Supporting Information

Biocompatible Photo-induced Alkylation of Dehydroalanine for the Synthesis of Unnatural α -Amino Acids

José A. C. Delgado ^a, José T. M. Correia ^a, Emanuele F. Pissinati ^a and Márcio W. Paixão ^a*.

^a Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, São Carlos, São Paulo, Brazil.

E-mail: <u>mwpaixao@ufscar.br</u>

Supporting Information						
1.	General Information	S2				
2.	General procedure for reaction optimization screening	S2				
3.	Optimization table	S3				
4. General procedures for photo-induced non-natural amino acid						
synth	nesis	S4				
5.	Procedure for scale-up reaction	S5				
6.	Mechanistic considerations	S6				
7.	Spectroscopic and visual evidencies of EDA complex formation	S7				
8.	Deuterium labelling experiments.	S9				
9.	NMR Studies as evidences of the EDA-Complex formation	S10				
10.	General procedures for Peptide-Coupling and Deprotection	S12				
11. General procedure for preparation of <i>N</i> -(Acyloxy)-Phthalimides						
(NHF	PI) redox active esters	S14				
12.	Preparation of dehydrated amino acid 2a	S17				
13.	Preparation of Karady-Beckwith alkene 7a	S19				
14.	Preparation of <i>N</i> -Alkylpyridinium salts	S21				
15.	Reactivity experiments against others Dha's.	S24				
16.	Characterization data of compounds 4a', 4a-ad	S24				
17.	Characterization data of compounds 6a-f					
18.	Characterization data of compounds 8a-f	S38				
19.	NMR spectra. Compounds 2a and 7a.	S41				
20.	NMR spectra. Compounds 4a', 4a-ad.	S43				
21.	NMR spectra. Compounds 6a-f.	S76				
22.	NMR spectra. Compounds 8a-f.	S82				

23.	References	S88
-----	------------	-----

1. General Information

All solvents were dried and distilled before use by standard procedures and reagents were of the highest commercially available grade purchased from Sigma-Aldrich, Oakwood Chemicals, and Stream Chemicals and used as received or purified according to the procedures outlined in Purification of Common Laboratory Chemicals¹. Glassware used was dried in oven or flame dried under vacuum and cooled under an inert atmosphere. The photochemical experiments were performed using a 34 W Kessil H150 blue LED (emission: 380 - 525 nm) as the visible light source, in Schlencks flasks. Column flash chromatography was performed using silica gel 60 (230-400 mesh), and analytical thin-layer chromatography (TLC) was performed using silica gel aluminum sheets. Compounds were visualized on TLC by UV-light, KMnO₄, I₂, H₃[P(Mo₃O₁₀)₄] x H₂O (PMA) and Vanillin. Yields refer to chromatographically and spectroscopically pure compounds unless otherwise noted. ¹H NMR and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million relative to the residual solvent signals², and coupling constants (J) are reported in hertz. The following abbreviations indicate the multiplicity of each signal: (s), singlet; (d), doublet; (t), triplet; (q), quartet; (hept), heptet; (m), multiplet; (dd), doublet of doublets; (dt), doublet of triplets; (dq), doublet of quartet; (dp), doublet of pentet; (ddd), doublet of doublet of doublets; (ddt), doublet of doublet of triplets (dtt), doublet of triplet of triplets; (ttd), triplet of triplets of doublets; (qq), quartet of quartets. High-resolution ESI mass spectra were obtained using a Waters Acquity UPLC H-class liquid chromatograph coupled with a Waters Xevo G2-XS QToF mass spectrometer with an electrospray interface (ESI).

2. General procedure for reaction optimization screening

An oven-dried 10 mL Schlenk tube was charged with $[Ru(bpy)_3](PF_6)_2$ (0.002 mmol, 1 mol%), *N*-(acyloxy)-phthalimide **1a** (72.1 mg, 0.2 mmol), dehydroalanine **2a** (90.4 mg, 0.3 mmol), Hantzsch ester **3a** (76 mg, 0.3 mmol), diisopropylethylamine (76.6 μ L, 0,44 mmol) and a magnetic stir bar. After the addition of a solvent (1.4 mL), the tube was capped with a septum and the mixture was stirred and bubbled with Argon for 5 min. Then, the tube was placed in front of a Blue LED lamp (Kessil ~456 nm – 3 cm distance) and the reaction mixture was stirred for twenty hours. Once the time has passed, the reaction mixture was diluted with ethyl acetate and washed with 10% HCl (3 x 25 mL), NaOH 1M (3 x 25 mL), Brine (1 x 25 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography (10% EtOAc/hexanes) to provide the title compound **4a** as a very viscous colorless oil.

3. Optimization table

	OPhth O	C	ΡΗΨ			O
\sim		Ne EtO	OEt _h	otoostalvet		OMe
	+ N(Boc)	2 + M		colvent tir	→ _N N	N(Boc) ₂
	Вос		H Blu	e I FD 34W	ne Boc	
1a	2a		3a		4a	I
0.2 mmol 0.3 mmol 0.3 mmol						
Entry	Catalyst	Base	Solvent	Time	Ligth	Yield (%)
1	[Ru(bpy) ₃](PF6) ₂	DIPEA	DMSO dry	20h	blue LED	70
2	[Ru(bpy) ₃](PF6) ₂	DIPEA	ACN	20h	blue LED	87
3	[Ru(bpy) ₃](PF6) ₂	DIPEA	DMF	20h	blue LED	64
4	[Ru(bpy) ₃](PF6) ₂	DIPEA	DCM	20h	blue LED	77
5	[Ru(bpy) ₃](PF6) ₂	DIPEA	DMSO/H ₂ O ^b	20h	blue LED	80
6	[Ru(bpy) ₃](PF6) ₂	DIPEA	DMSO/H ₂ O ^c	20h	blue LED	77
7	[Ru(bpy) ₃](PF6) ₂	K_2CO_3	DMSO/H ₂ O ^b	20h	blue LED	54
8	[Ru(bpy) ₃](PF6) ₂	DIPEA	ACN/H ₂ O ^b	20h	blue LED	64
9	-	DIPEA	ACN	20h	blue LED	67
10	-	DIPEA	DMSO/H ₂ O ^c	20h	blue LED	38
11	-	DIPEA	DMF	20h	blue LED	72
12	-	DIPEA	DCM	20h	blue LED	60
13	-	DIPEA	DMSO dry	20h	blue LED	70
14	-	DIPEA	DMSO/H ₂ 0 ^b	20h	blue LED	65
15	-	DABCO	DMSO dry	20h	blue LED	28
16	-	TEA	DMSO dry	20h	blue LED	70
17	-	K ₂ CO ₃	DMSO dry	20h	blue LED	41
18	-	-	DMSO dry	20h	blue LED	76
19 ^d	-	DIPEA	DMSO dry	20h	blue LED	32

20 ^d	-	-	DMSO dry	20h	blue LED	traces
21	-	DIPEA	DMSO dry	20h	-	-
22	-	-	DMSO dry	10h	blue LED	77
23 ^e	-	-	DMSO dry	10h	blue LED	95
21 ^{e,f}	_	_	<i>b</i>	10h	blue I ED	64
2 7	-	-	DMSO/H ₂ O	1011		04
25°,'',9	-	-	DMSO/H₂O [˜]	10h	blue LED	40
26 ^e	-	-	DMSO/H ₂ O ^b	20h	blue LED	90

a) Isolated yield; b) Mixture 9:1; c) Mixture 2:1; d) Without Hantzsch ester; e) Reaction carry out using 2.1 equivalents of Hantzsch ester (**3a**); f) Reaction carry out in a common vial without inert atmosphere; g) Reaction carry out changing the equivalents between compounds **1a** and **2a**.

4. General procedures for photo-induced non-natural amino acid synthesis

General Procedure 4A – decarboxylative process

An oven-dried 10 mL Schlenk tube was charged with *N*-(acyloxy)phthalimides **1a-ad** (0.2 mmol), dehydroalanine **2a** (0.3 mmol), Hantzsch ester **3a** (106.4 mg, 0.42 mmol), and a magnetic stir bar. After the addition of a mixture of DMSO/H₂O 9:1 (1.4 mL), the tube was capped and placed in front of a LED bulb (Kessil ~456 nm) and the reaction mixture was stirred for twenty hours. Once the time has passed, the reaction mixture was diluted with ethyl acetate and washed with 10% HCI (3 x 25 mL), NaOH 1M (3 x 25 mL), Brine (1 x 25 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography (EtOAc/hexanes) to provide pure compounds **4a-ad**.

An oven-dried 10 mL Schlenk tube was charged with *N*-Alkylpyridinium salts **5a-h** (0.2 mmol), dehydroalanine **2a** (0.3 mmol), Hantzsch ester **3a** (106.4

mg, 0.42 mmol), and a magnetic stir bar. After the addition of a mixture of DMSO/H₂O 9:1 (1.4 mL), the tube was capped and placed in front of a LED bulb (Kessil ~456 nm) and the reaction mixture was stirred for twenty hours. Once the time has passed, the reaction mixture was diluted with ethyl acetate and washed with 10% HCl (3 x 25 mL), Brine (1 x 25 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography (EtOAc/hexanes) to provide pure compounds **4k**, **4z**, **6a-e**.

General Procedure **4C** - Karaday-Beckwith acceptor:

An oven-dried 10 mL Schlenk tube was charged with *N*-(Acyloxy)-Phthalimides **1c**, **1g**, **1k**, **1q**, **1aa** and *N*-Alkylpyridinium salts **5d** (0.1 mmol), Karady-Beckwith alkene **7a** (0.15 mmol), Hantzsch ester **3a** (53.2 mg, 0.21 mmol), and a magnetic stir bar. After the addition of a mixture of DMSO/H₂O 9:1 (0.7 mL), the tube was capped and placed in front of a LED bulb (Kessil ~456 nm) and the reaction mixture was stirred for twenty hours. Once the time has passed, the reaction mixture was diluted with ethyl acetate and washed with 10% HCI (3 x 25 mL), NaOH 1M (3 x 25 mL), Brine (1 x 25 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography (EtOAc/hexanes) to provide pure compounds **8a-f**.

5. Procedure for scale-up reaction

An oven-dried 50 mL Schlenk tube was charged with *N*-(Acyloxy)-Phthalimides **1c** (2 mmol), dehydroalanine **2a** (3 mmol), Hantzsch ester **3a** (1.06 g, 4.2 mmol), and a magnetic stir bar. After the addition of a mixture of DMSO/H₂O 9:1 (14 mL), the tube was capped and placed between two LED bulbs (Kessil ~456 nm) at 3 cm in length from each. The reaction mixture was stirred for twenty hours. Once the time has passed, the reaction was diluted with ethyl acetate (100 mL) and washed with 10% HCI (3 x 150 mL), NaOH 1M (3 x 150 mL), Brine (1 x 150 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography (EtOAc/hexanes) to provide pure compound **4c** in 82% (755 mg) as a colorless oil. **R**_f = 0.5 (hexanes/EtOAc 9:1).

Experimental set-up

FIGURE S1. (A) Heterogeneous reaction mixture prior to switch-on the LED bulbs; (B) Reaction mixture when the LED bulbs are switch-on; (C) Homogeneous reaction mixture after 20 hours of reaction; (D) Isolated product. All the photographs were taken during the experiments performed by the authors.

