In-furnace control of arsenic vapor emissions using Fe₂O₃ microspheres with

good sintering resistance

Bing Song^a, Kaiping Yuan^b, Yuexing Wei^c, Dandan Chen^d, Fanyue Meng^a, Qi Cao^a,

Min Song^{a*}, Huan Liu^{e*}

^aMinistry of Education of Key Laboratory of Energy Thermal Conversion and

Control, School of Energy and Environment, Southeast University, Nanjing, Jiangsu

210096, China

^bState Key Laboratory of ASIC and System, School of Microelectronics, Fudan

University, Shanghai 200433, China

^cCollege of Environmental Science and Engineering, Taiyuan University of

Technology, Taiyuan, Shanxi, 030024, China

^dSchool of Energy & Mechanical Engineering, Nanjing Normal University, Nanjing,

Jiangsu 210023, China

^eSchool of Energy and Power Engineering, Huazhong University of Science and

Technology, Wuhan, Hubei, 430070, China

*Corresponding author. Min Song and Huan Liu

Email: minsong@seu.edu.cn (M. Song)

huanliu@hust.edu.cn (H. Liu)

ORCID:

Min Song: 0000-0002-0002-0568

Huan Liu: 0000-0001-6322-9513

S1

Table. S1 BET specific surface areas of raw Fe_2O_3 and tested Fe_2O_3

	Raw Fe ₂ O ₃ particles	Tested Fe ₂ O ₃	Tested Fe ₂ O ₃	Raw Fe ₂ O ₃	Tested Fe ₂ O ₃	Tested Fe ₂ O ₃
		particles	particles	microsphere	microspheres	microspheres
		(1000 °C)	(1300 °C)	S	(1000 °C)	(1300 °C)
BET specific	16.15	0.44		0.44	.	
surface area (m²/g)	16.45	0.42	-	8.13	6.09	5.32

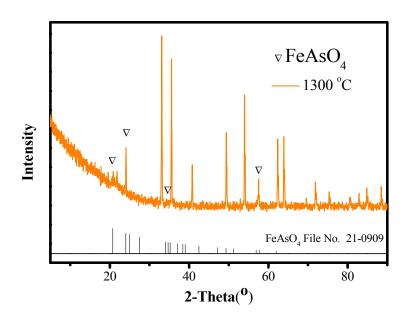


Fig. S1 XRD pattern of product obtained at 1300 $^{\rm o}C$

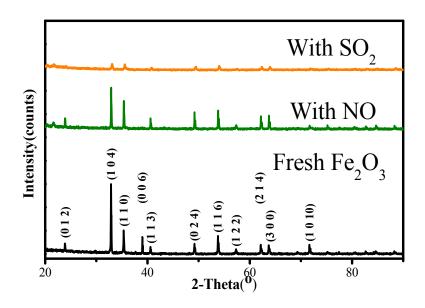


Fig. S2 XRD patterns of the fresh Fe_2O_3 and tested Fe_2O_3