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Text T1: TopDomainTMC 

For TopDomainTMC, the final goal is to classify if a sequence needs to be cut into domains at 

the domain boundaries or not, given that a specific template was identified. Cutting the 

sequence is deemed unnecessary if the template covers each inter-boundary sequence segment 

by at least 80% (good coverage of all domains) and has a TM-Score larger than 0.5 (good over-

all arrangement of domains relative to each other). If these criteria are not met, cutting the 

sequence into domains is deemed necessary for proper modeling. 

For training TopDomainTMC, we extract templates from the primary threaders used by 

TopDomain, and for each template, we calculate the agreement between the template and the 

linear features predicted from the target sequence. The calculated agreements include secondary 

structure (Q3 agreement with MuFoldSS 1), / torsion angles (MAE agreement with SPIDER3 

2), solvent accessibility (Pearsons R2 agreement with SANN 3), and contact prediction 

(Precision, Recall and F1 score agreement with PCONSC4 4) as well as the agreement with the 

PSSM. These agreement features are combined with three basic features: Sequence identity, 

sequence similarity, and sequence coverage. These features are used as input for a fully 

connected feed-forward DNN with 15 layers, determined by a grid search, to predict the TM-

Score between the template and the native structure, which is trained on the TopDomain 

training dataset. For each target, all identified templates are evaluated and ranked according to 

their predicted TM-Score. For each template found by multiple different threaders, the 

maximum predicted TM-Score, coverage, and sequence identity is used for that template. 

For each threading alignment generated for each template, the coverage of each inter-

boundary segment is calculated based on the predicted boundary positions from TopDomain. 

To make the final decision, the minimum, maximum, and mean inter-boundary segment 

coverage is calculated. These are used as features, along with sequence identity, coverage, and 

predicted TM-Score for a fully connected feed-forward DNN with 16 layers (determined by a 

grid search) trained to perform binary classification for that template (“Parse” or “Don’t 

Parse”). For each template, the true decision is calculated based on pairwise alignment with 

TM-Align, the true TM-Score based on TM-Align, and the true boundaries. If any template is 

identified that gets the label “Don’t Parse”, then the overall prediction for the protein is “Don’t 

Parse”, otherwise it is “Parse”. 

The overall workflow of TopDomainTMC can thus be summarized in three steps: 

I. Extract templates and agreement with sequence features from primary threaders and 

primary predictors. Use these features to predict a TM-Score for each template. 



3 
 

II. Calculate the inter-segment coverage for each template based on the boundaries 

predicted by TopDomain and calculate minimum, maximum, and mean coverage of 

segments. 

III. Calculate the “Parse/Don’t Parse” prediction based on inter-segment coverages, 

sequence identity, coverage, and predicted TM-Score for each template. Assign the 

final prediction as “Don’t Parse” if any template gets this classification, otherwise 

assign the final prediction as “Parse”. 

Text T2: TopDomain Dataset 

Data basis. For domain boundary prediction, one of the key issues is data availability. 

Resolving large protein structures, especially those with disordered regions or multiple 

domains, is experimentally challenging 5-8. Therefore, the number of large multi-domain 

proteins that have an experimentally verified structure is limited. Databases such as CATH 9 

and Astral SCOPe 10 seek to annotate domain boundaries accurately. Both databases annotate 

domain boundaries in released structures in the PDB 11 using a combination of automated and 

manual annotation. The main difference between the two is that CATH contains both domains 

annotated from structures and annotations from sequences with no available structure, but for 

which domains can be predicted by the Gene3D 12 software. By contrast, Astral SCOPe contains 

only annotations from structures. Gene3D uses HMM comparison to match structure-annotated 

domains to sequences with no annotation. Despite these efforts, there are limitations to these 

databases. 

First, there is a large degree of redundancy, and the number of genuinely non-redundant 

multi-domain proteins in the PDB is much smaller than the CATH or ASTRAL-SCOPe 

database sizes (122727 and 59514, respectively) would suggest. This is evident because once 

clustered to 70% sequence identity, the number of multi-domain proteins in, e.g., Astral SCOPe 

is less than 2700 as of December 2019, a number that shrinks even more if a more stringent 

criterion for redundancy is used. Second, because of the limitations of tools used for domain 

annotation (HMM comparison and structure-based tools such as DDOMAIN 13), discontinuous 

domains are generally poorly annotated despite making up a significant portion of proteins. An 

estimated 18% of structures in the PDB have at least one discontinuous domain according to 

DomainParser2 14, and 15% of CATH domains are annotated as discontinuous 15. Yet, many 

ASTRAL-SCOPe annotations do not contain discontinuous domains, and DDOMAIN, which 

is parameterized on ASTRAL-SCOPe, predicts only continuous domains. Because the CATH 

database contains automated annotations, human annotations, and sequence-based predicted 
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domains, we decided to use the ASTRAL-SCOPe database as a starting point. This is because 

we do not wish for TopDomain to predict the output of Gene3D (Gene3D is a primary predictor 

for InterProScan and, therefore, also a primary predictor for TopDomain). 

