Supporting Information for

Engineering a bifunctional ComQXPA-P_{srfA} quorum-sensing circuit for dynamic control of gene expression in *Corynebacterium glutamicum*

Haiyan Liu^{1,2}, Feng Shi^{1,2,3,*}, Shuyu Tan^{1,2}, Xinping Yu^{1,2}, Wenmei Lai^{1,2}, Yongfu Li⁴

¹State Key Laboratory of Food Science and Technology, ²Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, ³International Joint Laboratory on Food Safety, ⁴National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China

*Corresponding author E-mail: shifeng@jiangnan.edu.cn

Table S1. Sequences of nature and engineered P_{srfA} promoters in this study.

Table S2. Strains used in this study.

Table S3. Plasmids used in this study.

Table S4. Primers used in this study.

Table S5. Sequences of sRNAs in this study.

Figure S1. Regulatory mechanism of the ComQXPA-P_{srfA} QS system in Bacillus subtilis.

Figure S2. Fitted curve of strain QS1T2.

Figure S3. Architecture of the ComQXPA-P_{srfA} QS-based hfq-sRNA circuit.

Figure S4. Fitted curves of strains QS1T22, QS1T23, QS1T24, QS1T25, QS1T26 and QS1T27.

Figure S5. SDS-PAGE of different *amyE*-expressing strains regulated by ComQXPA-P_{srfA} QS circuits.

Figure S6. Inhibition efficiency of different P_{srfA} M-regulated *hfq*-sRNA cassettes targeting *amyE* in *C*. *glutamicum*.

Promoter	Sequence
P _{srfA}	GTGATA AAAACATTTTTTCA TTTAAACTGA ACGGTAGAAA
P _{srfA} library	TTGNCA AAAACATTTTTTTCA GNTANANTNG ACGGTAGAAA
M26	TTGTCA AAAACATTTTTTTCA GTTATCAGTGG ACGGTAGAAA
M6	TTGACAAAAACATTTTTTTCAGCTA - ACTCGACGG - AGAA -
M21	TTGTCAAAAACATTTTTTTCAGTTATA - TCGACGGTAGAAA
M16	G-C-AAAACATTTTTTTCAGTTACAATTGACGGTAGAAA
M2	TTGA AACATTTTTTTCAGATAAAGTCGACGGTAGAAA
M3	TTGGCAAAAACATTTTTTTCAGATAC - GTAGAAA
M1	TTG – TAAAAACATTTTT CAGCTACACTCGACGGTAGAAA
M10	TTGCCA AAAACATTTTTTTCA GTTAATAGTAG ACGGTAGAAA
M40	TTGACAAAAACATTTTTTTCAGATA TGACGGTAGAAA
M18	C - TGACAAAAACATTTTTTCAGCTAGACTAGACGGTAGAAA
M11	- TGCCAAAAACATTTTTTTCAGATAAAGTCGACGGTAGAAA
M22	- TGGCAAAAACATTTTTTTCAGATAGACTGGACGGTAGAAA
M36	TTGTCA AGAACATTTTTTTCA AGGTAAAGTTG ACGGTAGAAA
M20	TTGGCA AAAACATTTTTTTCA GATAGATTCG ACGGTAGAAA
M29	TTGTCAAAAACATTTTTTTCA - CTACAGTTGACGGTAGAAA
M28	TTGCCA AAAAACATTTTTTTCA GATAGACTTG ACGGTAGAAA
M35	TTGTCA AAAACATTTTTTTCA GGTTAGAGTT GAGGTAGAAA
M14	TTGCCA AAAACATTTTTTTCA GATACAATAG GAGGTAGAAA

Table S1. Sequences of natural and engineered P_{srfA} promoters in this study.

The -35 region and -10 region of natural and engineered P_{srfA} promoters are in boldface in this table.

Strains	Relevant characteristics	Source
JM109	E. coli gene-cloning strain	Novagen
SN01	Ile-producing strain of C. glutamicum ssp. lactofermentum	CCTCC
B. subtilis 168	rpC2	Lab stock
MG1655	F-, λ-, <i>rph</i> ⁻¹	Lab stock
QS1T0	SN01 harboring pS1 and pSYW	This study
RT1	SN01 harboring pT1	This study
RT2	SN01 harboring pT2	This study
QS1T2	SN01 harboring pS1and pT2	This study
RT3	SN01 harboring pT3	This study
RT4	SN01 harboring pT4	This study
RT5	SN01 harboring pT5	This study
QS1T5	SN01 harboring pS1 and pT5	This study
QS1T6	SN01 harboring pS1 and pT6	This study
QS1T7	SN01 harboring pS1 and pT7	This study
QS1T8	SN01 harboring pS1 and pT8	This study
QS2T6	SN01 harboring pS2 and pT6	This study
QS3T6	SN01 harboring pS3 and pT6	This study
QS4T6	SN01 harboring pS4 and pT6	This study
QS5T6	SN01 harboring pS5 and pT6	This study
QS2T9	SN01 harboring pS2 and pT9	This study
QS3T9	SN01 harboring pS3 and pT9	This study
QS4T9	SN01 harboring pS4 and pT9	This study
QS5T9	SN01 harboring pS5 and pT9	This study
QS2T10	SN01 harboring pS2 and pT10	This study
QS3T10	SN01 harboring pS3 and pT10	This study
QS4T10	SN01 harboring pS4 and pT10	This study
QS5T10	SN01 harboring pS5 and pT10	This study

Table S2. Strains used in this study.

