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EXPERIMENTAL SECTION

Chemicals. Palladium (II) acetylacetonate (Pd(acac)2, 97%), copper (II) acetylacetonate (Cu(acac)2, 

97%), iridium (III) 2,4-pentanedionate (Ir(acac)3, 99%), Ruthenium (III) acetylacetone (Ru(acac)3, 99%), 

Rhodium (III) 2,4-pentanedionate (Rh(acac)3, 99%), oleylamine (OAm, 70%) and perchloric acid (HClO4, 

70%) were all purchased from Sigma-Aldrich. Ascorbic acid (AA, reagent grade) was obtained from 

Beijing J&K technology co., LTD. Iron (III) chloride hexahydrate (FeCl3·6H2O, reagent grade), hexane, 

ethanol and isopropanol were purchased from Beijing Tongguang Fine Chemicals Company. All the 

chemicals were used without further purification, and the solutions were freshly prepared with deionized 

water (18.2 MΩ/cm).

Synthesis of Ir-PdCu NPs. 7.6 mg Pd(acac)2, 6.5 mg Cu(acac)2, 12 mg Ir(acac)3, 5.4 mg 

FeCl3·6H2O, 35.6 mg AA and 5 mL OAm were mixed together into a 20 mL glass vial, the solution 

became clear after sonicating for 1 h. The resulting solution was then heated at 220 °C for 5 h in an oil 

bath. The resulting colloidal products were collected by centrifugation and washed three times with an 

ethanol/cyclohexane mixture. The synthesis of Ir8-PdCu and Ir18-PdCu were similar to Ir16-PdCu, except 

the usage of Ir(acac)3 was changed to 6 mg and 18 mg.

Synthesis of PdCu NPs. The synthetic procedure for PdCu NPs was similar to that of Ir-PdCu NPs, 

except the addition of Ir(acac)3.

Synthesis of PdCuIr NPs. The synthesis of PdCuIr was similar to Ir16-PdCu, except the addition of 

FeCl3·6H2O.

Synthesis of M-PdCu NPs. The synthesis of M-PdCu was similar to Ir16-PdCu. For Rh-PdCu, we 
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used 12 mg Rh(acac)3 as the substitute for Ir(acac)3. For Ru-PdCu, we used 12 mg Ru(acac)3 to take the 

place of Ir(acac)3.

Characterization. Transmission electron microscopy (TEM) was conducted on HITACHI HT7700 at 

an acceleration voltage of 100 kV. High-resolution transmission microscopy (HRTEM) images and energy 

dispersive X-ray spectroscopy (EDS) were taken by HITACHI SU-8010. The sample dispersed in 

cyclohexane was dropped onto carbon-coated molybdenum TEM grids using pipettes and dried naturally 

under ambient condition. Powder X-ray diffraction (XRD) spectra were recorded on an X’Pert-Pro X-ray 

powder diffractometer equipped with a Cu radiation source (λ = 0.15406 nm). The chemical valence of 

each element was collected by X-ray photoelectron spectra (XPS) on SSI SProbe XPS Spectrometer. The 

composition of as-prepared samples was collected by the inductively coupled plasma-atomic emission 

spectroscopy (ICP-AES, Agilent 8800).

Electrochemical measurements. The as-prepared samples were loaded on carbon (Vulcan XC-72) 

by sonicating in cyclohexane for 2 h. The catalysts were collected by centrifugation with ethanol for three 

times. The products were dried at 50 ℃ oven and annealed at 220 ℃ for 2 h to remove the redundant 

organic surfactant around the surface. The as-prepared catalysts were dispersed into the mixture of 

deionized water, isopropanol and Nafion solution (v: v: v 1: 1: 0.0025) respectively, the resulting 

homogeneous 1 mg mL-1 inks were obtained after sonicating for around 1 h.

All the electrochemical tests were conducted on CHI 660e electrochemical workstation (Chenhua, 

Shanghai). A graphite rod electrode, saturated calomel electrode (SCE) and glassy carbon rotating disk 

electrode (RDE) (diameter: 5 mm, area: 0.196 cm2) were used as counter electrode, reference electrode and 

working electrode, respectively. 10 μL of the inks was dropped onto the RDE, in which the Ir loading mass 

on RDE was 1.07 μg for Ir16-PdCu/C based on ICP-AES analysis.
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HER and OER test. The HER and OER performance were tested in N2 and O2-saturated 0.1 M 

HClO4 or 0.1 M KOH, respectively. Before every test, the catalyst modified GCE was activating by 

cycling at -0.2-1.1 V (vs RHE) at 500 mV s-1 for 100 cycles. The polarization curves were conducted at a 

scan rate of 5 mV s-1 with 95 % iR drop compensation, and the chronoamperometry was measured at a 

constant potential to record the change of current density in 5000 s. 

Turnover frequency (TOF). The TOF value was calculated by assuming 100% faradaic efficiency 

from the following equation: TOF = j·A / (n·F·N). Here, j is the current density under a certain 

overpotential with 95% iR-compensation (mA cm-2), n is the electron transfer number of the reaction 

process (2 for HER or 4 for OER), F is Faradic constant (96485 C), N is the moles number of the active 

component in catalyst and could be calculated by N = QH / nF. Here, QH is integral area of H adsorption 

peak in acid CV curves.[1].