TopDomain dataset. Because of the large set of primary predictors used in TopDomain, the 

training dataset has to be of limited size but high quality. Therefore, all multi-domain proteins 

from the Astral SCOPe database were downloaded and clustered at 70% pairwise sequence 

identity using MMSeqs2 16. These proteins were then re-annotated by manually inspecting the 

Astral SCOPe annotations as well as structure-based domain predictions from DomainParser2 
14 and DDOMAIN 13. During this inspection, particular care was taken when annotating 

discontinuous domains. A reasonable topology of discontinuous domains requires that the 

domain insertion site is biologically feasible, thus, the two attachment points should be nearby 

in the discontinuous domain 17. Furthermore, many of the multi-domain structures were 

resolved by modification of the target sequence, i.e., the removal of domains or disordered 

regions to make crystallization easier 6. Therefore, the genomic sequence was aligned to the 

sequence of the resolved structure using MAFFT7 18, and large gaps in the genomic sequence 

(corresponding to missing regions in the structure) were annotated as follows: 

If a piece of the genomic sequence larger than 40 residues was missing in the structure, 

this region was annotated with boundaries on either side of the missing region. This effectively 

assigns large missing regions as putative, potentially disordered domains, which were likely 

removed to enable crystallization or not visible in the crystal. Regions smaller than 40 residues 

were annotated depending on the protein topology as either a disordered loop (no boundary 

between domains) or a linker between two domains (one boundary in the middle of the missing 

region). In this alignment, gaps in the target sequence correspond to the artificial fusion of 

proteins in order to enable crystallization (such as fusion of T4 lysozyme with GPCRs 19) and 

were therefore ignored. 

Furthermore, because TopDomain should learn the location of domain boundaries, after 

initial training of the stage 2 DNN for TopDomain with a window size of 40 residues once on 

the entire dataset, the predictions were used to validate the human annotations. After the DNN 

annotation, each of the proteins in the dataset was manually re-inspected to rectify mistakes in 

the initial annotations. Upon careful inspection, false negatives (when the DNN predicted a true 

boundary that human annotation had initially missed) and false positives (when the human 

annotation had incorrectly placed a boundary) in the initial manual annotations were manually 

rectified. This was done to ensure the high quality of the domain boundary annotations in the 

dataset. 
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Multi-domain proteins are the most important source of information for a predictor of 

protein domain boundaries. Hence, multi-domain proteins were clustered at 70% sequence 

identity to retain a sufficient number of structures for training. However, it is essential to include 

single-domain proteins in the training dataset to avoid that the neural network learns to predict 

boundaries in all proteins. Different estimates of the ratio between single-domain and multi-

domain have been calculated in the past, ranging from single-domain proteins comprising 20-

35% in prokaryotes and 35-60% in eukaryotes 20, 21. However, due to single-domain proteins 

being easier to crystallize, these comprise a much higher fraction of the proteins in structural 

databases like the PDB and Astral SCOPe. To balance the dataset and include a reasonable 

amount of diverse single-domain proteins, we, therefore, analyzed proteins annotated as single-

domain in the Astral SCOPe dataset and pre-processed them in the same way as the multi-

domain proteins, with two main differences: (1) Only proteins with a perfect agreement between 

the resolved structure and the protein sequence were selected. (2) Proteins were clustered at 

20% pairwise sequence identity instead of 70% in order to retain a small but very different 

number of single-domain proteins. We then manually inspected these single-domain proteins 

in the same way as the multi-domain proteins. Surprisingly, we found that about 10% of the 

proteins annotated as single-domain in Astral SCOPe were multi-domain proteins incorrectly 

annotated as a single domain. We, therefore, added these multi-domain proteins as well as 1035 

verified single domain proteins to the already annotated multi-domain proteins. The final 

TopDomain dataset thus consists of 3105 multi-domain proteins and 1035 single-domain 

proteins. 

Training and test set separation. A pairwise sequence identity of 70% between multi-domain 

proteins still leaves a significant redundancy in the TopDomain dataset. Therefore, we clustered 

the dataset at 20% pairwise sequence identity using MMSeqs2 16 and split it into training and 

test dataset according to clusters. This split was made using an in-house multiple steepest 

descent algorithm that optimizes the similarity between the two data splits while enforcing no 

two proteins from the training and test set to share more than 20% identity. The parameters that 

were optimized were protein size distribution, distribution of the number of effective sequences 

(Neff) 4, and the distribution of the number of domain boundaries per protein. The latter also 

balances the number of single-domain proteins since this keeps the number of proteins with 

zero boundaries similar in the two datasets. That way, the training and test set are similar in 

terms of protein size distribution, the difficulty of predictions (Neff indicates available sequence 

information), and boundary number distribution. Moreover, the training and test sets are very 

dissimilar in terms of homology between the two datasets, as no two proteins between the 
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datasets share more than 20% sequence identity. By contrast, within each split, the sequence 

identity for multi-domain proteins may be as high as 70%. These two datasets are termed the 

TopDomain training set and TopDomain test set, respectively. 