QS2T11SN01 harboring pS2 and pT11This studyQS3T11SN01 harboring pS3 and pT11This studyQS4T11SN01 harboring pS4 and pT11This studyQS5T11SN01 harboring pS5 and pT11This studyQS1T12SN01 harboring pS1 and pT12This studyQS1T13SN01 harboring pS1 and pT13This studyQS1T14SN01 harboring pS1 and pT13This studyQS1T15SN01 harboring pS1 and pT15This studyQS1T16SN01 harboring pS1 and pT16This studyQS1T17SN01 harboring pS1 and pT17This studyQS1T18SN01 harboring pS1 and pT18This studyQS1T19SN01 harboring pS1 and pT19This studyQS1T19SN01 harboring pS1 and pT22This studyQS1T20SN01 harboring pS1 and pT23This studyQS1T23SN01 harboring pS1 and pT23This studyQS1T24SN01 harboring pS1 and pT25This studyQS1T25SN01 harboring pS1 and pT26This studyQS1T26SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pS1 and pT26This studyQS1T26SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pS1 and pT26This studyQS1T26SN01 harboring pT25This studyRT25SN01 harboring pT26This studyRT26SN01 harboring pT27This studyRT27SN01 harboring pT26This study			
QS4T11SN01 harboring pS4 and pT11This studyQS5T11SN01 harboring pS5 and pT11This studyQS1T12SN01 harboring pS1 and pT12This studyQS1T13SN01 harboring pS1 and pT13This studyQS1T14SN01 harboring pS1 and pT14This studyQS1T15SN01 harboring pS1 and pT15This studyQS1T16SN01 harboring pS1 and pT16This studyQS1T17SN01 harboring pS1 and pT17This studyQS1T18SN01 harboring pS1 and pT18This studyQS1T19SN01 harboring pS1 and pT19This studyQS1T20SN01 harboring pS1 and pT20This studyQS1T21SN01 harboring pS1 and pT22This studyQS1T22SN01 harboring pS1 and pT23This studyQS1T24SN01 harboring pS1 and pT25This studyQS1T25SN01 harboring pS1 and pT26This studyQS1T26SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T28SN01 harboring pS1 and pT27This studyQS1T29SN01 harboring pS1 and pT27This studyQS1T26SN01 harboring pT23This studyQS1T27SN01 harboring pT23This studyRT24SN01 harboring pT24This studyRT25SN01 harboring pT25This studyRT24SN01 harboring pT26This studyRT24SN01 harboring pT26This study	QS2T11	SN01 harboring pS2 and pT11	This study
QS5T11SN01 harboring pS5 and pT11This studyQS1T12SN01 harboring pS1 and pT12This studyQS1T13SN01 harboring pS1 and pT13This studyQS1T14SN01 harboring pS1 and pT14This studyQS1T15SN01 harboring pS1 and pT15This studyQS1T16SN01 harboring pS1 and pT16This studyQS1T17SN01 harboring pS1 and pT17This studyQS1T18SN01 harboring pS1 and pT17This studyQS1T19SN01 harboring pS1 and pT18This studyQS1T20SN01 harboring pS1 and pT20This studyQS1T21SN01 harboring pS1 and pT21This studyQS1T22SN01 harboring pS1 and pT22This studyQS1T23SN01 harboring pS1 and pT23This studyQS1T24SN01 harboring pS1 and pT25This studyQS1T25SN01 harboring pS1 and pT27This studyQS1T26SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T28SN01 harboring pS1 and pT27This studyQS1T29SN01 harboring pS1 and pT27This studyQS1T26SN01 harboring pT23This studyRT23SN01 harboring pT24This studyRT24SN01 harboring pT25This studyRT25SN01 harboring pT26This studyRT26SN01 harboring pT26This study	QS3T11	SN01 harboring pS3 and pT11	This study
QS1T12SN01 harboring pS1 and pT12This studyQS1T13SN01 harboring pS1 and pT13This studyQS1T14SN01 harboring pS1 and pT14This studyQS1T15SN01 harboring pS1 and pT15This studyQS1T16SN01 harboring pS1 and pT16This studyQS1T17SN01 harboring pS1 and pT17This studyQS1T18SN01 harboring pS1 and pT17This studyQS1T19SN01 harboring pS1 and pT18This studyQS1T20SN01 harboring pS1 and pT20This studyQS1T21SN01 harboring pS1 and pT21This studyQS1T22SN01 harboring pS1 and pT23This studyQS1T23SN01 harboring pS1 and pT24This studyQS1T24SN01 harboring pS1 and pT25This studyQS1T25SN01 harboring pS1 and pT27This studyQS1T26SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T24SN01 harboring pS1 and pT27This studyQS1T25SN01 harboring pT23This studyQS1T26SN01 harboring pT23This studyRT23SN01 harboring pT25This studyRT24SN01 harboring pT25This studyRT25SN01 harboring pT26This studyRT26SN01 harboring pT26This study	QS4T11	SN01 harboring pS4 and pT11	This study
QS1T13SN01 harboring pS1 and pT13This studyQS1T14SN01 harboring pS1 and pT14This studyQS1T15SN01 harboring pS1 and pT15This studyQS1T16SN01 harboring pS1 and pT16This studyQS1T17SN01 harboring pS1 and pT17This studyQS1T18SN01 harboring pS1 and pT18This studyQS1T19SN01 harboring pS1 and pT19This studyQS1T20SN01 harboring pS1 and pT20This studyQS1T21SN01 harboring pS1 and pT22This studyQS1T23SN01 harboring pS1 and pT23This studyQS1T24SN01 harboring pS1 and pT25This studyQS1T25SN01 harboring pS1 and pT26This studyQS1T26SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T28SN01 harboring pS1 and pT27This studyQS1T29SN01 harboring pS1 and pT27This studyQS1T26SN01 harboring pT23This studyQS1T27SN01 harboring pT23This studyRT23SN01 harboring pT24This studyRT24SN01 harboring pT25This studyRT25SN01 harboring pT26This studyRT26SN01 harboring pT26This study	QS5T11	SN01 harboring pS5 and pT11	This study