6. Mechanistic considerations

The lack of reactivity in the absence of Hantzsch ester is a good indicative of the formation of the EDA complex. Additionally, the formation of both EDA complexes suggested in this work is well supported by literature. Studies regarding NHPI

ester-Hantzsch ester EDA-complex were reported first by Chen^{9c} and later by our group^{9a} In the other hand, Aggarwall and Glorius studied the TPPsalt-Hantzsch ester EDA-complex also very recently.

However, in order to verify the possibility of a ternary EDA-complex, we performed again UV-Vis experiments and NMR studies.

7. Spectroscopic and visual evidencies of EDA complex formation

Spectroscopic evidence: To identify light-absorbing species of the photoinduced alkylation reaction, the optical absorption spectra of a series of solutions were recorded (figure S1). The solutions of **1a** (0.1 molL⁻¹), **2a** (0.1 molL⁻¹), **3a** (0.1 molL⁻¹), **1a** + **2a** (0.1 molL⁻¹), **1a** + **3a** (0.1 molL⁻¹), and **1a** + **2a** + **3a** (0.1 molL⁻¹) in DMSO were prepared. No obvious change of the absorption was observed for the solutions of **1a** and **2a** in DMSO. In contrast, Hantzsch ester **3a** solution showed a shift absorption spectrum to the lower energy region, and when the mixture **1a** + **3a** was analyzed, a clear bathochromic displacement in the visible region could be observed, corresponding to a charge transference, which is diagnostic of an EDA complex.

FIGURE S2. UV-Visible spectras.

Visual evidence: 0.1 M solutions of 1-(tert-butyl) 2-(1,3-dioxoisoindolin-2-yl) (S)pyrrolidine-1,2-dicarboxylate (**1a**), methyl 2-(di-(tert-butoxycarbonyl) amino) acrylate (**2a**), diethyl 2,6- dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**3a**), and the equimolar mixtures of **1a** + **3a** and **1a** + **2a** + **3a** were prepared (sonication and slightly heating were required to solubilize completely the compound **1a**), as shown by figure S2. The intensification of the color observed in the solution containing the mixture **1a** + **3a** can be attributed to the formation of an EDA complex between the reactants.

FIGURE S3. DMSO 0.1 M solutions of **1a**, **2a**, **3a**, and the respective mixtures (1a + 3a) and (1a + 2a + 3a). Photographs were taken by the authors.

8. Deuterium labelling experiments.

In order to unveil the proton source involved in the last step of the proposed mechanism.

Scheme S1. Deuterium labelling experiments.

By carrying out experiments with deuterium labelled solvents product **4a** did not afford high levels of deuterium incorporation, indicating that the Hantzsch ester should acts as the main proton source (Scheme 1). Based on these observations and previous literature reports,^{9b} a plausible reaction mechanism is outlined in Scheme 2. Upon light absorption by the EDA complex formed between **1a** and **3a**, a PET process takes place affording

the reduced NHPI ester (I) and the oxidized Hantzsch ester (radical-cation). The reduced NHPI ester (I) undergoes fragmentation to release carbon dioxide and the *C*-centered radical (II). Subsequently, radical conjugated addition to **2a** affords tertiary radical intermediate III, which lastly is protonated through a hydrogen atom transfer from Hantzsch ester radical cation (BDFE = 31.4 kcal/mol)¹⁰ or by **3a** (BDFE = 69.4 kcal/mol)¹⁰ to give the desired compound **4a** (BDFE = $\sim 84.3 \text{ kcal/mol}$).¹¹ However, we cannot rule-out an alternative single-electron transfer process occurring simultaneously in which intermediate III would be reduced by Hantzsch ester radical to afford an anion that subsequently is protonated by the water, like suggest experiments shown in Scheme 1.

Scheme S2. Plausible reaction mechanism.

9. NMR Studies as evidences of the EDA-Complex formation

¹H NMR experiments were performed by the preparation of DMSO- d_6 solutions containing Hantzsch ester (**HE**) and NHPI ester (**2a**) in three different ratios,

keeping constant the amount of **HE** (0.05 molL⁻¹) and increasing the amount of **2a** (**HE** : **1a** = 1:1, 1:1.5 and 1:2). The figure S4 shows the expansion of the spectras collected, on which the Hantzsch ester methylenic protons shift were monitored. From this set of experiments it is possible to observe the change in the chemical shifts of the monitored hydrogens with the addition of increasing amounts of **2a**. In presence of **2a**, the shift is also observed and was almost the same of the observed when the **HE** : **1a** rate is 1:1.5, ruling out the possibility of a ternary EDA-complex system.

FIGURE S4.

The same NMR experiments were done replacing the NHPI ester **2a** by the pyridinium salt **5d** (Figure S5). From this second set of experiments it is also possible to observe a variation in the chemical shifts of the monitored HE methylenic proton with the addition of increasing amounts of **5d**. Again, in the presence of **2a**, the shifting is also observed and is almost the same of the observed when the **HE** : **5a** rate is 1:1.5, which also ruling out the possibility of a ternary EDA-complex system.

FIGURE S5.

10. General procedures for Peptide-Coupling and Deprotection

General procedures 6A - 6C Me Ме TBTU, DIPEA, DCM KOH, MeOH/H₂O 10% 0 °C 0 °C to r.t., 24h COOMe COOMe соон Boo N Boo H₃^Ń_⊕ CI (в) (A) Me Me 1) DCM/ TFA 6:4 v/v, 0 °C Me KOH, MeOH/H₂O 10% 0 °C (c) COOMe Во 2) NBoc-Phe-OH. В Boc Boc соом TBTU. DIPEA. DCM Me Me 0 °C to r.t., 24h (\mathbf{A})

Me

соон

Procedure 6A: A round-bottom flask equipped with magnetic stir bar was charged with *N*-protected free carboxylic acid (1.2 equiv) and DCM (0.5 M) and was cooled to 0 °C. TBTU (1.5 equiv) was added in a single portion, followed by DIPEA (3.5 equiv) and stirred for 30 min. Then, the amine coupling partner (1 equiv.) was added to the reaction mixture. After stirring 10 minutes, the reaction mixture was allowed to warm to room temperature and stirred for additional 24

hours. Passed that time, the mixture was partitioned between a 10% HCl solution and DCM. The organic phase was washed with HCl 10% (2x), NaHCO₃ (2x), and brine (1x). Next, it was dried over anhydrous Na_2SO_4 . and concentrated by rotary evaporation. The resultant white solid was taken forward without further purification.

Procedure 6B: The crude protected peptide was dissolved in a mixture of MeOH/ H_2O 10% at 0 °C. After stirring 10 min, KOH (3 equiv.) was added and the reaction mixture was checked by Thin Layer Chromatography until consumption of the starting material. Then, a 10% HCI solution was added until pH = 2-3 be reached and the aqueous layer was extracted with ethyl acetates (2x). The organic layer was dried over anhydrous Na₂SO₄ and concentrated by rotary evaporation. The resultant white solid was taken forward without further purification.

Procedure 6C: The crude protected peptide was dissolved in a mixture of DCM/ TFA/ 6:4 v/v (10 ml/g) at 0 °C. The reaction mixture was allowed to stir and checked by thin layer chromatography until consumption of the starting material. Then the reaction was concentrated under reduced pressure and the TFA was entirely removed by repetitive addition and evaporation of further DCM. 11. General procedure for preparation of *N*-(Acyloxy)-Phthalimides (NHPI) redox active esters

NHPI esters **1a-ad** were prepared according to the previously reported procedure.³

A round-bottom flask was charged with (if solid) carboxylic acid (1.0 equiv), *N*-hydroxyphthalimide (1.0 equiv) and DMAP (0.1 equiv). Dichloromethane was added (0.15 M), and the mixture was stirred vigorously. Carboxylic acid (1.0 equiv) was added via syringe (if liquid). DIC (1.1 equiv) was then added dropwise via syringe, and the mixture was allowed to stir until the acid was consumed (determined by TLC). Typical reaction times were between 0.5 h and 12 h. The mixture was filtered (over Celite, SiO₂, or through a fritted funnel) and rinsed with additional CH_2Cl_2 . The solvent was removed under reduced pressure, and purification by column chromatography afforded the corresponding *N*-(Acyloxy)-Phthalimides.

Note: Some esters are prone to hydrolysis on silica gel during column chromatography and should be purified as quickly as possible to obtain reasonable separation.

1,3-dioxoisoindolin-2-yl 2-(1,8-diethyl-1,3,4,9tetrahydropyrano[3,4-b]indol-1-yl)acetate (**1ab**) was synthesized according to the general procedure before mentioned. Flash column chromatography purification 0-20% of EtOAc in

hexanes afforded the title compound in 57% (485.0 mg) as a white solid. R_f = 0.5-0.6 (hexanes/EtOAc 8:2). NMR ¹H (400 MHz, CDCI₃) δ 8.87 (s, 1H), 7.98 – 7.91 (m, 2H), 7.88 – 7.81 (m, 2H), 7.38 (d, J = 7.7 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 7.1 Hz, 1H), 4.19 – 4.11 (m, 1H), 4.07 – 3.98 (m, 1H), 3.38 (d, J = 13.8 Hz, 1H), 3.19 (d, J = 13.8 Hz, 1H), 2.99 – 2.75 (m, 4H), 2.27 – 2.08 (m, 2H), 1.28 (t, J = 7.5 Hz, 3H), 0.92 (t, J = 7.3 Hz, 3H). NMR ¹³C (100 MHz, CDCI₃) δ 167.5, 162.4, 135.2, 134.9, 134.3, 128.9, 127.2, 126.2, 124.3, 121.0, 119.9, 116.2, 109.3, 75.5, 61.1, 41.0, 31.6, 24.3, 22.5, 14.3, 7.7. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₅H₂₄N₂O₅H 433.1758; Found: 433.1759.

1,3-dioxoisoindolin-2-yl (tert-butoxycarbonyl)-L-valyl-Lmethioninate (**1ac**) was synthesized according to the general procedure before mentioned. Flash column chromatography purification 0-40% of EtOAc in hexanes afforded the title compound in 57% (485.0 mg) as a white solid. R_f = 0.4-0.5 (hexanes/EtOAc 7:3). NMR ¹H (400

MHz, **CDCI**₃) δ 7.91 – 7.85 (m, 2H), 7.79 (dd, J = 5.6, 3.2 Hz, 2H), 7.12 – 6.86 (m, 1H), 5.24 – 5.00 (m, 2H), 4.06 – 3.89 (m, 1H), 2.74 – 2.65 (m, 2H), 2.39 – 2.21 (m, 2H), 2.20 – 2.02 (m, 4H), 1.42 (s, 9H), 1.00 – 0.91 (m, 6H). **NMR** ¹³**C** (100 MHz, **CDCI**₃) δ 171.9, 168.6, 161.5, 156.1, 135.0, 128.9, 124.2, 80.3, 60.1, 50.0, 31.6, 29.7, 28.4, 19.3, 15.5. **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₂₃H₃₁N₃O₇SNa 516.1775; Found: 516.1783.