Since TopDomain predicts domain boundaries using a sliding window, in which each 

window is a separate sample during training, each residue is effectively one data point for 

training. This differs from methods that train on the entire protein at once and use zero padding 

to ensure that the input vectors have the same size despite different protein sizes. When using 

a sliding window, all residues in the dataset are predicted in a random order, and no information 

from residues outside of the sliding window is used. That way, although the data set is split 

according to proteins, no whole-protein patterns can be memorized by the DNNs, which 

prevents over-fitting. This also helps the DNNs generalize to domain architectures not seen 

during training (e.g., to consider different combinations of different domains in different 

orders). The distribution of the number of boundaries in a protein for different protein lengths 

across the TopDomain dataset is shown in Figure S1. 

 

Figure S1. TopDomain Dataset Boundary Distribution. 

 
 

Figure S1. The x-axis shows the number of true boundaries in a protein. The y-axis illustrates the normalized 

number of proteins available in the training set, which have various sequence lengths. 
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Text T3: Homology Features 

One group of primary predictor features includes template information from threading results 

obtained by running RPS-BLAST 22 on the conserved domain database 23, running DELTA-

BLAST 24 on the ASTRAL-SCOPe database 10, as well as running pGenThreader 25, 

pDomThreader 25, FFAS03 26, RAPTORX 27, SPARKSX 28, and HHSEARCH 29 against the 

PDB 11. These threading programs are used to identify potential conserved domains in the target 

sequence based on template matches found in structure databases. The identified templates are 

used as input for structure-based boundary prediction using DDOMAIN 13, DomainParser2 14, 

and SWORD 30, from which the resulting boundary predictions are mapped back to the target 

sequence using the threading alignment. Similar mapping of other structural features of the 

templates is also used as primary features. These include 3-state secondary structure (α-helix, 

β-strand, and coil), / angles, and relative solvent accessibility calculated by DSSP 31. The 

structural features from DSSP are combined into weighted averages across all templates using 

the sequence identity of each template as a weight. 

For each of the threading methods mentioned above, the identified templates are 

clustered at 90% sequence identity using CD-Hit 32 to reduce redundancy. The distribution of 

threading scores is then analyzed to select the top-ranking templates based on the second 

derivative of the score vs. rank curve. This scoring, termed inflection-point filtering, removes 

poorly scoring templates if much higher scored ones are found, but does nothing if all identified 

templates have similar scores or if the scores decrease gradually without any sudden drop in the 

score at a certain rank. Additionally, the templates are ranked according to how much the 

template provides new coverage compared to higher ranked templates. This is done to ensure 

that lower-ranked templates are not removed if they cover a part of the target sequence that is 

not covered by any of the higher-ranked templates. Further filtering includes removing 

templates for which sequence identity to the target is less than 10%, where the e-value is larger 

than 0.01, or where the size of the match is less than 40 residues long. After filtering and re-

ranking, the top 20 templates from each threading program are kept for feature extraction. 

Template-based Features. For each template-based primary predictor (ThreaDom 33, 

InterProScan 34, DomPred 35, FIEFDom 36, RPS-BLAST 22, DELTA-BLAST 24, pGenThreader 
25, pDomThreader 25, FFAS03 26, RAPTORX 27, SPARKSX 28, and HHSEARCH 29), care is 

taken to ensure that an upper limit to the sequence identity between the target sequence and any 

identified template structure or template-based database match can be imposed. This is a critical 

feature for benchmarking to simulate the absence of closely homologous templates for a de 

novo prediction. Without this feature, template-based methods would simply find the target 
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structure in a database and infer the boundaries from the known structure. Imposing different 

cut-offs to sequence identity during benchmarking enables us to train the DNNs to balance the 

importance of template-based and ab initio features, depending on the availability and similarity 

of template information. In short, the DNN should learn how much to trust template-based 

information and how much to trust sequence-based information depending on the availability 

and quality of the template-based information. 

Text T4: Sequence Features 

In addition to template-based features, sequence features predicted from the target sequence are 

used. The rationale behind this is that domain boundaries and protein domains are highly 

diverse. Therefore, information about the target protein will help predict domain boundaries, 

even if this information is not initially intended for boundary prediction. To account for 

differences and inaccuracies in predicted features from a single method, multiple different 

methods are used for each feature to allow the neural network to learn from a diverse set of 

predictions. The predicted features can be divided into the following categories: 

1. Solvent accessibility predictions from SANN 3 and SPIDER3 2. These features are 

useful since many domain boundaries are located in solvent-exposed linkers between 

domains. Thus, the prediction of exposed residues should improve boundary 

identification. 

2. Secondary structure predictions from MuFOLD-SS1, SPIDER3 2, and DeepCNF-SS 37, 

and dihedral angle predictions from SPIDER3. These features are useful since domains 

often belong to different fold classes such as α-fold, β-fold, α/β-fold, and α+β-fold. 

Furthermore, many domain boundaries are located between secondary structure 

elements. Thus, the prediction of secondary structure and dihedral angles should 

improve boundary identification. 