QSIT14SN01 harboring pS1 and pT14This studyQSIT15SN01 harboring pS1 and pT15This studyQSIT16SN01 harboring pS1 and pT16This studyQSIT17SN01 harboring pS1 and pT17This studyQSIT18SN01 harboring pS1 and pT18This studyQSIT19SN01 harboring pS1 and pT19This studyQSIT20SN01 harboring pS1 and pT20This studyQSIT21SN01 harboring pS1 and pT21This studyQSIT22SN01 harboring pS1 and pT22This studyQSIT23SN01 harboring pS1 and pT23This studyQSIT24SN01 harboring pS1 and pT25This studyQSIT25SN01 harboring pS1 and pT26This studyQSIT26SN01 harboring pS1 and pT27This studyQSIT27SN01 harboring pS1 and pT27This studyQSIT28SN01 harboring pS1 and pT27This studyQSIT29SN01 harboring pS1 and pT27This studyQSIT26SN01 harboring pT23This studyQSIT27SN01 harboring pT23This studyRT23SN01 harboring pT24This studyRT24SN01 harboring pT25This studyRT25SN01 harboring pT26This studyRT26SN01 harboring pT26This study	Q\$1T12	SN01 harboring pS1 and pT12	This study
QS1T15SN01 harboring pS1 and pT15This studyQS1T16SN01 harboring pS1 and pT16This studyQS1T17SN01 harboring pS1 and pT17This studyQS1T18SN01 harboring pS1 and pT18This studyQS1T19SN01 harboring pS1 and pT19This studyQS1T20SN01 harboring pS1 and pT20This studyQS1T21SN01 harboring pS1 and pT21This studyQS1T22SN01 harboring pS1 and pT22This studyQS1T23SN01 harboring pS1 and pT23This studyQS1T24SN01 harboring pS1 and pT24This studyQS1T25SN01 harboring pS1 and pT25This studyQS1T26SN01 harboring pS1 and pT26This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T28SN01 harboring pS1 and pT27This studyQS1T29SN01 harboring pS1 and pT27This studyQS1T26SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T28SN01 harboring pT22This studyQS1T29SN01 harboring pT23This studyRT24SN01 harboring pT24This studyRT25SN01 harboring pT25This studyRT26SN01 harboring pT26This study	Q\$1T13	SN01 harboring pS1 and pT13	This study
QS1T16SN01 harboring pS1 and pT16This studyQS1T17SN01 harboring pS1 and pT17This studyQS1T18SN01 harboring pS1 and pT18This studyQS1T19SN01 harboring pS1 and pT19This studyQS1T20SN01 harboring pS1 and pT20This studyQS1T21SN01 harboring pS1 and pT21This studyQS1T22SN01 harboring pS1 and pT22This studyQS1T23SN01 harboring pS1 and pT23This studyQS1T24SN01 harboring pS1 and pT24This studyQS1T25SN01 harboring pS1 and pT25This studyQS1T26SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T28SN01 harboring pS1 and pT27This studyQS1T29SN01 harboring pT23This studyQS1T24SN01 harboring pT23This studyRT25SN01 harboring pT25This studyRT25SN01 harboring pT26This studyRT26SN01 harboring pT26This study	QS1T14	SN01 harboring pS1 and pT14	This study
QS1T17SN01 harboring pS1 and pT17This studyQS1T18SN01 harboring pS1 and pT18This studyQS1T19SN01 harboring pS1 and pT19This studyQS1T20SN01 harboring pS1 and pT20This studyQS1T21SN01 harboring pS1 and pT20This studyQS1T22SN01 harboring pS1 and pT21This studyQS1T23SN01 harboring pS1 and pT22This studyQS1T24SN01 harboring pS1 and pT23This studyQS1T25SN01 harboring pS1 and pT24This studyQS1T26SN01 harboring pS1 and pT25This studyQS1T27SN01 harboring pS1 and pT26This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pT22This studyQS1T27SN01 harboring pT23This studyRT23SN01 harboring pT24This studyRT24SN01 harboring pT25This studyRT25SN01 harboring pT26This studyRT26SN01 harboring pT26This study	Q\$1T15	SN01 harboring pS1 and pT15	This study
QS1T18SN01 harboring pS1 and pT18This studyQS1T19SN01 harboring pS1 and pT19This studyQS1T20SN01 harboring pS1 and pT20This studyQS1T21SN01 harboring pS1 and pT21This studyQS1T22SN01 harboring pS1 and pT22This studyQS1T23SN01 harboring pS1 and pT23This studyQS1T24SN01 harboring pS1 and pT24This studyQS1T25SN01 harboring pS1 and pT25This studyQS1T26SN01 harboring pS1 and pT26This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T26SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pT22This studyQS1T27SN01 harboring pT23This studyRT23SN01 harboring pT24This studyRT24SN01 harboring pT25This studyRT25SN01 harboring pT26This studyRT26SN01 harboring pT26This study	QS1T16	SN01 harboring pS1 and pT16	This study
