HPLC chromotagraph, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR of compound $24 . \quad$ S10
Table S1. Structure and IC_{50} of compounds from HTS with IC_{50} below $5 \mu \mathrm{M}$. S11-12
Molecular Formula Strings
PDB files of Docking Models

Figure S1. Development of an AlphaScreen assay detecting the interaction between HisENL YEATS domain and biotinylated H3K9ac peptide.
(A) A schematic representation of the developed AlphaScreen assay. (B) Alpha signals when different concentrations of His-ENL YEATS were titrated into 30 nM of H3K9ac peptide. (C) Alpha signals when different concentrations of the H3K9ac peptide were titrated into 100 nM of His-ENL YEATS. (D) The developed AlphaScreen assay produces robust and highly reproducible signals in the detection of the interaction between His-ENL YEATS and H3K9ac peptide. Data in B-D represent mean \pm SEM, $n \geq 4$ in B and C, and $n=192$ in D.

Figure S2. IC_{50} determination of compounds 1-15, 20-24 and 26 by AlphaScreen assay. Compounds were subjected to a series of 3-fold dilutions from $54 \mu \mathrm{M}$ for dose response curve AlphaScreen assays. IC_{50} values were determined from the plot using nonlinear regression of variable slope (four parameters) and curve fitting performed by the GraphPad Prism software. Error bars show \pm SEM, $n \geq 4$.

Figure S3. SPR and NMR analysis of compound 11, 24 or 7.
(A) Sensorgrams of SPR experiments and the fitted Langmuir 1:1 binding kinetic model with compound 11 (left panel) and 24 (right panel). (B) Overlay of ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HSQC spectra of ${ }^{15} \mathrm{~N}$ labeled ENL YEATS domain collected before and after the H3K27cr (aa 22-31 of H3) peptide (left panel) or compound 7 (right panel) was added stepwise. Spectra are color coded according to the protein-peptide molar ratio as indicated.

Figure S4. ENL inhibition by compound 7 in MLL-rearranged leukemia cells.
(A) Cell growth inhibition of ENL inhibitors at the indicated concentrations in MV4;11 and MOLM13 cells. Survived cells were calculated as \% relative to DMSO treated cells. Data represent mean \pm SEM, $n=3$. (B) Caco-2 cell permeability analysis of compound 7 and 11. Warfarin, Talinolol and Ranitidine are control compounds with varied permeability rates used for comparisons by the Charles River Laboratory. Data represent mean \pm SEM, $n \geq 2$. (C) CETSA in HeLa cells treated with $20 \mu \mathrm{M}$ compound 7 at the indicated temperatures. (D) qRT-PCR analysis of HOXA9 and MYC gene expression in ENL knockdown MOLM13 cells. Data represent mean \pm SEM $(\mathrm{n}=3)$, two-tailed Student's t test. **** $P<0.0001$. Western blot shows efficient knockdown of ENL. (E) 7 shows a synergistic effect with JQ1 in MV4;11 cells. Cells were treated with indicated doses of 7 and JQ1 or DMSO for 6 days.

Figure S5. The triazolopyridine pharmacophore of compounds 1, 7, 11 and 24 adopt comformations to form stronger pi-pi interactions with H 56 residue in ENL than in AF9 YEATS domain.

The molecular docking models comparison of compounds 1 (A), 7 (B), 11 (C), and 24 (D) bound to the YEATS domain of AF9 (white colored) and ENL (orange colored). Modeling was based on the PDB entries 5 j 9 s (ENL) and 4tmp (AF9).

Figure S6. HPLC chromotagraph, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 7.

Figure S7. HPLC chromotagraph, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 11.

Figure S8. HPLC chromotagraph, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR of compound 12.

Figure S9. HPLC chromotagraph, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR of compound 24.

Table S1. Structure and IC_{50} of compounds from HTS with IC_{50} below $5 \mu \mathrm{M}$.
(
(