3. Residue disorder prediction from DISOPRED 38, DeepCNF-D 39, GlobPlot 40, and 

MobiDBLite 41. These features are useful since many domain boundaries are located in 

disordered regions. Furthermore, some protein and protein domains are intrinsically 

disordered. Thus, the prediction of disordered regions should improve boundary 

identification. 

4. Transmembrane topology predictions from PHOBIUS 42, TMHMM 43, and 

BOCTOPUS 44 and signal peptide predictions from SignalP 45. These features are useful 

since many trans-membrane proteins include both trans-membrane- and globular 
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domains. Thus, the prediction of transmembrane regions should improve the separation 

of transmembrane domains from globular domains. 

5. Protein repeat predictions from TRUST 46, T-REKS 47, and HHrep 48 These features are 

useful since many proteins contain repeating domains with the same fold. Thus, 

identifying repeating sequence units should help to identify the boundaries between 

repeating domains. Furthermore, solenoid protein domains are highly repetitive. Thus, 

the identification of highly repetitive regions should improve the identification of 

solenoid domains. 

6. Coiled-coil predictions from COILS2 49 and DeepCoil 50. These features are useful since 

many proteins contain coiled-coil domains. Thus, the identification of coiled-coil 

regions should improve the identification of such domains. 

7. PSSM calculated from the combined alignment of MetaPSICOV 51 (HHBLITS 52 

against the UniClust30 53 database), DNCON2 54 (HMMER3 55 against the UniRef90 56 

database), and CONDO 57 (HMMER3 against the non-redundant sequence database). 

The PSSM is calculated using Henikoff-Henikoff re-weighting 58. The PSSM features 

are useful since different domains experience different evolutionary pressure to 

conserve different patterns of residues. Thus, the PSSM should improve the separation 

of different domains. 

8. From the combined alignment, sequence termini propensities and gap propensities are 

calculated, and weighted propensities are calculated using the sequence identity 

between each sequence and the target as a weight. These features are useful since 

domain linkers often vary in length, which causes linker regions in the MSA to contain 

more gaps than domain regions. Furthermore, the location of sequence termini in partial 

matches may indicate single domain matches. Thus, identifying regions with high gap 

content and high termini content should improve domain boundary identification. 

9. Residue contact predictions from MetaPSICOV 51 (including the primary predictors 

PSICOV 59, CCMPRED 60, and EVFOLD 61), DNCON2 54, DeepCov 62 , and PCONSC4 
4. DeepCov predictions are calculated from alignments generated by MetaPSICOV 51, 

DNCON2 54, and ConDo 57. PCONSC4 predictions are calculated from the combined 

alignment. These features are useful since domains have high intra-domain coevolution 

compared to inter-domain coevolution. Thus, the coevolution signal should help detect 

sequence regions with low coevolutionary signals between residues on either side as 

potential domain boundary regions. Three sliding windows are used to decompose a 

contact map into a 1D vector. This decomposition was done by summing the 
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coevolution scores between residues on one side of the sliding window and the other. 

The sliding window sizes are ± 20, ± 40, and ± 80 residues to cover intra-domain 

coevolution for varying domain sizes. 

10. The number of effective sequences (Neff) and the normalized number of effective 

sequences for the target sequence. This is calculated from the number of sequences in 

the combined alignment (from step 9) and the total sequence length as in 63 These 

features seek to quantify the amount of sequence information available and, thus, 

indicate the degree of difficulty for the prediction. 

 

While some primary features are relevant for all types of proteins (such as secondary structure, 

solvent accessibility, and residue contacts), others may only be relevant for specific types of 

proteins (protein repeats, residue disorder, coiled-coil regions, or transmembrane topology). 

Text T5: Feature Conversion 

For many primary predictors, particularly template-based ones, the output of a predictor is a set 

of boundaries. To turn these predictions into a feature vector with the length of the target 

sequence, each primary predictor output is used to calculate a feature score Sr for each residue 

r in the target sequence. Sr is defined as 0 when no boundaries are found within ±20 residues of 

r and is otherwise a double-weighted sum of distances normalized as given in Equation S1.  
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൰

మ

஽೔ஸ஽೘೔೙      Equation S1 

Sr is 1 when r perfectly overlaps with all N boundaries within ± 20 residues, corresponding to 

a weighted mean boundary distance of zero. Di is the residue distance from residue r to 

boundary i. Dmin is 20 residues; hence, the sum is over boundaries within ± 20 residues of r. Ci 

is the confidence of boundary i. The value k determines the relative importance of distance vs. 

confidence. Boundaries further away from r have a larger impact on Sr the lower k is. For 

TopContact, k is set to 5. 

The weighting of Sr has two components: The first component is Ci, which is squared 

to put a high weight on confident boundaries (e.g., boundaries of templates with high sequence 

identities). For template-based predictions, Ci is the sequence identity of the given template; 

otherwise, it is the confidence given by the primary predictor. If no confidence score is provided 

by a predictor, Ci is set to 1 for all boundaries of that predictor. The second component is a 

distance-based weight, which follows a Gaussian distribution. This weight is 1 when Di is 0 and 
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0.04 when Di is 10. Thus, given equal Ci, only close-by boundaries (± 10 residues) contribute 

markedly to Sr.  