QS1T19SN01 harboring pS1 and pT19This studyQS1T20SN01 harboring pS1 and pT20This studyQS1T21SN01 harboring pS1 and pT21This studyQS1T22SN01 harboring pS1 and pT22This studyQS1T23SN01 harboring pS1 and pT23This studyQS1T24SN01 harboring pS1 and pT24This studyQS1T25SN01 harboring pS1 and pT25This studyQS1T26SN01 harboring pS1 and pT26This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T26SN01 harboring pS1 and pT27This studyRT22SN01 harboring pT22This studyRT23SN01 harboring pT23This studyRT24SN01 harboring pT25This studyRT25SN01 harboring pT26This studyRT26SN01 harboring pT26This study	Q\$1T17	SN01 harboring pS1 and pT17	This study
QS1T20SN01 harboring pS1 and pT20This studyQS1T21SN01 harboring pS1 and pT21This studyQS1T22SN01 harboring pS1 and pT22This studyQS1T23SN01 harboring pS1 and pT23This studyQS1T24SN01 harboring pS1 and pT24This studyQS1T25SN01 harboring pS1 and pT25This studyQS1T26SN01 harboring pS1 and pT26This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pT22This studyRT22SN01 harboring pT23This studyRT24SN01 harboring pT25This studyRT25SN01 harboring pT26This studyRT26SN01 harboring pT26This study	QS1T18	SN01 harboring pS1 and pT18	This study
QS1T21SN01 harboring pS1 and pT21This studyQS1T22SN01 harboring pS1 and pT22This studyQS1T23SN01 harboring pS1 and pT23This studyQS1T24SN01 harboring pS1 and pT24This studyQS1T25SN01 harboring pS1 and pT25This studyQS1T26SN01 harboring pS1 and pT26This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pT22This studyRT22SN01 harboring pT23This studyRT24SN01 harboring pT25This studyRT25SN01 harboring pT26This studyRT26SN01 harboring pT26This study	QS1T19	SN01 harboring pS1 and pT19	This study
QS1T22SN01 harboring pS1 and pT22This studyQS1T23SN01 harboring pS1 and pT23This studyQS1T24SN01 harboring pS1 and pT24This studyQS1T25SN01 harboring pS1 and pT25This studyQS1T26SN01 harboring pS1 and pT26This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pS1 and pT27This studyQS1T27SN01 harboring pT22This studyRT22SN01 harboring pT23This studyRT24SN01 harboring pT25This studyRT25SN01 harboring pT26This studyRT26SN01 harboring pT26This study	Q\$1T20	SN01 harboring pS1 and pT20	This study
QS1T23SN01 harboring pS1 and pT23This studyQS1T24SN01 harboring pS1 and pT24This studyQS1T25SN01 harboring pS1 and pT25This studyQS1T26SN01 harboring pS1 and pT26This studyQS1T27SN01 harboring pS1 and pT27This studyRT22SN01 harboring pT22This studyRT23SN01 harboring pT23This studyRT24SN01 harboring pT24This studyRT25SN01 harboring pT25This studyRT26SN01 harboring pT26This study	QS1T21	SN01 harboring pS1 and pT21	This study
QS1T24SN01 harboring pS1 and pT24This studyQS1T25SN01 harboring pS1 and pT25This studyQS1T26SN01 harboring pS1 and pT26This studyQS1T27SN01 harboring pS1 and pT27This studyRT22SN01 harboring pT22This studyRT23SN01 harboring pT23This studyRT24SN01 harboring pT25This studyRT25SN01 harboring pT25This studyRT26SN01 harboring pT26This study	Q\$1T22	SN01 harboring pS1 and pT22	This study
QS1T25SN01 harboring pS1 and pT25This studyQS1T26SN01 harboring pS1 and pT26This studyQS1T27SN01 harboring pS1 and pT27This studyRT22SN01 harboring pT22This studyRT23SN01 harboring pT23This studyRT24SN01 harboring pT24This studyRT25SN01 harboring pT25This studyRT26SN01 harboring pT26This study	Q81T23	SN01 harboring pS1 and pT23	This study
QS1T26SN01 harboring pS1 and pT26This studyQS1T27SN01 harboring pS1 and pT27This studyRT22SN01 harboring pT22This studyRT23SN01 harboring pT23This studyRT24SN01 harboring pT24This studyRT25SN01 harboring pT25This studyRT26SN01 harboring pT26This study	QS1T24	SN01 harboring pS1 and pT24	This study
QS1T27SN01 harboring pS1 and pT27This studyRT22SN01 harboring pT22This studyRT23SN01 harboring pT23This studyRT24SN01 harboring pT24This studyRT25SN01 harboring pT25This studyRT26SN01 harboring pT26This study	Q\$1T25	SN01 harboring pS1 and pT25	This study
RT22SN01 harboring pT22This studyRT23SN01 harboring pT23This studyRT24SN01 harboring pT24This studyRT25SN01 harboring pT25This studyRT26SN01 harboring pT26This study	Q\$1T26	SN01 harboring pS1 and pT26	This study
RT23SN01 harboring pT23This studyRT24SN01 harboring pT24This studyRT25SN01 harboring pT25This studyRT26SN01 harboring pT26This study	QS1T27	SN01 harboring pS1 and pT27	This study
RT24SN01 harboring pT24This studyRT25SN01 harboring pT25This studyRT26SN01 harboring pT26This study	RT22	SN01 harboring pT22	This study
RT25SN01 harboring pT25This studyRT26SN01 harboring pT26This study	RT23	SN01 harboring pT23	This study
RT26SN01 harboring pT26This study	RT24	SN01 harboring pT24	This study
	RT25	SN01 harboring pT25	This study
RT27 SN01 harboring pT27 This study	RT26	SN01 harboring pT26	This study
	RT27	SN01 harboring pT27	This study

