Supporting Information for

Manipulating Frontal Polymerization and Instabilities with Phase-Changing Microparticles

Yuan Gao^{1,2}, Mason Dearborn³, Sagar Vyas^{1,2}, Aditya Kumar^{1,2}, Julie Hemmer¹, Zhao Wang³, Qiong Wu^{1,4}, Omar Alshangti^{1,4}, Jeffrey S. Moore^{1,4}, Aaron P. Esser-Kahn^{3,*}, Philippe H. Geubelle^{1,2,*}

¹Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL 61801, United States

²Department of Aerospace Engineering, University of Illinois, Urbana, IL 61801, United States ³Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL,60637, United States

⁴Department of Chemistry, University of Illinois, Urbana, IL 61801, United States

*Correspondence to:

Aaron P. Esser-Kahn (E-mail: <u>aesserkahn@uchicago.edu</u>, experimental part) Philippe H. Geubelle (E-mail: <u>geubelle@illinois.edu</u>, computational part)

This document includes:

Figures S1-S2

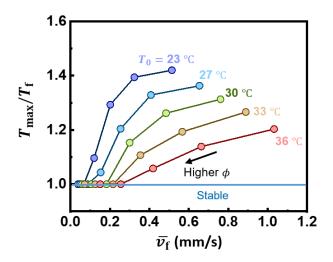


Figure S1. Temperature ratio $T_{\text{max}}/T_{\text{f}}$ as functions of average front velocity \overline{v}_{f} at various initial temperatures T_0 . At a specific initial temperature T_0 , a higher volume fraction of the PCL microparticles can reduces the instability (a temperature ratio close to 1) but compromises on \overline{v}_{f} . However, such compromise will be more acceptable at a higher T_0 , where a higher \overline{v}_{f} can be achieved at a given $T_{\text{max}}/T_{\text{f}}$ (to the bottom-right of the graph).

Figure S2. (a) DSC measurements of PCL microparticles at various ramping rates. The endothermic peaks indicate a melting enthalpy H_p of 89.0 \pm 2.0 J/g. (b) Evolutions of the degree of melting in PCL microparticles measured in experiments and predicted by the melting kinetics model in (3) in the main text.