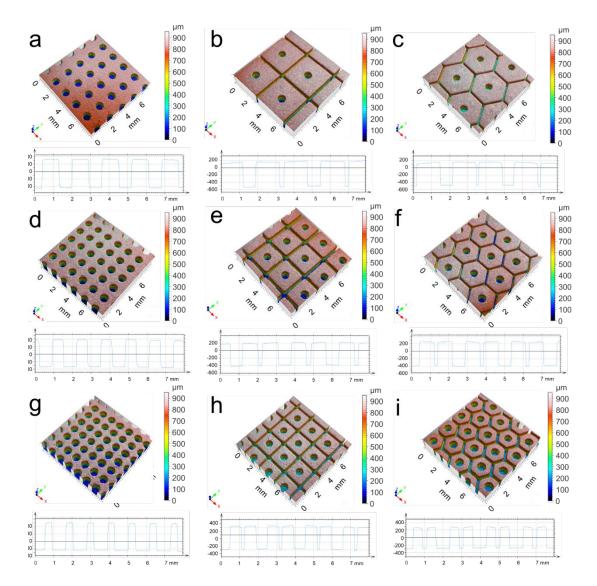
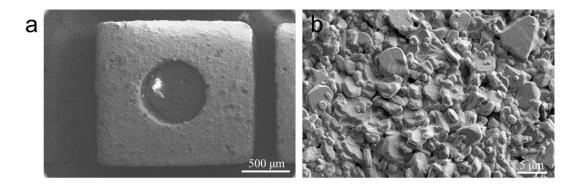
Supporting Information


3D Printed Topological $MoS_2/MoSe_2$ Heterostructures for Macroscale Superlubricity

Yu Zhao,† Hui Mei,*,† Peng Chang,† Yubo Yang,† Weifeng Huang,‡ Ying Liu,‡ Laifei Cheng,† Litong Zhang†


[†] Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China

[‡] State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China

^{*} Email address: meihui@nwpu.edu.cn (H. Mei)

Figure S1. 3D morphologies of bioinspired topological structures with different texture densities. (a, d, g) C structure with texture densities of 20%, 30% and 40%, respectively. (b, e, h) CS structure with texture densities of 20%, 30% and 40%, respectively. (c, f, i) CH structure with texture densities of 20%, 30% and 40%, respectively.

Figure S2. SEM images of 3D printed Al₂O₃ topological structures. (a) low-magnification. (b) high-magnification.

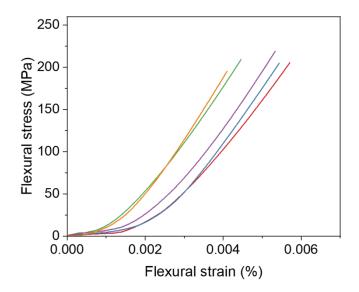
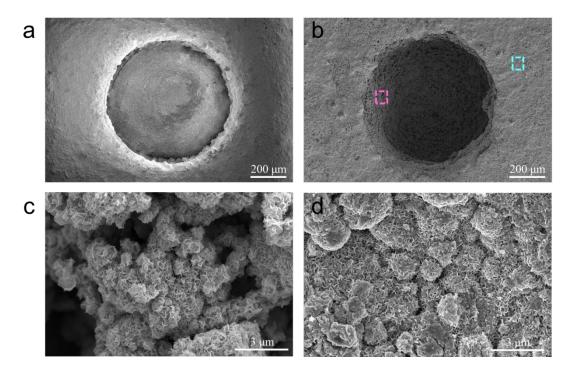
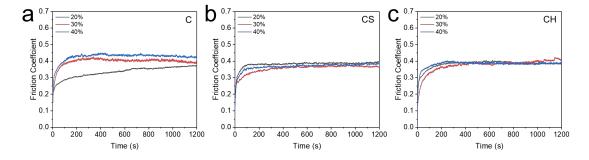
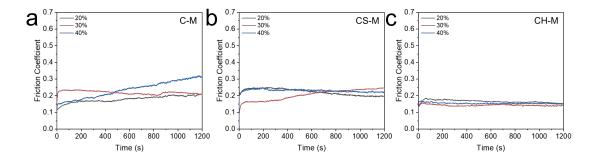
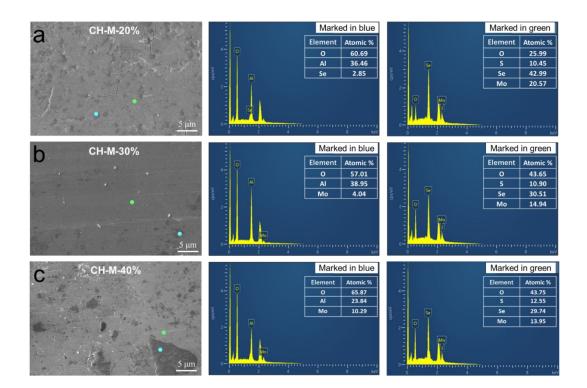



Figure S3. Flexural properties of 3D printed Al₂O₃ topological structures.

Figure S4. SEM images of bioinspired topological structures before and after introducing MoS₂/MoSe₂ heterostructures. (a) Printed pure Al₂O₃ topological structures. (b) Al₂O₃/MoSe₂ composites. (c) MoS₂/MoSe₂ heterostructures in the pits (the red rectangle in b). (d)s MoS₂/MoSe₂ heterostructures on the surface (the blue rectangle in b).

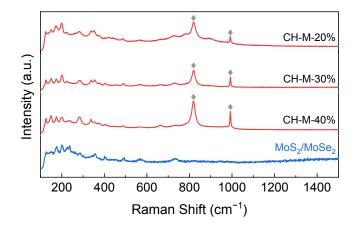

Figure S5. Friction coefficient curves of structures C (a), CS (b) and CH (c) under 2 N.

Figure S6. Friction coefficient curves of composites C-M (a), CS-M (b) and CH-M (c) under 2 N.

Figure S7. SEM images and corresponding EDS spectra of the wear tracks of CH-M composites with different texture densities (measured at 5 N). (a) CH-M-20%. (b) CH-M-30%. (c) CH-M-40%.

Figure S8. Raman spectra taken from the wear tracks of CH-M composites with different texture densities (measured under 5 N).

Table S1. A comparison of mechanical properties between printed topological structures and other recently reported ceramic materials.

Materials	Methods	Flexural	Hardness	Ref
		strength (MPa)		
Topological	DLP printing	227.62	$16.23 \pm 1.7 \text{ GPa}$	This
Al ₂ O ₃ structures				work
α -Al ₂ O ₃	Inkjet printing	49.4	245 HV	[23]
SiOC	DLP printing	-	2.11 GPa	[42]
C/Si_3N_4	PIP	207	-	[37]
SiC _f /HfC-SiC	PIP	108.6	-	[38]
SiC/Mo/CaF ₂	Hot pressed	_	731 HV	[39]
	Sintering			
Al_2O_3/MoS_2 -	SPS	_	$15 \pm 0.5 \text{ GPa}$	[40]
$BaSO_4$	2-2		22 2. 6 31 w	[]
ZrB ₂	SPS	-	13.2 ± 1 GPa	[41]

PIP: precursor infiltration and pyrolysis. SPS: spark-plasma-sintering.