Plasmids	Relevant characteristics	Source
pDTW109	cre-expressing vector of C. glutamicum, temperature sensitive, Cm ^R	1
pDTW107	pDTW109 without cre	This study
pIL-I	derivative of pJYW-4 in which P_{tacM} is replaced by lrp and P_{brnFE} -controlled <i>ido</i>	2
pS1	<i>comQXPA</i> operon under P _{bmFE} in pDTW107	This study
pS2	<i>mCherry</i> under M1 in pS1	This study
pS3	<i>mCherry</i> under M11 in pS1	This study
pS4	<i>mCherry</i> under M22 in pS1	This study
pS5	<i>mCherry</i> under P _{srfA} in pS1	This study
pJYW-4	constitutive expression vector of C. glutamicum, Km ^R	3
pJYW-4-gfp	pJYW-4 harboring <i>gfp</i> under P _{tacM} promoter	2
pSYW	pJYW-4 without <i>alr</i>	2
pT1	<i>gfp</i> under P _{tacM} in pSYW	This study
pT2	gfp under P _{srfA} in pSYW	This study
pT3	<i>gfp</i> under P_{tacM} and <i>hfq</i> under P_{tacM} in pSYW	This study
pT4	gfp under P_{tacM} and sRNA targeting gfp under P_{tacM} in pSYW	This study
pT5	gfp under P_{tacM} , hfq under P_{tacM} and sRNA targeting gfp under P_{tacM} in pSYW	This study
pT6	gfp under P_{tacM} , hfq under P_{srfA} and sRNA targeting gfp under P_{tacM} in pSYW	This study
pT7	gfp under P_{tacM} , hfq under P_{tacM} and sRNA targeting gfp under P_{srfA} in pSYW	This study
pT8	gfp under P_{tacM} , hfq under P_{srfA} and sRNA targeting gfp under P_{srfA} in pSYW	This study
pT9	gfp under P_{tacM} , hfq under M1 and sRNA targeting gfp under P_{tacM} in pSYW	This study
pT10	gfp under P_{tacM} , hfq under M11 and sRNA targeting gfp under P_{tacM} in pSYW	This study
pT11	gfp under P_{tacM} , hfq under M22 and sRNA targeting gfp under P_{tacM} in pSYW	This study
pT12	amyE under M14 in pSYW	This study
pT13	<i>amyE</i> under M20 in pSYW	This study
pT14	amyE under M28 in pSYW	This study
pT15	<i>amyE</i> under P_{srfA} in pSYW	This study
pT16	amyE under M14, hfq under M1 and sRNA targeting amyE under PtacM in pSYW	This study

