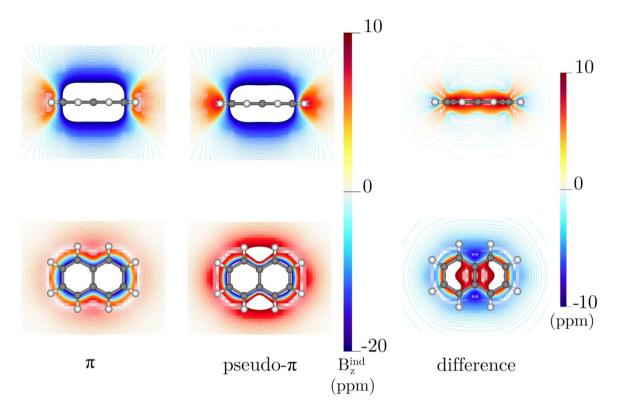
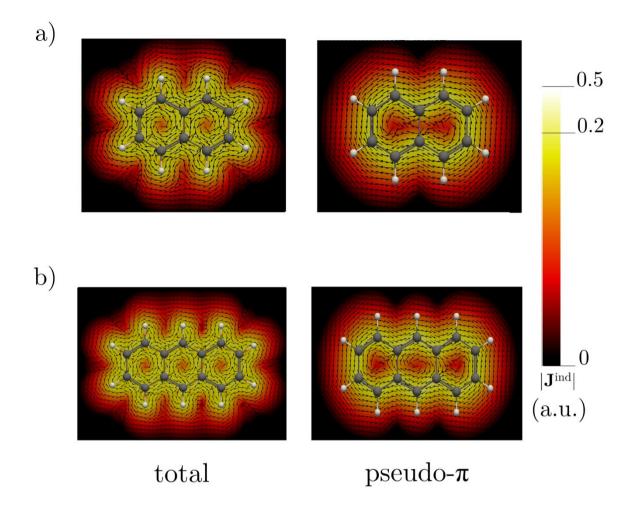
Supporting Information:

Magnetically Induced Ring-Current Strengths of Planar and Nonplanar Molecules: New Insights from The Pseudo- π Model

Mesías Orozco-Ic,^{*,†} Maria Dimitrova,[‡] Jorge Barroso,[†] Dage Sundholm,^{*,‡} and Gabriel

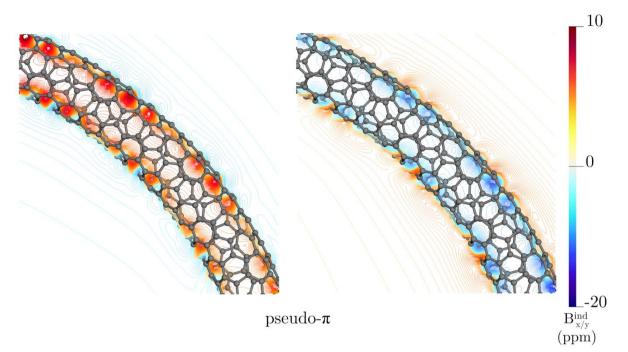

Merino.*,†

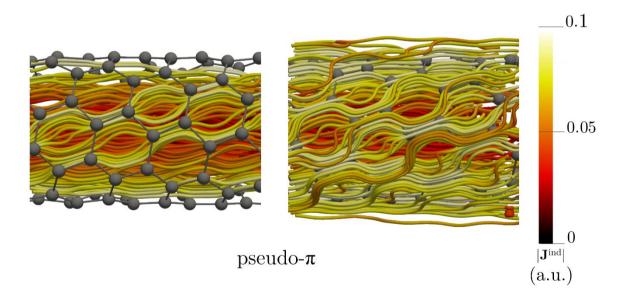
[†]Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México.


*Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland.

Corresponding Authors

*E-mail: mesias.orozco@cinvestav.mx (M.O.-I.). *E-mail: dage.sundholm@helsinki.fi (D.S.) *E-mail: gmerino@cinvestav.mx (G.M.)


Figure S1. Comparison of the true π -component of B^{ind_z} (left), the pseudo- π modeled (in the middle), and the difference resulting from subtracting the pseudo- π model computations from the true π -component computed in the same grid (right) for naphthalene. The true π -component can be computed using the Nuclear Chemical Shielding (NCS) analysis, which allows to dissect the shielding tensor into its molecular orbital components.


Figure S2. The total \mathbf{J}^{ind} (left) and the pseudo- π contribution to \mathbf{J}^{ind} (right) computed in the molecular plane of a) naphthalene and b) anthracene. The arrows show the direction of the current density. The $|\mathbf{J}^{\text{ind}}|$ scale is given in atomic units (1 a.u. = 100.63 nA/T/Å²).

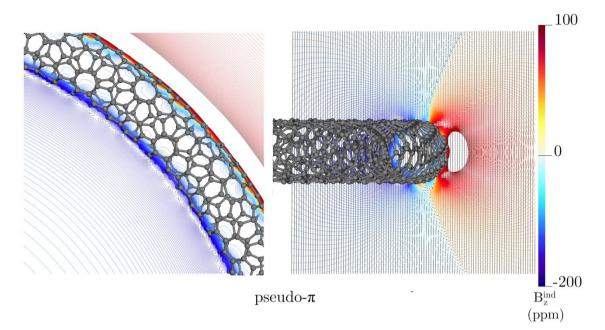

Figure S3. a) The total (left) and the pseudo- π modeled (right) **J**^{ind} computed in a perpendicular plane (top) to the external field and in a cylindrical plane (bottom) for [10]cyclophenacene. The external field is parallel to the belt axis (*z*-axis). b) The total (left) and the pseudo- π modeled (right) **J**^{ind} calculated in a perpendicular plane (top) to the external field and in a cylindrical plane (bottom) for [10]cyclophenacene. The external field is perpendiculated in a perpendicular plane (top) to the external field and in a cylindrical plane (bottom) for [10]cyclophenacene. The external field is perpendicular to the belt axis (*y*-axis). The arrows show the direction of the current density. The |**J**^{ind}| scale is given in atomic units (1 a.u. = 100.63 nA/T/Å²).

Figure S4. Isosurfaces of the *x*- (left) and *y*-component (right) of the induced magnetic field using the pseudo- π model computed in a molecular plane for C₂₀₁₆. The magnetic field is parallel to the toroidal axis.

Figure S5. Streamlines representation of \mathbf{J}^{ind} showing the currents pathways flowing diatropically outside (left) and inside (right) of the surface of the toroidal carbon nanotube (C₂₁₉₆) using the pseudo- π model. The external field is parallel to the main axis of the torus.

Figure S6. The induced magnetic field (\mathbf{B}^{ind}) computed with the pseudo- π model (right) in a molecular plane (left) and a perpendicular plane (right) for C₂₁₉₆. The arrows show the direction of \mathbf{B}^{ind} , while the color scale denotes the strength of the *z*-component of the magnetic field. The magnetic field is parallel to the toroidal axis.