1,3-dioxoisoindolin-2-yl (tert-butoxycarbonyl)-Lphenylalanyl-L-valyl-L-methioninate (1ad) was synthesized according to the general procedure before mentioned. Flash column chromatography purification 0-60% of EtOAc in hexanes afforded the title compound in 53% (900.0 mg) as a white solid. $R_f = 0.3$ (hexanes/EtOAc 6:4). NMR ¹H (400 MHz, CDCl₃) δ 7.83 -7.77 (m, 2H), 7.75 - 7.69 (m, 2H), 7.35 - 7.23 (m, 1H), 7.21 - 7.15 (m, 3H), 7.14 - 7.10 (m, 2H), 6.82 - 6.36

(m, 1H), 5.08 - 4.91 (m, 2H), 4.38 - 4.20 (m, 2H), 3.08 - 2.91 (m, 2H), 2.69 - 2.55 (m, 2H), 2.33 - 2.21 (m, 2H), 2.19 - 2.05 (m, 4H), 1.33 - 1.28 (m, 9H), 0.87 - 0.77 (m, 6H). **NMR** ¹³**C (100 MHz, CDCI₃)** δ 172.0, 171.0, 168.4, 161.6, 156.4, 136.5, 135.0, 129.4, 129.1, 128.9, 127.2, 124.2, 81.5, 58.6, 56.1, 50.1, 37.8, 31.2, 29.9, 29.8, 28.3, 19.2, 15.5. **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₃₂H₄₀N₄O₈SNa 663.2459; Found: 663.2479.

12. Preparation of dehydrated amino acid 2a.

General procedures 8A - 8C

Procedure 8A: To a stirring solution of *L*-Serine in methanol at 0 $^{\circ}$ C was added thionyl chloride drop by drop. After the addition of thionyl chloride, the solution was warmed to room temperature and stirred for 12 hours. The reaction mixture was concentrated by reduced pressure and the residue was triturated and concentrated by reduced pressure in three cycles employing toluene, methanol, and diethyl ether (for the entire removal of dimethyl sulphite), to afford the product as a white solid.

Dehydrated amino acid **2a** were prepared according to the previously reported procedure.⁴

Procedure 8B: To a stirring solution of *L*-serine methyl ester hydrochloride (1 equiv) in dichloromethane (1 M) at 0 °C was added triethylamine (2.2 equiv) and di-*tert*-butyl dicarbonate (1.1 equiv). After stirring for 30 minutes, the solution was warmed to room temperature, and stirred for an additional 18 hours. The reaction mixture was concentrated by rotary evaporation, diluted with ethyl acetate, and washed with 1M HCl, saturated aqueous NaHCO₃, and brine. The organic phase was dried over sodium sulfate, filtered, and concentrated by rotary evaporation. The residue was passed through a silica plug (50% ethyl acetate in hexanes) to afford the product as a clear, colorless oil. The physical properties and spectral data are consistent with the reported values.⁵

Procedure 8C To a stirring solution of methyl (*tert*-butoxycarbonyl)-*L*-serinate (1.0 equiv) in acetonitrile (6 M) at 0 °C was added di-*tert*-butyl dicarbonate (2.2 equiv) and 4-dimethylaminopyridine (0.20 equiv). The resulting solution was warmed to room temperature and stirred for 8 hours. DBU (0.10 equiv) was added, and the resulting mixture was stirred for an additional 8 hours. The reaction was concentrated by rotary evaporation then diluted in ethyl acetate. The mixture was washed with 1M HCl and saturated aqueous NaHCO₃, dried over

 Na_2SO_4 , filtered, and concentrated by rotary evaporation. The residue was purified by passing through a short plug of silica (5% – 15% ethyl acetate/hexanes) to afford the product **2a** as a white solid. The physical properties and spectral data are consistent with the reported values.⁶

Methyl 2-(di-(*tert*-butoxycarbonyl) amino) acrylate (**2a**) was synthesized according to the general procedures **8A-C** using *L*-N(Boc)₂ Serine (4.0 g, 38.06 mmol). Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 75,4% (5.26g) as a colorless oil which precipitate into a white solid overnight inside of freezer. $R_f = 0.4$ (hexanes/EtOAc 9:1). The spectral data are consistent with the reported values.⁶ NMR ¹H (400 MHz, CDCl₃) δ 6.29 (s, 1H), 5.60 (s, 1H), 3.74 (s, 3H), 1.41 (s, 18H). NMR ¹³C (100 MHz, CDCl₃) δ 164.0, 150.7, 136.1, 124.7, 83.2, 52.4, 27.9.

13. Preparation of Karady-Beckwith alkene 7a

Procedure 9A – Benzyl (2S,4R)-4-((benzylthio)methyl)-2-(tert-butyl)-5-oxooxazolidine-3-carboxylate: To a round bottom flask equipped with a stir bar was added S-benzyl-*L*cysteine (10 g, 47 mmol, 1 equiv.), NaOH (1.8 g, 45 mmol, 0.95

equiv), and anhydrous MeOH (500 mL). The reaction was stirred at room temperature for 30 minutes. Trimethylacetaldehyde (6.18 ml, 57 mmol, 1.2 equiv) and activated 3 Å molecular sieves (50 g) were added to the reaction flask, each

in one portion. The reaction was placed under nitrogen atmosphere and stirred at room temperature until the starting material had been consumed (determined by ¹H NMR of a filtered and concentrated aliquot of the reaction solution dissolved in CD₃OD). The reaction was guickly filtered through celite and concentrated by rotary evaporation. The residue was dried under high vacuum for 24 hours to afford the imine as a white solid. The imine was dissolved in anhydrous DCM (500 mL) and cooled to -30 °C. Benzyl chloroformate (10.1 mL, 71 mmol, 1.5 equiv) was added to the reaction dropwise via syringe. The reaction was allowed to reach 0 °C. The reaction was stirred for a full 18 hours then warmed to room temperature and stirred for an additional 6 hours. The mixture was washed with 1 M aqueous NaOH (1x 250 mL). The organic layer was dried over sodium sulfate, filtered, and concentrated by rotary evaporation. The residue was purified by flash chromatography (0%–10% ethyl acetate/hexanes) to afford the product (8.3 g, 41% yield) as a colorless oil. The physical properties and spectral data were consistent with the reported values.⁴ NMR ¹H (400 MHz, CDCI₃) δ 7.40 -7.35 (m, 5H), 7.31 – 7.22 (m, 5H), 5.54 (s, 1H), 5.27 – 5.14 (m, 2H), 4.54 (t, J = 7.0 Hz, 1H), 3.84 – 3.69 (m, 2H), 2.97 – 2.74 (m, 2H), 0.92 (s, 9H). NMR ¹³C (100 **MHz, CDCl₃**) δ 171.4, 156.0, 137.8, 135.2, 129.2, 128.8, 128.7, 128.6, 127.3, 96.4, 68.7, 57.7, 37.0, 36.6, 33.4, 24.9.

Procedure9B–Benzyl(2S,4R)-4-((benzylsulfonyl)methyl)-2-(tert-butyl)-5-oxooxazolidine-3-carboxylate:To a round bottom flask equipped with a stirbar was added benzyl (2S,4R)- 4-((benzylthio)methyl)-2-(tert-

butyl)-5-oxooxazolidine-3-carboxylate (6.3 g, 15.25 mmol, 1 equiv), metachloroperoxybenzoic acid (6.6 g, 38.12 mmol, 2.5 equiv), and DCM (205 mL). The reaction was stirred at room temperature for 18 hours. The reaction mixture was washed with 1 M aqueous sodium hydroxide (3 x 100 mL). The organic layer was dried over sodium sulfate, filtered, and concentrated by rotary evaporation. The residue was purified by flash chromatography (10%–30% ethyl acetate/hexanes) to afford the product (5.5 g, 81% yield) as a white foam. The physical properties and spectral data were consistent with the reported values.⁴ **NMR** ¹**H** (400 MHz, CDCl₃) δ 7.44 – 7.33 (m, 10H), 5.62 (s, 1H), 5.30 – 5.18 (m, 2H), 5.09 (dd, J = 8.1, 4.1 Hz, 1H), 4.71 – 4.37 (m, 2H), 3.48 – 3.08 (m, 2H), 0.89 (s, 9H). **NMR** ¹³**C (100 MHz, CDCI₃)** δ 170.8, 155.4, 135.0, 131.0, 129.3, 129.1, 129.0, 128.9, 128.0, 97.0, 69.0, 60.5, 53.7, 52.7, 37.2, 24.6.

Procedure 9C – Benzyl (S)-2-(*tert*-butyl)-4-methylene-5oxooxazolidine-3-carboxylate (7a): To a round bottom flask

equipped with a stir bar was added (benzyl (2S,4R)-4-((benzylsulfonyl)methyl)-2-(*tert*-butyl)-5-oxooxazolidine-3-carboxylate) (5.5a. 12.4 mmol, 1 equiv), and DCM (155 mL). The flask was chilled to 0 °C in an ice bath, and DBU (2.1 mL, 13.6 mmol, 1.1 equiv) was added dropwise via syringe. The reaction was stirred at 0 °C until the starting material had been consumed (determined by TLC, about 10 minutes). While still at 0 °C, the reaction mixture was quenched with saturated aqueous ammonium chloride (50 mL), the layers were separated, and the organic phase was washed with saturated aqueous ammonium chloride (3x 100 mL). The organic layer was dried over sodium sulfate, filtered, and concentrated by rotary evaporation. The residue was purified by flash chromatography (5%–10% ethyl acetate/ hexanes) to afford the product (3.4 g, 98% yield) as a white solid. The physical properties and spectral data are consistent with the reported values.⁴ NMR ¹H (400 MHz, CDCI₃) δ 7.31 (s, 5H), 5.64 (s, 1H), 5.61 (s, 2H), 5.18 (s, 2H), 0.86 (s, 9H). NMR ¹³C (100 MHz, CDCI₃) δ 164.7, 152.5, 134.8, 130.2, 129.0, 128.9, 128.8, 104.5, 94.1, 68.9, 38.8, 24.4.

14. Preparation of N-Alkylpyridinium salts

Cbz

N-Alkylpyridinium salts **5a-h** were prepared according to the previously reported procedure⁸.

General procedure 10A:

Primary amine (1.2 equiv) was added to a suspension of 2,4,6triphenylpyrylium tetrafluoroborate (1.0 equiv) and EtOH (1.0 M) in a roundbottomflask. The flask was fitted with a reflux condenser. The mixture was stirred and heated at reflux in an oil bath at 80-85 °C for 4 h. The mixture was then allowed to cool to room temperature. If product precipitation occurred, the solid was filtered, washed with EtOH (3 x 25 mL) and then Et₂O (3 x 25 mL), and dried under high vacuum. If product precipitation did not occur, the solution was diluted with Et₂O (2-3x volume of EtOH used) and vigorously stirred for 1 h to induce trituration. The resulting solid pyridinium salt was filtered and washed with Et₂O (3 x 25 mL). If the pyridinium salt failed to precipitate at this point, the flask containing the reaction mixture and Et₂O (3 x 25 mL) to give the corresponding analytically pure pyridinium salt. If the salt still did not precipitate, it was subjected to silica gel chromatography using acetone/CH₂Cl₂ as the eluent.

General Procedure 10B – O-acylated - N-alkyl-pyridinium salts 5e and 5f

To a solution of respective salt **A**/salt **B** (1 eq.) – prepared according the general procedure 9A – and DMAP (10 mol%) in anhydrous CH_2Cl_2 was added Et_3N (2 equiv.). The reaction mixture was then cooled to 0°C. Corresponding acyl chloride (2 equiv.) was added dropwise to the mixture. The reaction was allowed to warm to rt and stirred overnight, before being quenched with H_2O and extracted with

 CH_2CI_2 . The combined organic layers were dried over Na_2SO_4 and concentration in vacuum. Purification by flashcolumn chromatography (2-10% acetone/ CH_2CI_2) provided the desired product **5e/5f**.