Table S3. Plasmids used in this study.

pT17	<i>amyE</i> under M20, <i>hfq</i> under M1 and sRNA targeting <i>amyE</i> under P_{tacM} in pSYW	This study
pT18	<i>amyE</i> under M28, <i>hfq</i> under M1 and sRNA targeting <i>amyE</i> under P_{tacM} in pSYW	This study
pT19	<i>amyE</i> under M14, <i>hfq</i> under M11 and sRNA targeting <i>amyE</i> under P_{tacM} in pSYW	This study
pT20	<i>amyE</i> under M20, <i>hfq</i> under M11 and sRNA targeting <i>amyE</i> under P_{tacM} in pSYW	This study
pT21	<i>amyE</i> under M28, <i>hfq</i> under M11 and sRNA targeting <i>amyE</i> under P_{tacM} in pSYW	This study
pT22	gfp under M1 in pSYW	This study
pT23	gfp under M11 in pSYW	This study
pT24	gfp under M14 in pSYW	This study
pT25	gfp under M20 in pSYW	This study
pT26	gfp under M22 in pSYW	This study
pT27	gfp under M28 in pSYW	This study

Table S4. Primers used in this s	study.
----------------------------------	--------

Primer	Sequence	Plasmid construction
comQ-F	GAGAAGGAGTTATAGGATGAAGGAGATTGTGGAGC	pS1
comA-R	TGAGCTGCTCGAGATATTTAAAGTACACCGTCTGAT	pS1
<i>lrp</i> -P _{brnFE} -F	GTATACCTGCAGAGATTAATTTCACACCTGGGGGGGGGAGCT	pS1
pDTW107-R	CCTATAACTCCTTCTCCCAG	pS1
srfA-F (KpnI)	ATAGGTACCTAGTGGAAATGATTGCGGCAT	pT2, pT2 library
P_{srfA} - $F(hfq)$	TAGTGGAAATGATTGCGGCATC	рТ6, рТ8
<i>srfA</i> -R	CCTATACCTCCTTCTCAATATTTTTTTTTTTTTCTTCTACCG	pT2, pT6, pT8
gfp-F (RBS)	AGAAGGAGGTATAGGATGAGTAAAGGAGAAGAAC	pT2
gfp-R (BamHI)	ATAGGATCCCTATTTGTATAGTTCATCC	pT2, pT2 library
srfAM	CTCAATATTTTTTTTTTTTTTTTTCTACCGTCNANTNTANCTGAAAA	pT2 library
	AAATGTTT TTGNCAACGAAAAATGGGTG	
gfp (P _{tacM})-F	CGCATATGTTTGGTACCCTATTTGTATAGTTCATCC	pT1
PtacM (sRNA)-F	CCGCATATGTTTGGTACCTGAGCTGTTGACAATTAATC	рТ3–рТ6, рТ9–рТ11
P _{tacM} (RBS)-R	CCTATACCTCCTTCTAATTG	pT5, pT7
<i>rrnB</i> T1T2-R	GCCGCAATCATTTCCACTACGCCCAGGAGGTCGAAG	pT6, pT8–pT11, pT16–pT21
hfq (RBS)-F	AGAAGGAGGTATAGGATGGCTAAGGGGGCAATCTT	pT5–pT11, pT16–pT21
hfq-R	GTTGACTATTTTACCTCTGGTTATTCGGTTTCTTCGCT	pT5–pT11
gfp (sRNA)-F	GAGGTAAAATAGTCAACCTATTTGTATAGTTCATCC	pT5–pT11
gfp (sRNA)-R	GAATTCGTCGACGGATCCTGAGCTGTTGACAATT	pT1, pT3–pT11
PsrfA (sRNA)-F	TATTTCACACCGCATATTAGTGGAAATGATTGCG	pT7–pT21
PsrfA (sRNA)-R	AAGGAGAAGAACTTTTCCAATATTTTTTATCTTTCTACCG	pT7, pT8
srfA-R2	CCTATACCTCCTTCTCAAT	pT9–pT21, pS2–pS5
sRNA (gfp)-F	GAAAAGTTCTTCTCCTTTACTCAT	pT7, pT8
rrnB T1T2 (gfp)-R	GGATGAACTATACAAATAGCGCCCAGGAGGTCGAAGC	pT4
gfp (rrnB T1T2)-F	GCTATTTGTATAGTTCATCC	pT4
P _{srfA} (mCherry)-F	AGCTCGTATACCTGCATAGTGGAAATGATTGCG	pS2–pS5
mCherry-F (RBS)	AGAAGGAGGTATAGGATGGTGAGCAAGGGCGAG	pS2–pS5

