In-furnace control of arsenic vapor emissions using Fe₂O₃ microspheres with good sintering resistance Bing Song^a, Kaiping Yuan^b, Yuexing Wei^c, Dandan Chen^d, Fanyue Meng^a, Qi Cao^a, Min Song^{a*}, Huan Liu^{e*} ^aMinistry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China ^bState Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China ^cCollege of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China ^dSchool of Energy & Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China ^eSchool of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430070, China *Corresponding author. Min Song and Huan Liu Email: minsong@seu.edu.cn (M. Song) huanliu@hust.edu.cn (H. Liu) ORCID: Min Song: 0000-0002-0002-0568 Huan Liu: 0000-0001-6322-9513 S1 Table. S1 BET specific surface areas of raw Fe_2O_3 and tested Fe_2O_3 | | Raw Fe ₂ O ₃ particles | Tested Fe ₂ O ₃ | Tested Fe ₂ O ₃ | Raw Fe ₂ O ₃ | Tested Fe ₂ O ₃ | Tested Fe ₂ O ₃ | |---------------------|--|---------------------------------------|---------------------------------------|------------------------------------|---------------------------------------|---------------------------------------| | | | particles | particles | microsphere | microspheres | microspheres | | | | (1000 °C) | (1300 °C) | S | (1000 °C) | (1300 °C) | | BET specific | 16.15 | 0.44 | | 0.44 | . | | | surface area (m²/g) | 16.45 | 0.42 | - | 8.13 | 6.09 | 5.32 | Fig. S1 XRD pattern of product obtained at 1300 $^{\rm o}C$ Fig. S2 XRD patterns of the fresh Fe_2O_3 and tested Fe_2O_3