DFT Calculation: DFT calculations of CuPd and CuPdIr slabs were computed by using using Vienna 

ab initio simulation package (VASP) within a generalized gradient approximation (GGA) of 

exchange-correlation functional in the Perdew, Burke, and Ernzerhof (PBE). And GGA+U functional was 

used with an additional Coulomb potential U = 2.5 eV (Cu), 2.9 eV (Pd) and 2.1 eV (Ir) applied on states 

of d-orbit. A plane-wave energy cut off of 400 eV was used together with norm-conserving 

pseudopotentials, and the Brillouin zone was sampled with a 2 × 2 × 1 Monkhorst–Pack grid. The structure 

was fully optimized until the force on each atom is less than 10−3 eV/Å. To avoid periodic interaction, a 

vacuum layer of 20 Å was incorporated into the slabs. The free energy (G) was computed from G = E + 

ZPE - T∆S. Where E was the total energy, ZPE was the zero-point energy, the entropy (∆S) of each 

adsorbed state were yielded from DFT calculation, whereas the thermodynamic corrections for gas 

molecules were from standard tables.
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Overall water splitting test. The overall water splitting tests were conducted in a two-electrode 

system at 0.1 M KOH. The catalyst inks were dropped on 1*1 cm carbon fiber paper (CFP) with a loading 

mass of 20 μg cm-2. Before the polarization curve test, the surfaces of the catalysts were cleaned by cyclic 

voltammetry between 1.0 V and 1.6 V (vs RHE) at 500 mV s-1 for 100 cycles. Durability tests of overall 

water splitting were performed by chronoamperometry at a constant potential to record the change of 

current density in 10 h. The chronopotentiometry tests were conducted at 10 mA for 10 h.
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Figure S1. TEM patterns (a) and particle size distribution (b) of as-prepared PdCu nanoparticles.
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Figure S2. TEM patterns (a) and particle size distribution (b) of as-prepared Ir16-PdCu nanoparticles.

5.0 5.5 6.0 6.5 7.0 7.5 8.0
0

5
10

15

20

25
30

35

40

Pe
rc

en
t /

 %

Particle size / nm
50 nm

a b
= 6.4 nm

Figure S3. TEM patterns (a) and particle size distribution (b) of as-prepared Ir8-PdCu nanoparticles.
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Figure S4. TEM patterns (a) and particle size distribution (b) of as-prepared Ir18-PdCu nanoparticles.
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Figure S5. Comparative XPS spectrum of Ir16-PdCu/C and commercial Ir/C. (a) Detailed Ir 4f spectrum. 

(a) Full XPS spectrums. (c) Enlargement of the dotted box in a.
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Figure S6. TEM patterns (a) and particle size distribution (b) of as-prepared PdCuIr nanoparticles 

synthesized without the addition of Fe3+.
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Figure S7. Detailed Rh and Ru XPS spectrum of PdCuRh/C and PdCuRu/C synthesized without 

Fe3+. (a) Rh spectrum of PdCuRh/C. (b) Ru spectrum of PdCuRu/C.
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Figure S8. XPS patterns of Ir16-PdCu nanoparticles. (a) Pd 3d; (b) Cu 2p.
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Figure S9. (a) CO stripping curves of as-prepared catalysts. (b) Corresponding ECSA calculated by CO 

stripping.
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Figure S10. OER mass activity at the overpotential of 300 mV (a) and TOFs (b) of as-prepared catalysts in 

0.1 M KOH. 
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Figure S11. Detailed Ir XPS spectrum of Ir8-PdCu/C and Ir18-PdCu/C. (a) Ir8-PdCu/C. (b) 

Ir18-PdCu/C. 
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Figure S12. TEM images of Ir16-PdCu/C before (a) and after (b) OER durability test, and TEM images of 

Pt/C before (c) and after (d) HER durability test.
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Figure S13. OER performance of Ir-PdCu and PdCu NPs in 0.1 M HClO4. (a) Polarization curves with 

95% iR-compensation; (b) Overpotential at the current density of 10 mA cm-2; (c) Tafel slopes with 95% 

iR-compensation; (d) Chronoamperometry test at current densities of 10 mA cm-2 for 5000 s.
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Figure S14. OER mass activity at the overpotential of 300 mV (a) and TOFs (b) of as-prepared catalysts in 

0.1 M HClO4. 
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Figure S15. OER performance of Ir-PdCu and PdCu NPs in 0.1 M PBS. (a) Polarization curves with 95% 

iR-compensation; (b) Overpotential at the current density of 10 mA cm-2; (c) HER mass activity of 

as-prepared catalysts in 0.1 M PBS at the overpotential of 300 mV. (d) TOF curves of as-prepared 

catalysts.
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Figure S16. HER mass activity at the overpotential of 100 mV (a) and TOFs (b) of as-prepared catalysts in 
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Figure S17. TEM images of Ir16-PdCu/C before (a) and after (b) HER durability test, and TEM images of 