mCherry-R	GGTGTGAAATTAATCTCTTACTTGTACAGCTCGTC	pS2–pS5
2070-F	TTGAGAAGGAGGTATAGGACAGCTAACTCGGTCAGC	pT12-pT15
2070-R	CGATTTGTTCGCCGTTTCTGCCTGTGCTGGGGAGG	pT12-pT15
amyE-U-F	GAAACGGCGAACAAATCGAATG	pT12-pT15
amyE-D-R	GAATTCGTCGACGGATCCTTAATGATGATGATGATGATGATGATG	pT12-pT15
	GGGAAGAGAACCGC	
P _{tacM} (pSYW)-F	ATTCGTCGACGGATCCTGAGCTGTTGACAATTAATCAT	pT16-pT21
sRNA (amyE)-R	GAAACGGCGAACAAATCGAAAATTGTTATCCGCTCACAAT	pT16-pT21
sRNA (<i>amyE</i>)-F	TTCGATTTGTTCGCCGTTTCGTTATATGCCTTTATTGTC	pT16-pT21
hfq (6xHis)-R	CATCATCATCATCATTAATTATTCGGTTTCTTCGCTGTCC	pT16-pT21
16S rRNA-1	ACCTGGAGAAGAAGCACCG	
16S rRNA-2	TCAAGTTATGCCCGTATCG	
qPCR-gfp-F	GCGTTCAACTAGCAGACCATTATC	
qPCR-gfp-R	GTTCATCCATGCCATGTGTAATCC	

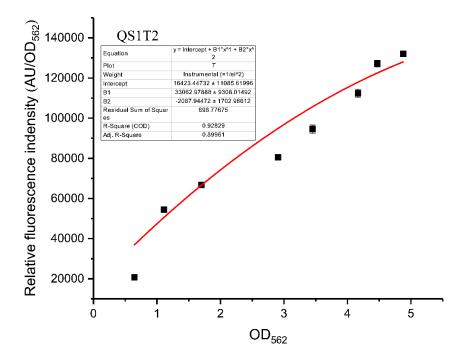
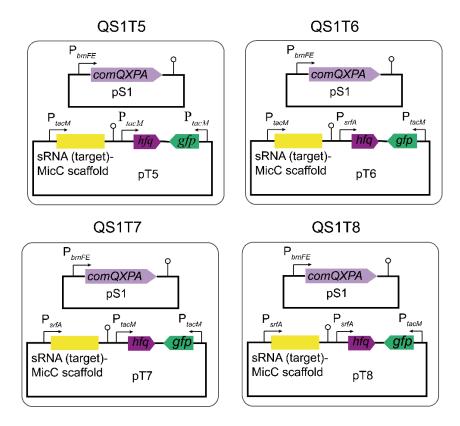
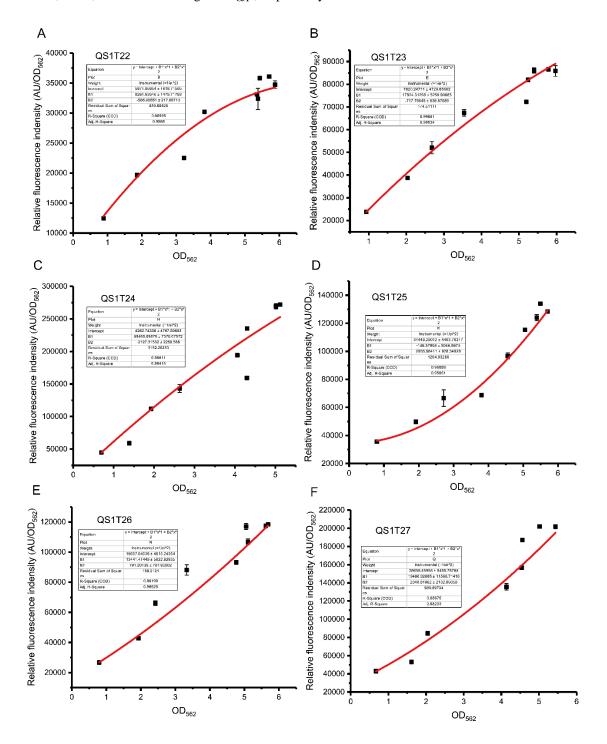

Target gene	24-mer target binding sequence of sRNA
gfp	GAAAAGTTCTTCTCCTTTACTCAT
amyE	CTCATTCGATTTGTTCGCCGTTTC

Table S5. Sequences of sRNAs in this study.


Figure S1. Regulatory mechanism of the ComQXPA-P_{srfA} QS system in *B. subtilis*. When the cells grow to a high density, ComQ inverts the precursor of ComX to the ComX pheromone and exports it to the extracellular environment. The membrane protein ComP monitors the secreted ComX pheromone to phosphorylate ComA. Phosphorylated ComA binds to the P_{srfA} promoter to activate the expression of the *srfA* operon, which is involved in surfactin biosynthesis.


Figure S2 Fitted curve of strain QS1T2. QS1T2 carried pS1, which contained the P_{brnFE} -regulated *comQXPA* operon, and pT2, which contained P_{srfA} -controlled *gfp*.