1-(1-(pent-4-enoyloxy)butan-2-yl)-2,4,6triphenylpyridin-1-ium tetrafluoroborate (5f) was synthesized according to the general procedure 9B: Flash column chromatography purification 0-60% of

Acetone in hexanes afforded the title compound in 92% (500 mg) as a light yellow oil. R_f = 0.6-0.7 (hexanes/Acetone 1:1). NMR ¹H (400 MHz, CDCI₃) δ 8.29 (s, 2H), 8.06 (dt, *J* = 8.2, 1.5 Hz, 2H), 7.77 – 7.56 (m, 13H), 5.79 – 5.67 (m, 1H), 5.09 – 5.00 (m, 1H), 4.99 – 4.88 (m, 2H), 4.26 – 3.93 (m, 2H), 2.39 (t, *J* = 7.2 Hz, 2H), 2.25 (q, *J* = 7.3, 6.6 Hz, 2H), 2.14 – 1.53 (m, 2H), 0.73 (t, *J* = 7.4 Hz, 3H). NMR ¹³C (100 MHz, CDCI₃) δ 173.4, 157.0, 137.8, 134.6, 133.8, 132.5, 130.9, 130.6, 129.7, 116.2, 71.8, 65.4, 33.8, 29.6, 28.0, 11.3. HRMS (ESI) m/z: [M]⁺ Calcd. for C₃₂H₃₂NO₂ 462.2428; Found:462.2430

General procedure 10C – O-acylated N-alkyl-pyridinium salt 5g

To a solution of Etodolac (284.7 mg; 0.99 mmol), **B** (476 mg; 0.99 mmol,) – prepared according the general procedure 9A – and DMAP (6 mg; 0,05 mmol) in DCM (10 mL) was added DIC (145 μ L; 0.99 mmol). The reaction mixture was stirred at rt for 24 h, then solid was removed by filtration in a pad of silica. The residue was purified by flash column chromatography (DCM/acetone = 10:1) to provide 1-(1-(2-(1,8-diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indol-1-yl)acetoxy)butan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate **5g** (530 mg,

0.72 mmol, 73% yield) as a yellowish solid. R_f = 0.6-0.7 (hexanes/Acetone 1:1). NMR ¹H (400 MHz, CD₃OD) δ 8.46 – 8.00 (m, 4H), 7.80 – 7.39 (m, 13H), 7.20 – 6.77 (m, 3H), 5.12 – 4.95 (m, 1H), 4.03 – 3.85 (m, 2H), 3.83 – 3.74 (m, 2H), 3.08 – 2.68 (m, 4H), 2.67 – 2.44 (m, 2H), 2.06 – 1.87 (m, 2H), 1.85 – 1.37 (m, 2H), 1.29 – 1.16 (m, 3H), 0.74 – 0.56 (m, 6H). NMR ¹³C (100 MHz, CD₃OD) δ 170.7, 156.7, 136.4, 134.4, 133.9, 132.5, 131.0, 130.7, 129.7, 129.6, 128.1, 128.0, 127.7, 121.3, 120.4, 120.3, 116.6, 116.6, 109.1, 77.1, 71.3, 65.1, 61.9, 43.9, 32.5, 27.5, 25.0, 23.1, 14.8, 11.1, 8.1. HRMS (ESI) m/z: [M]⁺ Calcd. for C₄₄H₄₅N₂O₃ 649.3425; Found: 649.3451.

15. Reactivity experiments against others Dha's.

16. Characterization data of compounds 4a', 4a-ad.

column chromatography purification 0-30% of EtOAc in hexanes afforded the title compound in 82% (83.3 mg) as a colorless oil. R_f = 0.4-0.5 (hexanes/EtOAc 8:2). **NMR** ¹**H** (400 MHz, CDCl₃) δ 7.42 – 7.30 (m, 5H), 5.29 – 5.18 (m, 2H), 4.96 (s, 1H), 3.83 (s, 1H), 3.69 – 3.59 (m, 3H), 3.45 – 3.20 (m, 2H), 2.75 – 2.12 (m, 1H), 2.08 – 1.64 (m, 5H), 1.47 – 1.37 (m, 18H). **NMR** ¹³**C** (100 MHz, CDCl₃) δ 170.8, 154.6, 153.8, 151.4, 135.3, 128.7, 128.5, 84.0, 79.5, 69.1, 57.2, 56.1, 52.4, 46.1, 35.7, 30.8, 28.6, 28.0, 23.3. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd. for C₂₆H₃₈N₂NaO₈ 529.2520; Found: 529.2535.

Boc O Tert-butyl 2-(2-(di-(tert-butoxycarbonyl) amino)-3-N OMe methoxy-3-oxopropyl) pyrrolidine-1-carboxylate (4a) was synthesized according to the general procedure 4A. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 90% (85.4 mg) as a colorless oil. R_f = 0.3-0.4 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 5.15 – 4.76 (m, 1H), 3.95 – 3.83 (m, 1H), 3.71 (s, 3H), 3.45 – 3.24 (m, 2H), 2.74 – 2.64 (m, 1H), 2.00 – 1.87 (m, 1H), 1.86 – 1.74 (m, 2H), 1.74 – 1.60 (m, 2H), 1.49 (s, 18H), 1.47 – 1.41 (m, 9H). NMR ¹³C (100 MHz, CDCl₃) δ 171.2, 154.6, 152.1, 83.3, 79.4, 56.9, 56.2, 52.4, 46.2, 35.5, 31.1, 28.7, 28.2, 23.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₃H₄₀N₂O₈Na 495.2677; Found: 495.2684.

Boc O N(Boc)₂ Tert-butyl 2-(2-(di-(tert-butoxycarbonyl) amino)-3methoxy-3-oxopropyl) piperidine-1-carboxylate (4b) was synthesized according to the general procedure 4A. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 76% (73.5 mg) as a colorless oil. R_f = 0.3-0.4 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 4.89 (t, J = 6.6 Hz, 1H), 4.33 (s, 1H), 4.00 – 3.88 (m, 1H), 3.69 (s, 3H), 2.85 (t, J = 13.3 Hz, 1H), 2.67 – 2.53 (m, 1H), 1.93 (dt, J = 14.5, 7.0 Hz, 1H), 1.61 – 1.54 (m, 4H), 1.52 – 1.45 (m, 20H), 1.44 – 1.39 (m, 9H). NMR ¹³C (100 MHz, CDCl₃) δ 171.6, 155.2, 152.3, 83.1, 79.4, 56.5, 55.7, 52.4, 52.3, 30.8, 28.8, 28.6, 28.1, 25.6, 19.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₄H₄₂N₂O₈Na 509.2833; Found: 509.2837.

 $\begin{array}{c} H \\ Boc \\ Me \\ Me \\ Me \\ N(Boc)_{2} \end{array} \qquad \begin{array}{c} Methyl \\ 2-(di-(tert-butoxycarbonyl) \\ amino)-4-((tert-butoxycarbonyl) \\ amino)-4-((tert-butoxycarbonyl) \\ butoxycarbonyl) \\ amino)-4-methylpentanoate (4c) \\ was \\ synthesized according to the general procedure 4A. Flash \\ column chromatography purification 0-10% of EtOAc in hexanes afforded the title \\ compound in 96% (88.8 mg) as a colorless oil. <math>R_{f} = 0.5$ (hexanes/EtOAc 9:1). \\ NMR ^{1}H (400 \text{ MHz, CDCl}_{3}) \\ \delta 5.01 (dd, J = 6.8, 3.7 \text{ Hz}, 1H), 4.79 (s, 1H), 3.71 (s, 3H), 2.53 (d, J = 16.1 \text{ Hz}, 1H), 2.14 (dd, J = 14.8, 6.5 \text{ Hz}, 1H), 1.49 (s, 18H), 1.41 \\ (s, 9H), 1.33 (s, 3H), 1.29 (s, 3H). \\ NMR ^{13}C (100 \text{ MHz, CDCl}_{3}) \\ \delta 172.4, 154.6, \\ 152.1, 83.3, 78.8, 55.2, 52.7, 51.9, 41.5, 28.6, 28.1, 27.6, 27.2. \\ HRMS (ESI) \\ m/z: [M+Na]^{+} Calcd. for C_{22}H_{40}N_2O_8Na 483.2677; Found: 483.2678. \\ \end{array}

Methyl 2-(di-(*tert*-butoxycarbonyl) amino)-4-((*tert*butoxycarbonyl) amino)-6-methylheptanoate (4d) was synthesized according to the general procedure 4A. Flash column chromatography purification 0-10% of EtOAc in

hexanes afforded the title compound in 67% (65.0 mg) as a colorless oil. R_f = 0.3-0.4 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCI₃) δ 4.96 (dt, J = 13.8, 5.8 Hz, 1H), 4.43 (dd, J = 23.2, 9.2 Hz, 1H), 3.87 – 3.56 (m, 4H), 2.46 – 2.14 (m, 1H), 2.13 – 1.64 (m, 1H), 1.64 – 1.54 (m, 1H), 1.48 (s, 18H), 1.43 – 1.38 (m, 9H), 1.33 – 1.17 (m, 2H), 0.89 (dd, J = 6.5, 5.8 Hz, 6H). NMR ¹³C (100 MHz, CDCI₃) δ 171.9, 155.6, 152.2, 83.3, 79.1, 55.4, 52.5, 47.2, 44.9, 37.1, 28.5, 28.1, 25.1, 23.0, 22.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₄H₄₄N₂O₈Na 511.2990; Found: 511.2999.

5-(benzyloxy)-2-(di-(tert-butoxycarbonyl) Methyl Н amino)-4-((tert-butoxycarbonyl) amino) hexanoate Boc[^] OMe N(Boc)₂ Me (4e) was synthesized according to the general procedure **BzlO** 4A. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 51% (57.6 mg) as a colorless oil. $R_f = 0.3-0.4$ (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 7.39 – 7.23 (m, 5H), 5.11 – 4.93 (m, 1H), 4.90 - 4.72 (m, 1H), 4.65 - 4.37 (m, 2H), 3.80 - 3.66 (m, 4H), 3.65 - 3.45 (m, 1H), 2.68 - 2.23 (m, 1H), 2.17 - 1.74 (m, 1H), 1.50 - 1.45 (m, 18H), 1.44 – 1.38 (m, 9H), 1.26 – 1.14 (m, 3H). NMR ¹³C (100 MHz, CDCI₃) δ 171.3, 155.8, 152.2, 138.6, 128.5, 127.8, 127.8, 83.2, 79.1, 75.4, 71.1, 55.9, 52.4, 52.3, 32.8, 28.5, 28.1, 16.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₉H₄₆N₂O₉Na 589.3096; Found: 589.3094.

mg) as a colorless oil. R_f = 0.35-0.45 (EtOAc/hexanes 8:2). NMR ¹H (400 MHz, CDCI₃) δ 5.71 (d, J = 8.7 Hz, 1H), 4.94 – 4.83 (m, 1H), 4.67 – 4.56 (m, 1H), 4.11 – 3.84 (m, 1H), 3.69 (s, 3H), 3.12 – 2.99 (m, 2H), 2.48 – 2.22 (m, 1H), 2.08 – 2.01

(m, 1H), 1.97 – 1.88 (m, 3H), 1.51 – 1.43 (m, 22H), 1.41 (s, 9H), 1.35 – 1.28 (m, 2H). NMR ¹³C (100 MHz, CDCI₃) δ 171.2, 169.8, 156.2, 152.3, 83.6, 79.1, 55.4, 52.5, 47.5, 40.4, 36.4, 35.0, 29.8, 28.5, 28.1, 23.6, 23.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₆H₄₇N₃O₉Na 568.3205; Found: 568.3212.

