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Figure S1. a) Pure water permeability and b) salt retentions of the PSS-PAH multilayer 

membranes showing the effect of number of bilayers on the membrane permeability and salt 

retentions.
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Figure S2. a) Pure water permeability and b) salt retentions of the PSS-PDADMAC multilayer 

membranes showing the effect of number of bilayers on the membrane permeability and 

separation performance.
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Figure S3. a) Pure water permeability and b) salt retentions of the PSS-PEI multilayer 

membranes showing the effect of number of bilayers on the membrane permeability and 

separation performance.
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Figure S4. Sieving curves obtained by gel permeation chromatography showing the retention of 

Polyethylene glycol (PEG) as a function of its molecular weight for three types of multilayer 

coatings. a) PSS-PAH(4.5), PSS-PDADMAC(4.5), and PSS-PEI(4.5). The molecular weight cut-off 

was estimated by taking the 90th percentile of the maximum retention obtained. 
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Figure S5. Chemical structures and molecular weights of the eight types of micropollutants used 

in this work.
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Table S1. Comparison of pure water permeability and retention of NIPS based commercial membranes with APS membranes coated 

in this work. 

Membrane Material Manufacturer Pure water permeability

(L·m–2·h–1·bar–1)

NaCl retention 

(%)

Reference

NF270 Polyamide TFC Dow Filmtec 11 80 Dang et al. 1

TFC-HR Polyamide TFC Koch 3.5 99 Xu et al. 2

XLE Polyamide TFC Dow Filmtec 9 99 Xu et al. 2

SC-3100 Cellulose acetate Toray 1.3 94 Kimura et al. 3

NF90 Polyamide TFC Dow Filmtec 6 93 Yüksel et al. 4

Desal HL Polyamide TFC GE osmonics 10.5 55 Caus et al. 5

APS IP Polyamide TFC This work 1.1 58 This work

PSS-PAH This work 1.7 58 This work

PSS-PDADMAC This work 1.7 64 This workAPS PEM

PSS-PEI This work 1.4 70 This work
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