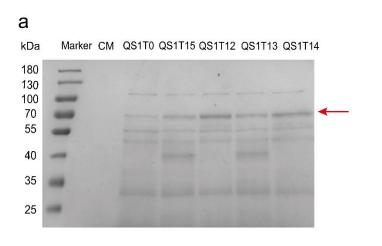

Figure S3. Architecture of the ComQXPA-P_{srfA} QS-based *hfq*-sRNA circuit. The sRNA platform for repression consists of a target sRNA, a MicC scaffold and a sRNA chaperone Hfq protein. The sRNA (target)-MicC scaffold or *hfq* is regulated by the P_{srfA} promoter, resulting in the repression of the target gene in a cell density-dependent manner via the ComQXPA-P_{srfA} QS-based *hfq*-sRNA circuit. In pT6, sRNA targeting *gfp* [sRNA(*gfp*)] is controlled by the P_{tacM} promoter, and *hfq* is controlled by the P_{srfA} promoter. In pT7, sRNA(*gfp*) is controlled by the P_{srfA} promoter, and *hfq* is controlled by the P_{tacM} promoter. In pT8, both sRNA(*gfp*) and *hfq* are controlled by the P_{srfA} promoter, while in pT5, both sRNA(*gfp*) and *hfq* are controlled by the P_{strfA} promoter. These plasmids were individually introduced into the *C. glutamicum* strain carrying the pS1 plasmid, resulting in QS1T5, QS1T6, QS1T7 and QS1T8.

Figure S4. Fitted curves of strains QS1T22, QS1T23, QS1T24, QS1T25, QS1T26 and QS1T27. These strains carried different pT plasmids, i.e., pT22, pT23, pT24, pT25, pT26 and pT27 harbored M1-, M11-, M14-, M20-, M22- and M28-regulated *gfp*, respectively.

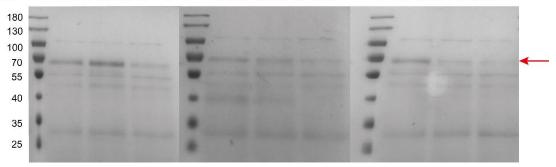
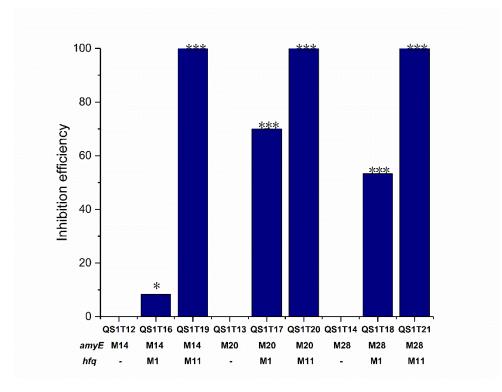


Figure S5. SDS-PAGE of different *amyE*-expressing strains regulated by ComQXPA-P_{srfA} QS circuits. *amyE* was upregulated by M14, M20, M28 and native P_{srfA} in strains QS1T12, QS1T13, QS1T14 and QS1T15, respectively. In addition to M14-, M20- or M28-regulated *amyE*, sRNA(*amyE*)-coupled *hfq* was also regulated by M1 or M11 in strains QS1T16–QS1T21. The culture supernatants of the corresponding *C. glutamicum* strains at 48 h were loaded. Red arrow indicated the amylase, 68 kDa. CM: culture supernatant of fresh medium. QS1T0: SN01 harboring pS1 and pSYW.



b

kDa Marker QS1T12 QS1T16 QS1T19 Marker QS1T13 QS1T17 QS1T120 Marker QS1T14 QS1T18 QS1T121

Figure S6. Inhibition efficiency of different P_{srfA} M-regulated *hfq*-sRNA cassettes targeting *amyE* in *C*. *glutamicum*. Compared to the ComQXPA-P_{srfA} QS-upregulated *amyE*-expressing strains QS1T12, QS1T13 and QS1T14, the M1-regulated *hfq*-sRNA cassette targeting *amyE* suppressed *amyE* expression by an efficiency of 8%–70% in strains QS1T16–QS1T18, while the M11-regulated *hfq*-sRNA(*amyE*) suppressed *amyE* expression by an efficiency of 100% in strains QS1T19–QS1T21. The data represent the means \pm SD. * *p* < 0.05, *** *p* < 0.001 compared with the corresponding *amyE*-upregulated strains (QS1T12 or QS1T13 or QS1T14).

References

(1) Hu, J., Tan, Y., Li, Y., Hu, X., Xu, D. and Wang, X. (2013) Construction and application of an efficient multiple-gene-deletion system in *Corynebacterium glutamicum*. *Plasmid* 70, 303–313.

(2) Tan, S., Shi, F., Liu, H., Yu, X., Wei, S., Fan, Z., Li, Y. (2020) Dynamic control of 4hydroxyisoleucine biosynthesis by modified 1-isoleucine biosensor in recombinant *Corynebacterium glutamicum*. *ACS Synth. Biol.* 9 (9), 2378–2389.

(3) Hu, J., Li, Y., Zhang, H., Tan, Y., and Wang, X. (2014) Construction of a novel expression system for use in *Corynebacterium glutamicum*. *Plasmid* 75, 18–26.