Applying Equation S1 to a set of boundaries predicted by a given primary predictor for 

a given input protein gives a feature vector with the same length as the protein irrespective of 

how many boundaries were predicted (e.g., due to a different number of templates identified by 

a threader or alternate boundary predictions from the same predictor). Furthermore, the 

boundary score considers the confidence of the boundaries and the agreement between different 

predictions. 

Text T6: Stage 2 DNNs 

Each of the Stage 2 DNNs is a residual neural network (ResNet) as implemented in 64 with 18 

layers. Further information about each layer is available in Table S2. 

As the number of boundary residues (distance to true boundary = 0 residues) and 

putative boundary residues (distance to true boundary  20 residues) is considerably lower than 

that of non-boundary residues (distance to true boundary > 20 residues) in the TopDomain 

training set, we face a severe class imbalance. To resolve this issue in Stage 2 (see section 

TopDomain Stage 2 in the main text), we use oversampling on the training split of the 

TopDomain training dataset to train on a balanced set of classes in each batch. Each batch 

consists of 1200 input images (200 images for each of the six distance bin classes), which were 

chosen randomly and uniformly (see section TopDomain Stage 2 in the main text). However, 

we do not use oversampling for the validation split of the TopDomain training set, which, 

therefore, still has the class imbalance seen in the raw data. This prevents overfitting and 

learning the statistics of the training dataset. 

Early stopping is used to choose the number of epochs to not lead the network to over- 

or under-fit. The training is stopped once the model performance does not improve for 15 

epochs on the validation set. 

To increase the performance of optimization and decrease the training time, we use a 

learning rate schedule that decreases the learning rate by a factor of 0.2 once the validation loss 

stops improving for five epochs. The minimum learning rate is 10-5.  

The model uses categorical cross-entropy as a loss function 65 to decide to which of the 

six possible classes (see section TopDomain Stage 2 in the main text) each input image (see 

section TopDomain Stage 2 in the main text) belongs. Softmax 65 is the proper activation 
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function to be used with a categorical cross-entropy loss function because it transforms the 

model output into a vector with ranges from 0 to 1 and makes the output categorical. In turn, 

this allows the loss function to compare the probability distributions of model output and true 

targets 66  

The Adam optimization algorithm 67 is used to update network weights iteratively based 

on the training data. The exponential decay rate for the first-moment estimate is 0.9 and the 

second-moment estimate is 0.999. To prevent division by zero, epsilon is chosen as 10-8.  

Table S1. Stage 3 Filtering Score Cut-offs [a]  

Predictor[b] 
Stage 2 Cut-off 

(Window ± 10) 

Stage 2 Cut-off 

(Window ± 20) 

Stage 2 Cut-off 

(Window ± 40) 

TopDomain 0.01 0.04 0.16 

ThreaDom 0.51 0.38 0.43 

InterProScan 0.32 0.31 0.73 

DOMPRED 0.36 0.31 0.91 

FIEFDom 0.18 0.20 0.18 

TopDomainSeq 0.16 0.03 0.09 

ConDo 0.63 0.32 0.35 

DOBO 0.23 0.23 0.16 

DeepDom 0.79 0.80 0.76 

DROP 0.20 0.26 0.22 

PPRODO 0.80 0.99 0.96 

DOMCUT 0.71 0.49 0.38 

Scooby-Domain 0.34 0.97 0.15 

DOMpro 0.19 0.23 0.18 

TopDomainParse 0.44 0.55 0.30 

DDOMAIN 0.29 0.30 0.32 

DomainParser2 0.26 0.34 0.29 

SWORD 0.10 0.30 0.68 

[a] Stage 2 cut-offs for the non-contact probability used to calculate the Stage 3 filtering score. If a residue has a 

non-contact probability lower than the respective cut-off for each of the three window sizes (see section 

TopDomain Stage 2 in the main text) for the respective Stage 2 DNNs, the residue is assigned as a probable 

boundary residue with a Stage 3 filtering score of one; otherwise, it is given a Stage 3 filtering score of zero. Low 

values indicate a strong ability to separate putative boundaries (distance ≤ 20 residues from a true boundary) from 

non-boundary residues (distance > 20 residues from a true boundary). Each cut-off is calculated by maximizing 

the harmonic mean of the fraction of non-boundary residues above the cut-off and the fraction of putative boundary 

residues below it (see section TopDomain Stage 2 in the main text). 

[b] The first section lists homology-based predictors, the second sequence-based predictors, and the third structure-

based domain parsers. 
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Text T7: Stage 3 DNNs 

The input image size of each TopDomain Stage 3 DNN (For TopDomain and TopDomainSeq) 

is 81 × 19. This stems from the fact that Stage 3 uses a sliding window of ± 40 residues (40 × 

2 + 1 = 81) and has input features consisting of six class probabilities from Stage 2 (see section 

TopDomain Stage 2 in the main text) for three window sizes (± 10, ± 20, and ± 40 residues) 

and a binary feature, called the Stage 3 filter (6 × 3 + 1 = 19) (see section TopDomain Stage 3 

in the main text). The target value in Stage 3 is a number between 0 and 1 calculated by Equation 

2 (see section TopDomain Stage 3 in the main text). 