Methyl 2-(di-(*tert*-butoxycarbonyl) amino)-4-((*tert*butoxycarbonyl) amino)-5-phenylpentanoate (4g) was synthesized according to the general procedure 4A. Flash column chromatography purification 0-30% of EtOAc in

hexanes afforded the title compound in 74% (77.5 mg) as a colorless oil. R_f = 0.3-0.40 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCI₃) δ 7.23 – 7.19 (m, 2H), 7.11 (t, J = 6.7 Hz, 3H), 5.01 – 4.86 (m, 1H), 4.58 – 4.35 (m, 1H), 3.99 – 3.65 (m, 1H), 3.61 (s, 3H), 2.94 – 2.58 (m, 2H), 2.43 – 2.06 (m, 1H), 2.07 – 1.53 (m, 1H), 1.40 (s, 9H), 1.36 – 1.30 (m, 18H). NMR ¹³C (100 MHz, CDCI₃) δ 171.8, 155.4, 151.8, 138.1, 129.6, 128.5, 126.4, 55.5, 52.5, 49.9, 41.7, 33.8, 28.5, 28.0. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₇H₄₂N₂O₈Na 545.2833; Found: 545.2838.

 $\begin{array}{c} \mbox{Methyl} & 2-(di-(tert-butoxycarbonyl) & amino)-3-\\ \mbox{cyclopropylpropanoate} (4h) was synthesized according to the general procedure 4A. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 11% (7.8 mg) as a colorless oil. <math>R_f$ = 0.5 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl_3) δ 5.01 (dd, J = 9.6, 5.1 Hz, 1H), 3.70 (s, 3H), 2.07 – 1.98 (m, 1H), 1.82 – 1.72 (m, 1H), 1.49 (s, 18H), 0.73 (qq, J = 7.6, 5.0, 3.8 Hz, 1H), 0.44 (ttd, J = 13.1, 8.7, 4.3 Hz, 2H), 0.15 – 0.03 (m, 2H). NMR ¹³C (100 MHz, CDCl_3) δ 171.5, 152.2, 83.1, 58.8, 52.2, 35.2, 28.2, 8.2, 5.0, 4.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₂₉NO₆Na 366.1887; Found: 366.1885.

Methyl 2-(di-(*tert*-butoxycarbonyl) amino)-3- $(C)_{OMe}$ (yclobutylpropanoate (4i) was synthesized according to the general procedure 4A. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 56% (40.2 mg) as a colorless oil. R_f = 0.5-0.55 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 4.80 (dd, J = 9.8, 4.8 Hz, 1H), 3.68 (s, 3H), 2.32 (hept, J = 8.0 Hz, 1H), 2.20 – 2.11 (m, 1H), 2.09 – 1.92 (m, 3H), 1.90 – 1.74 (m, 2H), 1.69 – 1.61 (m, 2H), 1.48 (s, 18H). **NMR** ¹³**C (100 MHz, CDCI₃)** δ 171.7, 152.1, 83.0, 57.0, 52.2, 36.9, 33.3, 28.4, 28.3, 28.1, 18.6. **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₁₈H₃₁NO₆Na 380.2044; Found: 380.2041.

 $\begin{array}{c} \mbox{Methyl} & 2-(di-(tert-butoxycarbonyl) & amino)-3-\\ \mbox{cyclopentylpropanoate} & (4j) \mbox{was synthesized} \mbox{ according to} \\ \mbox{the general procedure 4A. Flash column chromatography} \\ \mbox{purification 0-10\% of EtOAc in hexanes afforded the title compound in 62\% (46.2 mg) \mbox{ as a colorless oil. } R_f = 0.6 (hexanes/EtOAc 9:1). $NMR ^1H (400 $MHz, CDCl_3$) \\ \mbox{\delta 4.89 (dd, J = 9.6, 4.9 Hz, 1H$), 3.69 (s, 3H$), 2.05 (ddd, J = 13.5, 8.1, 5.1 Hz$, 1H$), 1.93 (ddd, J = 14.5, 9.8, 4.9 Hz$, 1H$), 1.84 - 1.70 (m, 4H$), 1.51 - 1.46 (m, 21H), 1.17 - 1.04 (m, 2H). $NMR ^{13}C (100 $MHz, CDCl_3$) \\ \mbox{\delta 52.2, 37.1, 36.1, 33.0, 32.6, 28.1, 25.3, 25.1. $HRMS (ESI) m/z: [M+Na]^+ Calcd. \\ \mbox{for $C_{19}H_{33}NO_6Na$ 394.2200; Found: 394.2203. } \end{array}$

 $\begin{array}{c} \mbox{Methyl} & 2-(di-(tert-butoxycarbonyl) & amino)-3-\\ \mbox{cyclohexylpropanoate} (4k) was synthesized according to$ the general procedure 4A. Flash column chromatographypurification 0-10% of EtOAc in hexanes afforded the title compound in 70% (53.7 $mg) and in 80% (61.8 mg) according to the general procedure B. Colorless oil. <math>R_f$ = 0.5 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 4.95 (dd, J = 9.6, 4.9 Hz, 1H), 3.70 (s, 3H), 1.95 (ddd, J = 14.1, 9.0, 4.9 Hz, 1H), 1.79 (ddd, J = 14.3, 11.7, 7.0 Hz, 2H), 1.73 – 1.58 (m, 4H), 1.49 (s, 18H), 1.30 – 1.09 (m, 4H), 1.04 – 0.79 (m, 2H). NMR ¹³C (100 MHz, CDCl₃) δ 172.0, 152.2, 83.1, 56.1, 52.3, 37.8, 34.6, 34.1, 32.8, 28.1, 26.6, 26.5, 26.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₀H₃₅NO₆Na 408.2357; Found: 408.2358.

EtOAc in hexanes afforded the title compound in 47% (45.7 mg) as a colorless oil. R_f = 0.2 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 4.94 (dd, J = 9.4,

5.1 Hz, 1H), 4.20 – 3.92 (m, 2H), 3.69 (s, 3H), 2.63 (q, J = 14.0 Hz, 2H), 2.00 (ddd, J = 14.2, 8.9, 5.2 Hz, 1H), 1.87 – 1.72 (m, 3H), 1.62 – 1.53 (m, 1H), 1.47 (s, 18H), 1.43 (s, 9H), 1.28 – 0.99 (m, 2H). **NMR** ¹³**C (100 MHz, CDCI₃)** δ 171.6, 155.0, 152.2, 83.3, 79.4, 55.7, 52.3, 36.9, 33.1, 32.7, 31.7, 28.6, 28.1. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd. for C₂₄H₄₂N₂O₈Na 509.2833; Found: 509.2847.

 $\begin{array}{c} \mbox{Methyl 2-(di-(tert-butoxycarbonyl) amino)-5-((tert-butoxycarbonyl) amino)-5-((tert-butylimethylsilyl) oxy)-4-methylpentanoate (4m) was synthesized according to the general procedure 4A. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 70% (66.4 mg) as a colorless oil. <math>R_f$ = 0.7-0.8 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 4.99 – 4.87 (m, 1H), 3.74 – 3.66 (m, 3H), 3.56 – 3.36 (m, 2H), 2.29 – 2.02 (m, 1H), 1.79 – 1.59 (m, 2H), 1.49 – 1.44 (m, 18H), 0.93 – 0.88 (m, 3H), 0.86 (s, 9H), 0.01 (s, 6H). NMR ¹³C (100 MHz, CDCl₃) δ 171.7, 152.2, 83.1, 68.7, 56.6, 52.2, 33.6, 33.0, 28.1, 26.1, 18.4, 17.6, -5.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₃H₄₅NNaO₇Si 498.2858; Found: 498.2866.

Methyl2-(di-(tert-butoxycarbonyl)amino)-4-hexyldodecanoate(4n)wassynthesizedaccordingtothegeneralprocedure4A.Flashcolumn

chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 48% (50.3 mg) as a colorless oil. $R_f = 0.75$ (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 4.93 (dd, J = 9.3, 5.2 Hz, 1H), 3.69 (s, 3H), 1.99 – 1.81 (m, 2H), 1.48 (s, 18H), 1.32 – 1.15 (m, 25H), 0.86 (t, J = 6.6 Hz, 6H). NMR ¹³C (100 MHz, CDCl₃) δ 172.1, 152.3, 83.0, 56.5, 52.2, 34.6, 34.1, 33.9, 33.3, 32.0, 30.2, 30.1, 29.9, 29.8, 29.5, 28.1, 26.9, 26.8, 26.4, 26.4, 22.8, 14.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₉H₅₅NO₆Na 536.3922; Found: 536.3930.

Me Me N(Boc)₂ Methyl 2-(di-(*tert*-butoxycarbonyl) amino)-4,4dimethylpentanoate (4o) was synthesized according to the general procedure 4A. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 73% (52.5 mg) as a colorless oil. $R_f = 0.4-0.55$ (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCI₃) δ 4.92 (dd, J = 7.9, 3.3 Hz, 1H), 3.69 (s, 3H), 2.21 (ddd, J = 15.1, 3.3, 1.0 Hz, 1H), 1.51 – 0.90 (m, 18H), 1.71 – 1.63 (m, 1H), 1.49 (s, 18H), 0.92 (s, 9H). NMR ¹³C (100 MHz, CDCI₃) δ 172.4, 152.3, 83.1, 55.8, 52.5, 43.7, 30.4, 29.5, 28.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₈H₃₃NO₆Na 382.2200; Found: 382.2201.

Methyl 2-(di-(*tert*-butoxycarbonyl) amino)-3-(1methylcyclohexyl) propanoate (4p) was synthesized according to the general procedure 4A. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 46% (36.4 mg) as a colorless oil. R_f = 0.6-0.7 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 4.93 (dd, J = 7.5, 3.1 Hz, 1H), 3.69 (s, 3H), 2.25 (dd, J = 15.2, 3.2 Hz, 1H), 1.71 (dd, J = 15.2, 7.5 Hz, 1H), 1.49 (s, 18H), 1.46 – 1.38 (m, 5H), 1.32 – 1.23 (m, 5H), 0.89 (s, 3H). NMR ¹³C (100 MHz, CDCl₃) δ 172.5, 152.3, 83.1, 55.1, 52.5, 42.3, 37.8, 32.8, 28.2, 26.5, 24.7, 22.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₁H₃₇NO₆Na 422.2513; Found: 422.2511.

Methyl 3-((3r,5r,7r)-adamantan-1-yl)-2-(di-(*tert*butoxycarbonyl) amino) propanoate (4q) was synthesized according to the general procedure 4A. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 95% (83.1 mg) as a colorless oil. R_f = 0.45-0.6 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 4.97 (dd, J = 7.4, 3.6 Hz, 1H), 3.69 (s, 3H), 2.10 (dd, J = 15.2, 3.5 Hz, 1H), 1.98 – 1.91 (m, 3H), 1.69 (d, J = 12.5 Hz, 3H), 1.61 (d, J = 12.1 Hz, 4H), 1.57 – 1.44 (m, 24H). NMR ¹³C (100 MHz, CDCl₃) δ 172.5, 152.2, 83.1, 54.2, 52.4, 44.9, 42.3, 37.1, 32.3, 28.7, 28.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₄H₃₉NO₆Na 460.2670; Found: 460.2670.

oMethyl5-(benzyloxy)-2-(di-(*tert*-butoxycarbonyl)BnOOMeamino)-4,4-dimethylpentanoate(4r)MeN(Boc)2according to the general procedure 4A. Flash columnchromatography purification 0-10% of EtOAc in hexanes afforded the titlecompound in 63% (57.1 mg) as a colorless oil. $R_f = 0.6$ (hexanes/EtOAc 9:1).

