Supporting Information

Discovery of Selective Small Molecule Inhibitors for the ENL YEATS Domain

Xinyu R. Ma,^{1,7} Longxia Xu,^{2,7} Shiqing Xu,¹ Brianna J. Klein,³ Hongkuan Wang,² Sukant Das,¹ Kuai Li,² Kai S. Yang,¹ Sana Sohail,² Andrew Chapman,¹ Tatiana G. Kutateladze,³ Xiaobing Shi,² Wenshe Ray Liu,^{1,4,5,6,*} and Hong Wen^{2,*}

¹Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA

²Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA

³Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA

⁴Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA

⁵Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA ⁶Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA

⁷These authors contributed equally

*Correspondence: wliu@chem.tamu.edu (W.R.L), Hong.Wen@vai.org (H.W.)

Content of Supporting Information		
	Pages	
Figure S1. Development of an AlphaScreen assay detecting the interaction between His-ENL YEATS domain and biotinylated H3K9ac peptide.	S2	
Figure S2. IC ₅₀ determination of compounds 1-15, 20-24 and 26 by AlphaScreen assay.	S3	
Figure S3. SPR and NMR analysis of compound 11, 24 or 7.	S4	
Figure S4. ENL inhibition by compound 7 in MLL-rearranged leukemia cells.	S5	
Figure S5 . The triazolopyridine pharmacophore of compounds 1 , 7 , 11 and 24 adopt comformations to form stronger pi-pi interactions with H56 residue in ENL than in AF9 YEATS domain.	S6	
Figure S6. HPLC chromotagraph, ¹ H-NMR and ¹³ C-NMR of compound 7.	S7	
Figure S7. HPLC chromotagraph, ¹ H-NMR and ¹³ C-NMR of compound 11.	S8	
Figure S8. HPLC chromotagraph, ¹ H-NMR and ¹³ C-NMR of compound 12 .	S9	
Figure S9. HPLC chromotagraph, ¹ H-NMR and ¹³ C-NMR of compound 24.	S10	
Table S1. Structure and IC ₅₀ of compounds from HTS with IC ₅₀ below 5 μ M.	S11-12	
Molecular Formula Strings	uploaded	
PDB files of Docking Models	uploaded	

Figure S1. Development of an AlphaScreen assay detecting the interaction between His-ENL YEATS domain and biotinylated H3K9ac peptide.

(A) A schematic representation of the developed AlphaScreen assay. (B) Alpha signals when different concentrations of His-ENL YEATS were titrated into 30 nM of H3K9ac peptide. (C) Alpha signals when different concentrations of the H3K9ac peptide were titrated into 100 nM of His-ENL YEATS. (D) The developed AlphaScreen assay produces robust and highly reproducible signals in the detection of the interaction between His-ENL YEATS and H3K9ac peptide. Data in **B-D** represent mean \pm SEM, $n \ge 4$ in **B** and **C**, and n = 192 in **D**.

Figure S2. IC₅₀ determination of compounds 1-15, 20-24 and 26 by AlphaScreen assay. Compounds were subjected to a series of 3-fold dilutions from 54 μ M for dose response curve AlphaScreen assays. IC₅₀ values were determined from the plot using nonlinear regression of variable slope (four parameters) and curve fitting performed by the GraphPad Prism software. Error bars show \pm SEM, n \geq 4.

Figure S3. SPR and NMR analysis of compound 11, 24 or 7.

(A) Sensorgrams of SPR experiments and the fitted Langmuir 1:1 binding kinetic model with compound **11** (left panel) and **24** (right panel). (B) Overlay of ¹H, ¹⁵N HSQC spectra of ¹⁵N-labeled ENL YEATS domain collected before and after the H3K27cr (aa 22-31 of H3) peptide (left panel) or compound **7** (right panel) was added stepwise. Spectra are color coded according to the protein-peptide molar ratio as indicated.

Figure S4. ENL inhibition by compound 7 in *MLL*-rearranged leukemia cells.

(A) Cell growth inhibition of ENL inhibitors at the indicated concentrations in MV4;11 and MOLM13 cells. Survived cells were calculated as % relative to DMSO treated cells. Data represent mean \pm SEM, n = 3. (B) Caco-2 cell permeability analysis of compound 7 and 11. Warfarin, Talinolol and Ranitidine are control compounds with varied permeability rates used for comparisons by the Charles River Laboratory. Data represent mean \pm SEM, n \geq 2. (C) CETSA in HeLa cells treated with 20 μ M compound 7 at the indicated temperatures. (D) qRT-PCR analysis of *HOXA9* and *MYC* gene expression in ENL knockdown MOLM13 cells. Data represent mean \pm SEM (n = 3), two-tailed Student's *t* test. **** *P* < 0.0001. Western blot shows efficient knockdown of ENL. (E) 7 shows a synergistic effect with JQ1 in MV4;11 cells. Cells were treated with indicated doses of 7 and JQ1 or DMSO for 6 days.

Figure S5. The triazolopyridine pharmacophore of compounds 1, 7, 11 and 24 adopt comformations to form stronger pi-pi interactions with H56 residue in ENL than in AF9 YEATS domain.

The molecular docking models comparison of compounds **1** (A), **7** (B), **11** (C), and **24** (D) bound to the YEATS domain of AF9 (white colored) and ENL (orange colored). Modeling was based on the PDB entries 5j9s (ENL) and 4tmp (AF9).

Figure S6. HPLC chromotagraph, ¹H-NMR and ¹³C-NMR of compound 7.

Figure S7. HPLC chromotagraph, ¹H-NMR and ¹³C-NMR of compound 11.

Figure S8. HPLC chromotagraph, ¹H-NMR and ¹³C-NMR of compound 12.

Figure S9. HPLC chromotagraph, ¹H-NMR and ¹³C-NMR of compound 24.

Structure	IC ₅₀ (μM)	Structure	IC ₅₀ (μM)
MeS N N N	0.23 ± 0.02		2.57 ± 1.88
	0.39 ± 0.04	O H H N H	2.57 ± 0.25
O H H N N N N N N	0.46 ± 0.07		2.63 ± 0.92
O N H H N N N	0.48 ± 0.04	N N H N H	2.68 ± 0.18
	0.74 ± 0.06	O N H N N N N	2.76 ± 0.44
	0.75 ± 0.06		3.34 ± 0.20
CI N H CI CI	0.80 ± 0.09	N H N N	3.32 ± 0.40
O-N HN	0.99 ± 0.15		3.52 ± 0.21
N N N N	1.02 ± 0.08		3.56 ± 0.75
F	1.32 ± 0.11	N H N N N N N N	3.62 ± 0.37
O N H N H N N	1.33 ± 0.10		

Table S1. Structure and IC $_{50}$ of compounds from HTS with IC $_{50}$ below 5 $\mu M.$

S11