 Each Stage 3 DNN (For TopDomain and TopDomainSeq) is a regression ResNet with 

50 layers. Further information about each layer is available in Table S2. The learning rate 

schedule, early stopping, and oversampling are the same as in Stage 2. The Adam optimizer 

with the same hyper-parameters as in Stage 2 is selected for Stage 3. As this is a regression 

problem, no activation function is used for the last layer. To be sensitive to outliers, the mean 

squared error (MSE) is used as a loss function 65. 

Table S2. Stage 2 and Stage 3 DNN architectures [a] 

[a] Every layer of Stage 2 and Stage 3 ResNet is composed of sequential operations such as convolutions, batch 

normalizations, max pooling , average pooling, and activation functions. 

Layer Name Stage 2 DNN [b] Stage 3 DNN [b]  

Layer 1 
Convolution, 3×3, 64, batch normalization, 

3×3 max pooling 

Convolution, 3×3, 64, batch normalization, 

3×3 max pooling 

Layer 2 
Convolution, ቂ

3 ൈ 3, 64
3 ൈ 3, 64ቃ ൈ 2, batch 

normalization, ReLU activation 

Convolution, ൥
1 ൈ 1, 64
3 ൈ 3, 64

1 ൈ 1, 256
൩ ൈ 3, batch 

normalization, ReLU activation 

Layer 3 
Convolution, ቂ

3 ൈ 3, 128
3 ൈ 3, 128ቃ ൈ 2, batch 

normalization, ReLU activation 

Convolution, ൥
1 ൈ 1, 128
3 ൈ 3,128
1 ൈ 1, 512

൩ ൈ 4, batch 

normalization, ReLU activation 

Layer 4 
Convolution, ൤

3 ൈ 3, 256
3 ൈ 3, 256൨ ൈ 2, batch 

normalization, ReLU activation 

Convolution, ൥
1 ൈ 1, 256
3 ൈ 3, 256

1 ൈ 1, 1024
൩ ൈ 6, batch 

normalization, ReLU activation 

Layer 5 
Convolution, ൤

3 ൈ 3, 512
3 ൈ 3, 512൨ ൈ 2, batch 

normalization, ReLU activation 

Convolution, ൥
1 ൈ 1, 512
3 ൈ 3, 512

1 ൈ 1, 2048
൩ ൈ 3, batch 

normalization, ReLU activation 

Layer 6 
Average pooling, 6-dimension fully 

connected, softmaxactivation 

Average pooling, 1-dimension fully 

connected 



14 
 

[b] Convolution operations are represented with its kernel size and feature map size, as implemented in [64]. There 

is a batch normalization and activation function after each convolution operation as implemented in [64].  

Text T8: Peak Detection & Confidence Estimation 

To detect the peaks of the smoothened boundary score, the find-peak function of the Scipy 

package is used to assign binary boundary predictions. The peak height and prominence (the 

distance between a peak and the closest other peak) are chosen as peak detection parameters. 

To estimate the optimal peak detection parameters for each DBP, we optimize the F1 score 

according to the strict quality criterion (see section Quality Criteria in the main text). First, we 

choose a list of height and prominence values between 0 and 1 with a step size of 0.1 and 

perform a grid search on the training set for each DBP. Then we use a step size of 0.01 between 

the two values with the highest F1 score and repeat the grid search. The final height and 

prominence parameters of each DBP are shown in Table S3. 

Table S3. Optimal height and parameters for peak detection of each DBP [a]  

Predictor[b] Height Prominence 

TopDomain 0.500 0.580 

ThreaDom 0.480 0.570 

InterProScan 0.540 0.350 

DOMPRED 0.330 0.120 

FIEFDom 0.490 0.100 

TopDomainSeq 0.560 0.580 

ConDo 0.500 0.550 

DOBO 0.500 0.280 

DeepDom 0.390 0.120 

DROP 0.760 0.200 

PPRODO 0.100 0.050 

DOMCUT 0.060 0.003 

Scooby-Domain 0.150 0.360 

DOMpro 0.360 0.040 

TopDomainParse 0.690 0.550 

DDOMAIN 0.530 0.290 

DomainParser2 0.530 0.400 

SWORD 0.540 0.400 

[a] The height and prominence parameters were obtained by optimizing the boundary detection F1 score according 

to the strict correctness criterion (see section Quality Criteria in the main text). A small prominence value indicates 

that the boundary score does not change much in the training data set. 

[b] The first section lists homology-based DBPs. The second section lists sequence-based DBPs. The third section 
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lists structure-based DBPs.  