NMR ¹**H** (400 MHz, CDCI₃) δ 7.53 – 7.13 (m, 5H), 5.05 (dt, J = 7.9, 4.1 Hz, 1H), 4.60 – 4.38 (m, 2H), 3.68 (s, 3H), 3.33 – 3.11 (m, 2H), 2.39 – 2.27 (m, 1H), 1.85 (tdd, J = 15.0, 7.5, 1.4 Hz, 1H), 1.48 (s, 18H), 1.03 – 0.92 (m, 6H). **NMR** ¹³**C** (100 **MHz, CDCI**₃) δ 172.3, 152.2, 139.1, 128.4, 128.3, 127.3, 83.0, 79.2, 73.2, 55.4, 52.4, 39.4, 34.5, 28.1, 24.9, 24.7. **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₂₅H₃₉NO₇Na 488.2619; Found: 488.2624.

Methyl 2-(di-(*tert*-butoxycarbonyl) amino)-3-(2-methyl-1,3dioxan-2-yl) propanoate (**4s**) was synthesized according to the general procedure 4A. Flash column chromatography purification 0-20% of EtOAc in hexanes afforded the title compound in 39% (31.8 mg) as a colorless oil. R_f = 0.3-0.45 (hexanes/EtOAc 8:2). NMR ¹H (**400 MHz**, **CDCl**₃) δ 5.32 (dd, *J* = 8.3, 2.8 Hz, 1H), 3.95 – 3.77 (m, 4H), 3.70 (s, 3H), 2.65 (dd, *J* = 15.6, 2.9 Hz, 1H), 2.30 – 2.19 (m, 1H), 1.85 (dtt, *J* = 13.7, 9.2, 4.6 Hz, 1H), 1.48 (s, 19H), 1.42 (s, 3H). NMR ¹³C (100 MHz, CDCl₃) δ 172.1, 152.3, 98.4, 82.7, 60.0, 59.9, 54.4, 52.5, 39.9, 28.2, 25.2, 20.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₃₃NO₈Na 426.2098; Found: 426.2101.

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \label{eq:scalar} \textbf{A-(di-(tert-butoxycarbonyl) amino)-5-methoxy-2-methyl-} \\ \textbf{BzO}_{Me} & \textbf{N(Boc)}_{2} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \textbf{A-(di-(tert-butoxycarbonyl) amino)-5-methoxy-2-methyl-} \\ \textbf{5-oxopentan-2-yl benzoate (4t) was synthesized according to the general procedure 4A. Flash column chromatography purification 0-20% of EtOAc in hexanes afforded the title compound in 89% (82.8 mg) as a colorless oil. R_{f} = 0.5-0.6$ (hexanes/EtOAc 9:1). $NMR ^1H$ (400 MHz, CDCl_3) & 7.96$ (d, J = 7.9 Hz, 2H), 7.54 - 7.46$ (m, 1H), 7.39$ (t, J = 7.3 Hz, 2H), 5.26$ (dd, J = 7.4, 4.2 Hz, 3H), 3.72$ (s, 1H), 2.71 - 2.59$ (m, 2H), 1.65$ (d, J = 3.2 Hz, 6H), 1.47 - 1.38$ (m, 18H). $NMR ^{13}C$ (100 MHz, CDCl_3) & 171.9$, 165.9$, 152.3$, 132.6, 131.9, 129.8$, 128.2$, 83.3$, 81.9$, 54.9$, 52.7$, 41.2$, 28.0$, 26.6$, 26.3$. HRMS$ (ESI) m/z: [M+Na]^+ Calcd. for C_{24}H_{35}NO_8Na 488.2255$; Found: 488.2267$. \end{array}$

 $\begin{array}{c} Me^{(1)} & \begin{array}{c} 0 \\ Me^{(1)} \\ M$

S31

0.65 (hexanes/EtOAc 9:1). **NMR** ¹**H (400 MHz, CDCI₃)** δ 4.94 (dt, *J* = 7.6, 3.6 Hz, 1H), 3.68 (s, 3H), 2.22 (dt, *J* = 15.3, 3.7 Hz, 1H), 1.94 – 1.79 (m, 2H), 1.77 – 1.61 (m, 3H), 1.54 – 1.43 (m, 20H), 1.31 – 1.18 (m, 1H), 1.15 – 0.99 (m, 1H), 0.97 – 0.91 (m, 3H), 0.87 – 0.79 (m, 6H). **NMR** ¹³**C (100 MHz, CDCI₃)** δ 172.5, 152.3, 83.0, 55.3, 52.4, 48.1, 41.3, 36.8, 35.6, 34.8, 34.2, 28.1, 27.8, 24.2, 24.1, 21.3. **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₂₃H₄₁NO₆Na 450.2826; Found: 450.2829.

procedure 4A. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 47% (42.6 mg) as a colorless oil. $R_f = 0.7$ (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCI₃) δ 4.84 (dd, J = 9.7, 5.0 Hz, 1H), 3.69 (s, 3H), 2.07 (dq, J = 15.2, 5.7, 4.9 Hz, 1H), 1.86 (dq, J = 17.7, 11.4, 6.4 Hz, 1H), 1.48 (s, 18H), 1.24 (s, 20H), 0.86 (t, J = 6.7 Hz, 3H). NMR ¹³C (100 MHz, CDCI₃) δ 171.7, 152.3, 83.0, 58.3, 52.2, 32.0, 30.0, 29.8, 29.7, 29.6, 29.5, 29.4, 28.1, 26.3, 22.8, 14.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₅H₄₇NO₆Na 480.3296; Found: 480.3297.

EtO OME OME

2-(di-(*tert*-butoxycarbonyl) Methyl amino)-5-0 phenylpentanoate (4x) was synthesized according to N(Boc)₂ 4A. the general procedure Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 40% (36.1 mg) as a colorless oil. $R_f = 0.75$ (hexanes/EtOAc 9:1). **NMR** ¹**H (400 MHz, CDCI**₃) δ 7.19 (t, J = 7.5 Hz, 2H), 7.10 (d, J = 7.2 Hz, 3H), 4.84 (dd, J = 9.6, 5.2 Hz, 1H), 3.63 (s, 3H), 2.68 – 2.48 (m, 2H), 2.06 (ddt, J = 15.4, 10.9, 5.8 Hz, 1H), 1.86 (ddt, J = 13.8, 9.0, 4.7 Hz, 1H), 1.70 – 1.50 (m, 2H), 1.40 (s, 18H). NMR ¹³C (100 MHz, CDCl₃) δ 171.5, 152.2, 142.1, 128.5, 128.4, 125.9, 83.2, 58.0, 52.3, 35.5, 29.5, 28.1, 28.0. **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₂₂H₃₃NO₆Na 430.2200; Found: 430.2202.

Methyl 2-(di-(*tert*-butoxycarbonyl) amino)-7-(2,5-dimethylphenoxy)-4,4dimethylheptanoate (4aa) was synthesized according to the general

procedure 4A. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 77% (78.5 mg) as a colorless oil. R_f = 0.6-0.7 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCI₃) δ 6.99 (d, *J* = 7.4 Hz, 1H), 6.65 (d, *J* = 7.6 Hz, 1H), 6.61 (s, 1H), 4.97 (dd, *J* = 7.7, 3.0 Hz, 1H), 3.90 (t, *J* = 6.6 Hz, 2H), 3.71 (s, 3H), 2.33 – 2.26 (m, 4H), 2.17 (s, 3H), 1.80 – 1.69 (m, 3H), 1.50 (s, 18H), 1.44 – 1.37 (m, 2H), 0.95 (s, 6H). NMR ¹³C (100 MHz, CDCI₃) δ 172.3, 157.2, 152.3, 136.5, 130.3, 123.7, 120.6, 112.0, 83.1, 68.6, 55.4, 52.5, 41.5, 38.4, 32.7, 28.1, 27.2, 26.9, 24.4, 21.5, 15.9. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₈H₄₅NNaO₇ 530.3088; Found: 530.3096.

Methyl 2-(di-(tert-butoxycarbonyl) amino)-4-(1,8-0 O diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indol-1-OMe N(Boc)₂ NH Ме yl)butanoate (4ab) was synthesized according to procedure 4A. Flash the general column Ме chromatography purification 0-30% of EtOAc in hexanes afforded the title compound in 15% (16.1 mg) as a colorless oil. $R_f = 0.4-0.5$ (hexanes/EtOAc 8:2). **NMR** ¹**H** (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.08 – 7.02 (m, 1H), 7.00 – 6.96 (m, 1H), 4.85 – 4.74 (m, 1H), 4.05 – 3.96 (m, 2H), 3.65 (s, 3H), 2.92 – 2.68 (m, 4H), 1.99 – 1.85 (m, 4H), 1.52 – 1.48 (m, 2H), 1.39 (s, 18H), 1.37 – 1.34 (m, 3H), 0.92 – 0.87 (m, 3H). NMR ¹³C (100 MHz, CDCI₃) δ 171.6, 152.1, 136.8, 134.9, 126.9, 126.6, 120.3, 119.8, 115.9, 109.3, 83.4, 76.8, 60.5, 58.0, 52.2, 34.7, 31.9, 28.0, 25.1, 24.1, 22.5, 14.0, 8.2. HRMS (ESI) 4ab, m/z: [M+Na]⁺ Calcd. for C₃₀H₄₄N₂O₇Na 567.3041; Found: 567.3051.

Methyl2-(di-(tert-butoxycarbonyl)amino)-4-((S)-2-((tert-butoxycarbonyl)amino)-3-methylbutanamido)-6-(methylthio)hexanoate(4ac)was synthesized according to the generalprocedure4A.Flashcolumnchromatography

purification 0-40% of EtOAc in hexanes afforded the title compound in 65% (78.2 mg) as a colorless oil. $R_f = 0.2-0.3$ (hexanes/EtOAc 8:2). NMR ¹H (400 MHz, CDCl₃) δ 6.55 - 6.18 (m, 1H), 5.39 - 4.92 (m, 1H), 4.88 - 4.72 (m, 1H), 4.21 - 3.76 (m, 2H), 3.73 - 3.66 (m, 3H), 2.61 - 2.36 (m, 3H), 2.17 - 1.92 (m, 5H), 1.88 - 1.69 (m, 2H), 1.52 - 1.45 (m, 18H), 1.45 - 1.40 (m, 9H), 0.96 - 0.80 (m, 6H). NMR ¹³C (100 MHz, CDCl₃) δ 171.6, 171.3, 156.0, 152.1, 83.7, 79.9, 60.4, 55.9, 52.7, 47.5, 35.3, 34.7, 30.7, 30.5, 28.4, 28.1, 19.5, 15.6. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₈H₅₁N3O₉SNa 628.3238; Found: 628.3245.