Ir/C before (c) and after (d) HER durability test.
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Figure S18. HER performance of Ir-PdCu and PdCu NPs in 0.1 M HClO4. (a) Polarization curves with 

95% iR-compensation; (b) Overpotential at the current density of 10 mA cm-2; (c) Tafel slopes with 95% 

iR-compensation; (d) Chronoamperometry test at current densities of 10 mA cm-2 for 5000 s.
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Figure S19. HER mass activity at the overpotential of 100 mV (a) and TOFs (b) of as-prepared catalysts in 

0.1 M HClO4. 
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Figure S20. HER performance of Ir-PdCu and PdCu NPs in 0.1 M PBS. (a) Polarization curves with 95% 

iR-compensation; (b) Overpotential at the current density of 10 mA cm-2; (c) HER mass activity of 

as-prepared catalysts in 0.1 M PBS at the overpotential of 100 mV. (d) TOF curves of as-prepared 

catalysts.
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Figure S21. XPS spectrum of Ir16-PdCu/C after OER stability test. (a) Detailed Pd 3d spectrum. (b) 

Detailed Cu 2p spectrum. (c) Comparison of Cu spectrum before and after OER test.
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Figure S22. (a) Overall water splitting polarization curves of Ir16-PdCu/C and PdCuIr/C in 0.1 M KOH at 
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Figure S23. TEM images and XPS patterns of Rh-PdCu (a, d), Ru-PdCu (b, c).
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Table S1 Metal content of as-prepared materials measured by ICP-AES.

Sample Pd / at% Cu / at% Ir / at%

PdCu/C 48.5 51.5

Ir8-PdCu/C 50.9 41.0 8.1

Ir16-PdCu/C 43.2 40.6 16.2

Ir18-PdCu/C 43.0 39.2 17.8

PdCuIr 41.9 42.3 15.8

Table S2 OER TOFs of as-prepared catalysts in different electrode at 300 mV.

TOFη=300 mV / s-1

Sample
0.1 M KOH 0.1 HClO4 0.1 M PBS

Ir/C 19.5 16.3 0.3

PdCu/C 1.1 0.95 1.0

Ir8-PdCu/C 1.8 1.8 1.1

Ir16-PdCu/C 64.1 32.4 1.2

Ir18-PdCu/C 8.5 8.5 28.3
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Table S3 HER TOFs of as-prepared catalysts in different electrode at 100 mV.

TOFη=100 mV / s-1

Sample
0.1 M KOH 0.1 HClO4 0.1 M PBS

Pt/C 20.6 66.3 10.4

PdCu/C 2.9 7.7 9.2

Ir8-PdCu/C 13.3 34.3 9.4

Ir16-PdCu/C 36.9 95.0 13.9

Ir18-PdCu/C 26.7 116.9 16.7

Table S4 Summary and comparisons of recently reported Pd/Ir-based catalysts for OER.

Sample Electrolyte Current density Overpotential References

Ir16-PdCu/C 0.1 M KOH 10 mA cm-2 284 mV This work

PdP2@CB 1.0 M KOH 10 mA cm-2 270 mV [2]

Pd@3DOM-Co3O4 0.1 M KOH 2 mA cm-2 381 mV [3]

PdCo-300 0.1 M KOH 10 mA cm-2 350 mV [4]

Pd2/MoS2 1.0 M KOH 10 mA cm-2 320 mV [5]

Pd5Mg20 1.0 M KOH 4.5 mA cm-2 470 mV [6]

Fe2O3/Pd 1.0 M KOH 10 mA cm-2 383 mV [7]
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Pd1@Co/NC 1.0 M KOH 10 mA cm-2 470 mV [8]

PdNiP-H 1.0 M KOH 10 mA cm-2 330 mV [9]

Ir@N-G-750 1.0 M KOH 10 mA cm-2 270 mV [10]

Ir0.75W0.25 0.1 M KOH 10 mA cm-2 281 mV [11]

Ir-NR/C 1.0 M KOH 10 mA cm-2 296 mV [12]

Ir-Pd 
nanotetrahedrons

1.0 M NaOH 10 mA cm-2 284 mV [13]

Ir@S–C/rGO 
composite

1.0 M KOH 10 mA cm-2 280 mV [14]

Table S5 Summary and comparisons of recently reported Pd/Ir-based catalysts for HER.

Sample Electrolyte Current density Overpotential References

Ir16-PdCu/C 0.1 M KOH 10 mA cm-2 99 mV This work

RGO/MoS2/Pd 1.0 M KOH 10 mA cm-2 86 mV [15]

PdNiCo@NC 1.0 M KOH 10 mA cm-2 42 mV [16]

Ir-OMC-NF 1.0 M KOH 10 mA cm-2 130 mV [17]

Ir NP/C 0.1 M KOH 10 mA cm-2 79 mV [18]

Co@Ir/NC-10% 1.0 M KOH 10 mA cm-2 121 mV [19]

Ir/Pt(poly) electrode 0.1 M NaOH 10 mA cm-2 80 mV [20]
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