The boundary region is predicted as a function of peak height. This prediction is based on a 

logistic function fitted on the 1σ (68%) confidence interval of the distance between predicted 

and true boundary. To do so, the peak height of all predicted boundaries in the TopDomain 

training dataset is collected and binned with a bin size of 0.001. For each bin, the 68% 

confidence interval for the distance between the peak and the nearest true boundary is 

calculated. Finally, a logistic function is fit to these values. The fitted logistic functions are then 

used as models to predict the boundary confidence interval for future predictions. The results 

of the logistic fit for each DBP are presented in Figure S2 

We expect that when a DBP detects a boundary with a high peak height, the confidence 

interval of the distance between the predicted and the true boundary is smaller since we are 

more confident in the location of the boundary. TopDomain, TopDomainSeq, and 

TopDomainParse meet these expectations (Figure S2), and their high Pearson’s coefficients of 

determination (Pearson’s R2) indicate that there are only a few noisy data points. Some 

predictors such as DOBO and DROP have flat curves indicating that their confidence is 

independent of peak height. Finally, for DOMCUT and PPRODO, the confidence interval of 

the distance between the predicted and the true boundary becomes the larger, the higher the 

peak is, but because they have small height and prominence values (Table S3) their boundary 

score is mostly flat. Therefore, they consider most peaks as a predicted boundary with 

correspondingly large confidence intervals due to the high false-positive rate of these 

predictors.  
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Figure S2. Confidence Interval Estimations. This figure shows the 1 confidence intervals of the distance 

between predicted and true boundary vs. the boundary score of each DBP. The blue points were obtained by 

calculating 68% confidence interval for the distance between the peak and the nearest true boundary . The red lines 

are logistic functions fit to the data points to avoid getting negative or infinite values as a boundary region. The 

fitted functions are used as models to predict the boundary confidence interval for future predictions. Higher 

Pearson’s R2 values represent less noisy data points for a given DBP.  
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Table S4. Literature correctness criterion performance of boundary predictors 

Predictor[a] 
TopDomain Test dataset[b] CASP domain dataset[b] 

Precision Recall F1 MCC Precision Recall F1 MCC 

TopDomain 75.1 % 81.9 % 78.4 % 64 % 48.3 % 46.7 % 47.5 % 40 % 

ThreaDom 71.2 % 69.0 % 70.1 % 67 % 43.8 % 25.7 % 32.4 % 36 % 

InterProScan 67.1 % 52.9 % 59.2 % 49 % 40.3 % 17.8 % 24.7 % 22 % 

DOMPRED 52.8 % 39.8 % 45.4 % 39 % 39.0 % 21.1 % 27.4 % 37 % 

FIEFDom 50.3 % 19.3 % 27.9 % 26 % 33.3 % 4.6 % 8.0 % 4 % 

TopDomainSeq 71.8 % 63.7 % 67.5 % 59 % 43.6 % 33.6 % 37.9 % 33 % 

ConDo 79.3 % 39.1 % 52.4 % 60 % 60.7 % 22.4 % 32.7 % 43 % 

DOBO 39.8 % 41.4 % 40.6 % 35 % 33.1 % 29.6 % 31.2 % 32 % 

DeepDom 49.4 % 31.3 % 38.3 % 37 % 51.5 % 32.9 % 40.2 % 51 % 

DROP 42.4 % 22.6 % 29.5 % 28 % 48.6 % 23.7 % 31.9 % 6 % 

PPRODO 22.5 % 72.2 % 34.3 % 0 % 22.7 % 69.2 % 34.2 % 0 % 

DOMCUT 20.4 % 86.5 % 33.0 % 0 % 24.0 % 91.8 % 38.1 % 0 % 

Scooby-Domain 28.3 % 15.4 % 20 % 36 % 19.5 % 10.5 % 13.7 % 31.4 % 

DOMpro 40.7 % 12.8 % 19.7 % 28 % 21.7 % 6.6 % 10.1 % 18.8 % 

TopDomainParse 69.0 % 55.8 % 61.7 % 54 % 64.4 % 30.9 % 41.8 % 7 % 

DDOMAIN 72.4 % 49.1 % 58.5 % 64 % 64.8 % 23.0 % 34.0 % 31 % 

DomainParser2 68.5 % 50.1 % 57.9 % 68 % 59.4 % 25.0 % 35.2 % 31 % 

SWORD 56.9 % 50.0% 53.2% 33% 40.6 % 27.0 % 32.4 % 17 % 

RanDom 19.8 % 44.4 % 27.4 % - - - - - 

[a] The first section lists homology-based DBPs. The second section lists sequence-based DBPs. The third section 

lists structure-based DBPs. The fourth section shows the performance of RanDom as a base-line reference.  
[b] TopDomain performance is compared to primary predictors using the literature correctness criterion (boundary 

distance ≤ 20 residues). The boundary performance metrics are Precision, Recall, and F1 score calculated on multi-

domain proteins of the TopDomain Test dataset (no. of proteins: 1857, no. of boundaries: 3354) and the CASP 

domain dataset (no. of proteins: 82, no. of boundaries: 304), respectively. The MCC column reflects the Matthews 

Correlation Coefficient for classifying single-domain proteins on each of the respective datasets. Overall, 