Methyl (6*S*,9*S*,12*S*)-6-benzyl-14-(di-(*tert*butoxycarbonyl) amino)-9-isopropyl-2,2dimethyl-12-(2-(methylthio) ethyl)-4,7,10-trioxo-3-oxa-5,8,11-

triazapentadecan-15-oate (4ad) was

synthesized according to the general procedure 4A. Flash column chromatography purification 0-40% of EtOAc in hexanes afforded the title compound in 76% (114.9 mg) as a colorless oil. $R_f = 0.4$ -0.5 (hexanes/EtOAc 7:3). NMR ¹H (400 MHz, CDCl₃) δ 7.34 – 7.16 (m, 5H), 6.71 – 6.58 (m, 1H), 6.56 – 6.44 (m, 1H), 5.15 – 4.96 (m, 1H), 4.91 – 4.77 (m, 1H), 4.44 – 4.27 (m, 1H), 4.24 – 3.93 (m, 2H), 3.73 – 3.67 (m, 3H), 3.19 – 2.97 (m, 2H), 2.51 – 2.41 (m, 2H), 2.40 – 2.13 (m, 2H), 2.11 – 1.97 (m, 4H), 1.88 – 1.69 (m, 2H), 1.50 (s, 18H), 1.42 – 1.36 (m, 9H), 0.92 – 0.77 (m, 6H). NMR ¹³C (100 MHz, CDCl₃) δ 171.5, 171.1, 170.5, 155.7, 152.2, 136.6, 129.4, 128.7, 127.0, 83.6, 80.5, 58.7, 55.9, 55.1, 52.6, 47.1, 37.6, 35.1, 33.9, 30.6, 30.5, 28.3, 28.1, 19.4, 15.5. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₃₇H₆₀N₄O₁₀SNa 775.3922; Found: 775.3929.

17. Characterization data of compounds 6a-f.

Methyl 2-(di-(*tert*-butoxycarbonyl) amino)-3-(2,3dihydro-1H-inden-2-yl) propanoate (6a) was synthesized according to the general procedure 4B. Flash column chromatography purification 0-10% of

EtOAc in hexanes afforded the title compound in 67% (56.1 mg) as a colorless oil. R_f = 0.55-0.6 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 7.21 – 7.15

(m, 2H), 7.14 – 7.09 (m, 2H), 5.01 (dd, J = 9.7, 4.9 Hz, 1H), 3.73 (s, 3H), 3.08 (ddd, J = 15.4, 13.0, 7.6 Hz, 2H), 2.64 (ddd, J = 15.4, 8.1, 4.5 Hz, 2H), 2.51 (dp, J = 16.0, 7.9 Hz, 1H), 2.30 (ddd, J = 13.9, 8.7, 4.9 Hz, 1H), 2.15 (ddd, J = 13.6, 9.6, 5.9 Hz, 1H), 1.51 (s, 18H). **NMR** ¹³**C** (100 MHz, CDCI₃) δ 171.6, 152.3, 143.2, 143.1, 126.3, 126.3, 124.5, 124.4, 83.2, 57.4, 52.3, 39.5, 39.1, 37.2, 35.7, 28.1. **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₂₃H₃₃NO₆Na 442.2200; Found: 442.2207.

Methyl 2-(di-(tert-butoxycarbonyl) amino)-6-(4-hydroxyphenyl)-4-methylhexanoate (6b) was synthesized according to the general procedure 4B. Flash column chromatography

purification 0-25% of EtOAc in hexanes afforded the title compound in 68% (33.6 mg) as a colorless oil. R_f = 0.2-0.3 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCI₃) δ 6.94 (dd, J = 10.8, 8.1 Hz, 2H), 6.67 (d, J = 8.1 Hz, 2H), 5.29 (s, 1H), 4.89 (dt, J = 8.4, 4.9 Hz, 1H), 3.64 (d, J = 5.6 Hz, 3H), 2.57 – 2.34 (m, 2H), 2.16 – 1.97 (m, 1H), 1.83 – 1.56 (m, 2H), 1.54 – 1.45 (m, 1H), 1.41 (d, J = 2.9 Hz, 18H), 1.33 – 1.23 (m, 1H), 0.90 (t, J = 6.0 Hz, 3H). NMR ¹³C (100 MHz, CDCI₃) δ 172.0, 153.8, 152.3, 134.8, 129.4, 115.3, 83.3, 56.5, 52.4, 38.5, 37.6, 32.5, 30.2, 28.1, 20.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₄H₃₇NO₇Na 474.2462; Found: 474.2458.

AcO N(Boc)₂ Methyl 5-acetoxy-4-benzyl-2-(di-(*tert*-butoxycarbonyl) amino) pentanoate (6c) was synthesized according to the general procedure 4B. Flash column chromatography purification 0-15% of EtOAc in hexanes afforded the title

compound in 63% (30.4 mg) as a colorless oil. $R_f = 0.3$ (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 7.22 – 7.16 (m, 2H), 7.14 – 7.04 (m, 3H), 5.08 – 4.91 (m, 1H), 4.09 – 3.75 (m, 2H), 3.67 – 3.60 (m, 3H), 2.85 – 2.62 (m, 1H), 2.56 – 2.38 (m, 1H), 2.14 – 1.83 (m, 6H), 1.43 (s, 9H), 1.36 (s, 9H). NMR ¹³C (100 MHz, CDCl₃) 171.5, 171.2, 152.3, 139.5, 129.3, 128.5, 126.3, 83.5, 66.4, 55.9, 52.4, 36.9, 36.5, 32.1, 28.1, 21.0. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₅H₃₇NO₈Na 502.2411; Found: 502.2405.

Methyl 2-(di-(*tert*-butoxycarbonyl) amino)-4-((pent-4-enoyloxy) methyl) hexanoate (6d) was synthesized according to the general procedure 4B. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in

68% (31.2 mg) as a colorless oil. R_f = 0.5-0.6 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCl₃) δ 5.86 – 5.74 (m, 1H), 5.03 – 4.92 (m, 2H), 4.39 (dt, J = 7.1, 1.1 Hz, 1H), 4.16 – 3.92 (m, 2H), 3.70 (s, 3H), 2.44 – 2.30 (m, 4H), 2.16 – 2.03 (m, 1H), 1.98 – 1.85 (m, 1H), 1.68 – 1.55 (m, 1H), 1.48 (s, 18H), 1.43 – 1.37 (m, 2H), 0.89 (td, J = 7.5, 5.2 Hz, 3H). NMR ¹³C (100 MHz, CDCl₃) δ 173.2, 171.6, 152.2, 136.8, 115.6, 83.3, 66.7, 56.1, 52.4, 36.0, 33.6, 31.9, 29.0, 28.1, 23.2, 11.0. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₅H₃₉NO₈Na 480.2568; Found: 480.2572.

procedure 4B. Flash column chromatography purification 0-15% of EtOAc in hexanes afforded the title compound in 78% (50.6 mg) as a colorless oil. R_f = 0.3-0.4 (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCI₃) δ 9.14 (s, 1H), 7.36 (d, J = 7.7 Hz, 1H), 7.06 (t, J = 7.4 Hz, 1H), 7.00 (d, J = 7.1 Hz, 1H), 5.02 – 4.93 (m, 1H), 4.17 – 3.89 (m, 4H), 3.73 – 3.67 (m, 3H), 3.08 – 2.70 (m, 6H), 2.19 – 2.07 (m, 2H), 2.06 – 1.86 (m, 2H), 1.72 – 1.60 (m, 1H), 1.51 – 1.47 (m, 20H), 1.40 – 1.34 (m, 3H), 0.94 – 0.86 (m, 3H), 0.83 (t, J = 7.4 Hz, 3H). NMR ¹³C (100 MHz, CDCI₃) δ 173.1, 171.5, 152.2, 136.1, 134.6, 126.7, 126.3, 120.4, 119.7, 116.0, 108.5, 83.4, 74.7, 67.3, 60.7, 56.1, 52.4, 43.1, 36.0, 31.9, 30.8, 28.1, 24.3, 23.2, 22.5, 13.9, 10.9, 7.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₃₅H₅₂N₂O₉Na 667.3565; Found: 667.3582.

MeO O N(Boc)₂ MeO O N(Boc)₂ Dimethyl 2-(di-(*tert*-butoxycarbonyl) amino) hexanedioate (6f) was synthesized according to the general procedure 4B. Flash column chromatography purification 0-25% of EtOAc in hexanes afforded the title compound in 25% (19.8) mg) as a colorless oil. $R_f = 0.2-0.3$ (hexanes/EtOAc 9:1). NMR ¹H (400 MHz, CDCI₃) δ 4.87 (dd, J = 9.7, 5.1 Hz, 1H), 3.71 (s, 3H), 3.66 (s, 3H), 2.44 – 2.27 (m, 2H), 2.18 – 2.07 (m, 1H), 1.99 – 1.86 (m, 1H), 1.68 (p, J = 6.9, 6.1 Hz, 2H), 1.49 (s, 18H). NMR ¹³C (100 MHz, CDCI₃) δ 173.8, 171.3, 152.2, 83.4, 57.9, 52.4, 51.7, 33.7, 29.5, 28.1, 21.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₈H₃₁NNaO₈ 412.1942; Found: 412.1941.

18. Characterization data of compounds 8a-f.

Benzyl (2S,4S)-2-(*tert*-butyl)-4-(cyclohexylmethyl)-5oxooxazolidine-3-carboxylate (8a) was synthesized according to the general procedure 4C. Flash column chromatography purification 0-15% of EtOAc in hexanes

afforded the title compound in 74% (27.5 mg) as a colorless oil. $R_f = 0.6-0.7$ (hexanes/EtOAc 85:15). NMR ¹H (400 MHz, CDCI₃) δ 7.40 – 7.31 (m, 5H), 5.55 (s, 1H), 5.22 – 5.10 (m, 2H), 4.45 – 4.33 (m, 1H), 1.81 – 1.70 (m, 2H), 1.67 – 1.51 (m, 6H), 1.10 (d, J = 31.4 Hz, 5H), 0.98 – 0.93 (m, 7H), 0.92 – 0.82 (m, 2H). NMR ¹³C (100 MHz, CDCI₃) δ 173.3, 156.2, 135.4, 129.4, 128.8, 128.6, 96.4, 68.5, 55.1, 41.3, 37.1, 34.4, 33.6, 33.0, 27.0, 26.6, 26.1, 25.1. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₂H₃₁NO₄Na 396.2145; Found: 396.2144.

Benzyl (2*S*,4*S*)-4-((*R*)-2-((*tert*-butoxycarbonyl)amino)-3-phenylpropyl)-2-(*tert*-butyl)-5-oxooxazolidine-3-

carboxylate (8b) was synthesized according to the general procedure 4C. Flash column chromatography purification

0-20% of EtOAc in hexanes afforded the title compound in 78% (40.0 mg) as a colorless oil. R_f = 0.4-0.5 (hexanes/EtOAc 85:15). NMR ¹H (400 MHz, CDCI₃) δ 7.28 (s, 5H), 7.22 – 7.13 (m, 3H), 7.06 (t, J = 8.2 Hz, 2H), 5.45 (s, 1H), 5.17 – 5.02 (m, 2H), 4.44 – 4.32 (m, 1H), 4.19 – 3.87 (m, 1H), 3.00 – 2.59 (m, 2H), 2.28 – 1.79 (m, 2H), 1.39 – 1.25 (m, 9H), 0.87 – 0.71 (m, 9H). NMR ¹³C (100 MHz, CDCI₃) δ 173.4, 156.1, 155.5, 138.1, 135.5, 129.6, 129.5, 128.8, 128.8, 128.6, 126.6, 96.7, 79.4, 68.6, 55.2, 50.7, 41.4, 37.5, 36.9, 28.5, 24.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₉H₃₈N₂O₆Na 533.2622; Found: 533.2625.

Benzyl (2S,4S)-4-(2-((*tert*-butoxycarbonyl)amino)-2methylpropyl)-2-(*tert*-butyl)-5-oxooxazolidine-3carboxylate (8c) was synthesized according to the general

procedure 4C. Flash column chromatography purification

0-15% of EtOAc in hexanes afforded the title compound in 56% (25.2 mg) as a colorless oil. R_f = 0.4-0.5 (hexanes/EtOAc 85:15). NMR ¹H (400 MHz, CDCI₃) δ 7.37 (s, 5H), 5.70 (s, 1H), 5.56 (s, 1H), 5.19 (s, 2H), 4.51 – 4.44 (m, 1H), 2.20 – 2.02 (m, 2H), 1.43 (s, 9H), 1.38 (s, 6H), 0.94 (s, 9H). NMR ¹³C (100 MHz, CDCI₃) δ 173.7, 156.0, 154.9, 135.1, 129.1, 129.0, 128.9, 96.7, 78.8, 68.8, 54.1, 51.7, 45.5, 37.1, 28.6, 27.2, 25.0. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₄H₃₆N₂O₆Na 471.2466; Found: 471.2462.

Benzyl (2S,4S)-4-(((3S,5S,7S)-adamantan-1-yl)methyl)-2-(*tert*-butyl)-5-oxooxazolidine-3-carboxylate (8d) was synthesized according to the general procedure 4C. Flash column chromatography purification 0-10% of EtOAc in hexanes afforded the title compound in 50% (21.3 mg) as a

colorless oil. R_f = 0.7-0.8 (hexanes/EtOAc 85:15). NMR ¹H (400 MHz, CDCl₃) δ 7.37 (s, 5H), 5.54 (s, 1H), 5.22 – 5.10 (m, 2H), 4.46 – 4.38 (m, 1H), 1.90 (s, 3H), 1.79 – 1.56 (m, 9H), 1.55 – 1.43 (m, 5H), 0.95 (s, 9H). NMR ¹³C (100 MHz, CDCl₃) δ 173.7, 155.8, 135.3, 129.1, 128.9, 128.8, 96.1, 68.5, 52.7, 49.4, 42.5, 37.1, 36.9, 32.9, 28.6, 25.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₆H₃₅NO₄Na 448.2458; Found: 448.2464.

Benzyl (2S,4S)-2-(*tert*-butyl)-4-(5-(2,5dimethylphenoxy)-2,2-dimethylpentyl)-5oxooxazolidine-3-carboxylate (8e) was synthesized according to the general

procedure 4C. Flash column chromatography purification 0-20% of EtOAc in hexanes afforded the title compound in 54% (26.7 mg) as a colorless oil. R_f = 0.8-0.9 (hexanes/EtOAc 80:20). NMR ¹H (400 MHz, CDCI₃) δ 7.37 – 7.33 (m, 5H), 7.00 (d, J = 7.4 Hz, 1H), 6.66 (d, J = 7.5 Hz, 1H), 6.62 (s, 1H), 5.56 (s, 1H), 5.21 – 5.12 (m, 2H), 4.44 – 4.40 (m, 1H), 3.92 – 3.84 (m, 2H), 2.31 (s, 3H), 2.17 (s, 3H), 1.99 – 1.92 (m, 1H), 1.78 – 1.67 (m, 3H), 1.51 – 1.43 (m, 2H), 1.05 – 0.93

(m, 15H). **NMR** ¹³**C (100 MHz, CDCI₃)** δ 173.4, 157.2, 155.9, 136.6, 135.3, 130.4, 129.0, 128.84, 128.80, 123.6, 120.7, 112.2, 96.2, 68.5, 61.9, 54.2, 46.6, 38.7, 37.0, 33.3, 27.2, 26.9, 25.1, 24.4, 21.5, 15.94. **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₃₀H₄₁NNaO₅ 518.2877; Found: 518.2880.

Benzyl(2S,4S)-2-(tert-butyl)-5-oxo-4-phenethyloxazolidine-3-carboxylate(8f)wassynthesized according to the general procedure 4C. Flashcolumn chromatography purification 0-15% of EtOAc in

hexanes afforded the title compound in 72% (27.5 mg) as a colorless oil. R_f = 0.7-0.8 (hexanes/EtOAc 85:15). NMR ¹H (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 3H), 7.25 – 7.20 (m, 2H), 7.20 – 7.17 (m, 2H), 7.13 – 7.08 (m, 3H), 5.48 (d, J = 1.1 Hz, 1H), 5.06 (s, 2H), 4.22 (t, J = 7.5 Hz, 1H), 2.95 – 2.86 (m, 1H), 2.83 – 2.73 (m, 1H), 2.18 – 2.12 (m, 1H), 2.11 – 2.04 (m, 1H), 0.89 (s, 9H). NMR ¹³C (100 MHz, CDCl₃) δ 172.7, 156.1, 140.7, 135.4, 128.9, 128.8, 128.6, 126.3, 96.4, 68.4, 56.6, 37.2, 34.9, 32.4, 25.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₃H₂₇NO₄Na 404.1832; Found:404.1829.

19.NMR spectra. Compounds 2a and 7a.

20. NMR spectra. Compounds 4a', 4a-ad.

FIGURE 9. ¹³C NMR of compound 4a (100 MHz, CDCl₃).

FIGURE 11. ¹³C NMR of compound 4b (100 MHz, CDCl₃).

FIGURE 13. ¹³C NMR of compound 4c (100 MHz, CDCl₃).

FIGURE 14. ¹H NMR of compound 4d (400 MHz, CDCl₃).

FIGURE 15. ¹³C NMR of compound 4d (100 MHz, CDCl₃).

FIGURE 17. ¹³C NMR of compound 4e (100 MHz, CDCl₃).

FIGURE 19. ¹³C NMR of compound 4f (100 MHz, CDCl₃).

FIGURE 22. ¹H NMR of compound **4h** (400 MHz, CDCl₃).

FIGURE 23. ¹³C NMR of compound 4h (100 MHz, CDCl₃).

FIGURE 25. ¹³C NMR of compound 4i (100 MHz, CDCl₃).

FIGURE 27. ¹³C NMR of compound 4j (100 MHz, CDCl₃).

FIGURE 29. ¹³C NMR of compound 4k (100 MHz, CDCl₃).

FIGURE 31. ¹³C NMR of compound 4I (100 MHz, CDCI₃).

FIGURE 32. ¹H NMR of compound 4m (400 MHz, CDCl₃).

FIGURE 33. ¹³C NMR of compound 4m (100 MHz, CDCl₃).

FIGURE 34. ¹H NMR of compound 4n (400 MHz, CDCl₃).

FIGURE 35. ¹³C NMR of compound **4n** (100 MHz, CDCl₃).

FIGURE 37. ¹³C NMR of compound **4o** (100 MHz, CDCl₃).

FIGURE 39. ¹³C NMR of compound 4p (100 MHz, CDCl₃).

FIGURE 41. ¹³C NMR of compound 4q (100 MHz, CDCl₃).

FIGURE 43. ¹³C NMR of compound 4r (100 MHz, CDCl₃).

FIGURE 45. ¹³C NMR of compound 4s (100 MHz, CDCl₃).

FIGURE 47. ¹³C NMR of compound 4t (100 MHz, CDCl₃).

FIGURE 53. ¹³C NMR of compound 4w (100 MHz, CDCl₃).

FIGURE 55. ¹³C NMR of compound 4x (100 MHz, CDCl₃).

FIGURE 59. ¹³C NMR of compound 4z (100 MHz, CDCl₃).

FIGURE 63. ¹³C NMR of compound 4ab (100 MHz, CDCl₃).

21.NMR spectra. Compounds 6a-f.

22. NMR spectra. Compounds 8a-f.

FIGURE 91. ¹³C NMR of compound 8f (100 MHz, CDCl₃).

23. References

- 1 Armarego, W. L. F.; Chai, C. L. L. *Purification of Laboratory Chemicals*, Fifth Edit.; Butterworth-Heinemann, 2003.
- 2 Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* **2010**, *29*, 2176–2179.
- 3 Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; et al. Nickel-Catalyzed Barton Decarboxylation and Giese Reactions: A Practical Take on Classic Transforms. *Angew. Chem. Int. Ed.* **2017**, *56*, 260–265.
- 4 Aycock, R. A.; Pratt, C. J.; Jui, N. T. Aminoalkyl Radicals as Powerful Intermediates for the Synthesis of Unnatural Amino Acids and Peptides. *ACS Catal.* **2018**, *8*, 9115–9119.
- 5 Tsuji, H.; Yamamoto, H. Hydroxy-Directed Amidation of Carboxylic Acid Esters Using a Tantalum Alkoxide Catalyst. *J. Am. Chem. Soc.* **2016**, *138*, 14218–14221.
- 6 Adams, L. A.; Aggarwal, V. K.; Bonnert, R. V.; Bressel, B.; Cox, R. J.; Shepherd, J.; de Vicente, J.; Walter, M.; Whittingham, W. G.; Winn, C. L. Diastereoselective Synthesis of Cyclopropane Amino Acids Using Diazo Compounds Generated in Situ. *J. Org. Chem.* 2003, *68*, 9433–9440.
- 7 Aycock, R. A.; Pratt, C. J.; Jui, N. T. Aminoalkyl Radicals as Powerful Intermediates for the Synthesis of Unnatural Amino Acids and Peptides. *ACS Catal.* **2018**, *8*, 9115–9119.
- (a) Basch, C. H.; Liao, J.; Xu, J.; Piane, J. J.; Watson, M. P. Harnessing Alkyl Amines as Electrophiles for Nickel-Catalyzed Cross Couplings via C–N Bond Activation. *J. Am. Chem. Soc.* 2017, *139*, 5313–5316; (b) Wu, J.; He, L.; Noble, A.; Aggarwal, V. K. Photoinduced Deaminative Borylation of Alkylamines. *J. Am. Chem. Soc.* 2018, *140*, 10700–10704; (c) Sun, S.-Z.; Romano, C.; Martin, R. Site-Selective Catalytic Deaminative Alkylation of Unactivated Olefins. *J. Am. Chem. Soc.* 2019, *141*, 16197–16201.
- 9 (a) Correia, J. T. M.; Piva da Silva, G.; Kisukuri, C. M.; André, E.; Pires, B.; Carneiro, P. S.; Paixão, M. W. Metal-Free Photoinduced Hydroalkylation Cascade Enabled by an Electron-Donor–Acceptor Complex. *J. Org. Chem.* 2020, *85*, 9820–9834; (b) Wu, J.; Grant, P. S.; Li, X.; Noble, A.; Aggarwal, V. K. Catalyst-Free Deaminative Functionalizations of Primary Amines by Photoinduced Single-Electron Transfer. *Angew. Chem. Int. Ed.* 2019, *58*, 5697–5701. https://doi.org/10.1002/anie.201814452; (c) Li, Y.; Zhang, J.; Li, D.; Chen, Y. Metal-Free C(Sp 3)–H Allylation via Aryl Carboxyl Radicals Enabled by Donor–Acceptor Complex. *Org. Lett.* 2018, *20*, 3296–3299.
- 10 Zhu, X.-Q.; Li, H.-R.; Li, Q.; Ai, T.; Lu, J.-Y.; Yang, Y.; Cheng, J.-P. Determination of the C4-H Bond Dissociation Energies of NADH Models and Their Radical Cations in Acetonitrile. *Chem. J.* **2003**, *9*, 871–880.
- 11 Brocks, J. J.; Beckhaus, H.-D.; Beckwith, A. L. J.; Rüchardt, C. Estimation of Bond Dissociation Energies and Radical Stabilization Energies by ESR Spectroscopy. *J. Org. Chem.* **1998**, *63*, 1935–1943.