TopDomain methods show a better Precision, Recall, and F1 score than primary DBPs in each category, as well 

as an equivalent ability to predict single-domain proteins. An exception is DDOMAIN and DomainParser2, which 

show markedly higher MCCs for the classification of single-domain proteins than TopDomainParse for both the 

TopDomain Test dataset and the CASP domain dataset. For each category, the best performance is highlighted in 

bold. Performances worse than RanDom are highlighted in italics.  
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Table S5. Strict correctness criterion performance of boundary predictors 

Predictor[a] 
TopDomain Test dataset [b] CASP domain dataset [b] 

Precision Recall F1 MCC Precision Recall F1 MCC 

TopDomain 70.8 % 77.2 % 73.8 % 64 % 43.5 % 42.1 % 42.8 % 40 % 

ThreaDom 65.3 % 63.2 % 64.2 % 67 % 40.4 % 23.7 % 29.9 % 36 % 

InterProScan 56.2 % 44.3 % 49.5 % 49 % 31.3 % 13.8 % 19.2 % 22 % 

DOMPRED 37.8 % 28.6 % 32.6 % 39 % 24.4 % 13.2 % 17.1 % 37 % 

FIEFDom 37.4 % 14.6 % 21.0 % 26 % 14.3 % 2.0 % 3.5 % 4 % 

TopDomainSeq 65.5 % 58.1 % 61.6 % 59 % 41.9 % 32.2 % 36.4 % 33 % 

ConDo 67.3 % 33.2 % 44.5 % 60 % 51.8 % 19.1 % 27.9 % 43 % 

DOBO 30.6 % 31.8 % 31.2 % 35 % 24.3 % 21.7 % 22.9 % 32 % 

DeepDom 32.8 % 20.8 % 25.5 % 37 % 35.1 % 22.4 % 27.3 % 51 % 

DROP 32.7 % 17.4 % 22.8 % 28 % 32.4 % 15.8 % 21.2 % 6 % 

PPRODO 13.1 % 43.5 % 20.1 % 0 % 14.5 % 45.4 % 22.0 % 0 % 

DOMCUT 11.0 % 53.4 % 18.3 % 0 % 14.1 % 62.9 % 23.1% 0 % 

Scooby-Domain 14.7 % 8.1 % 10.4 % 36 % 12.2 % 6.6 % 8.5 % 31.4 % 

DOMpro 20.8 % 6.5 % 9.9 % 28 % 10.9 % 3.3 % 5.1 % 18.8 % 

TopDomainParse 63.2 % 51.1 % 56.5 % 54 % 56.2 % 27.0 % 36.4 % 7 % 

DDOMAIN 65.5 % 44.4 % 52.9 % 64 % 59.3 % 21.1 % 31.1 % 31 % 

DomainParser2 60.4 % 44.2 % 51.1 % 68 % 56.2 % 23.7 % 33.3 % 31 % 

SWORD 49.3 % 43.3 % 46.1 % 33% 35.6% 24.3 % 29.2 % 17 % 

RanDom 10.2 % 22.8 % 14.1 % - - - - - 

[a] The first section lists homology-based DBPs. The second section lists sequence-based DBPs. The third section 

lists structure-based DBPs. The fourth section shows the performance of RanDom as a base-line reference.  
[b] TopDomain performance is compared to primary predictors using the strict correctness criterion (boundary 

distance ≤ 10 residues). The boundary performance metrics are Precision, Recall, and F1 score calculated on multi-

domain proteins of the TopDomain Test dataset (no. of proteins: 1857, no. of boundaries: 3354) and the CASP 

domain dataset (no. of proteins: 82, no. of boundaries: 304), respectively. The MCC column reflects the Matthews 

Correlation Coefficient for classifying single-domain proteins on each of the respective datasets. Overall, 

TopDomain methods show a better Precision, Recall, and F1 score than primary DBPs in each category, as well 

as an equivalent ability to predict single-domain proteins. An exception is DDOMAIN and DomainParser2, which 

show markedly higher MCCs for the classification of single-domain proteins than TopDomainParse for both the 

TopDomain Test dataset and the CASP domain dataset. For each category, the best performance is highlighted in 

bold. Performances worse than RanDom are highlighted in italics.
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Figure S3. ROC of TopDomain and Primary DBP scores. This figure shows the receiver-operator characteristic 

curves for all primary DBPs and TopDomain methods and the area under the curve (AUC) for each predictor. 

These scores reflect the ability of each DBP score to separate non-boundary residues from boundary residues. 

They do not, however, reflect how boundaries are assigned, since boundary assignment depends not only on the 

score of an individual residue, but on the height and prominence of the entire boundary peak. Homology-based 

predictors are shown in solid lines, sequence-based predictors are shown in dashed lines, and structure-based 

domain parsers are shown in dotted lines. The black diagonal line reflects a random boundary score, which has 

equal probability of assigning a residue as boundary and non-boundary. Performance is calculated for the 

TopDomain test set (1857 multi-domain targets and 627 single-domain targets, 3354 boundaries). 
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