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Supporting figures  

 

Figure S1. The basic layout of a differential mobility spectrometry (DMS) cell consists of two-planar electrodes separated by a 1 mm 

gap. Ions are introduced to the DMS cell by ESI and carried through the device with the flow of the N2 carrier gas. Application of the 

oscillating separation field, denoted the separation voltage (SV), induces off-axis motion of the analytes that is determined by their field 

dependent mobility. Ion trajectories are stabilized by application of a static direct-current compensation voltage (CV). The magnitude 

of the CV applied is correlated with the differential mobility of the ion, enabling spatial resolution of analytes as they are directed 

towards the exit orifice of the DMS cell to the mass spectrometer.  
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Figure S2. Schematic of the SELEXION system coupled to the QTRAP 5500 (SCIEX) hybrid linear ion trap triple-quadrupole mass 

spectrometer. The QJet region shown in Figure S1 is not labelled but exists between the orifice plate and Q1.  



S5 

 

 

 

 

Figure S3. Superclasses, as predicted by ClassyFire, of the 410 analytes used in this study.  
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Supplementary Sections 

S1. Feed-forward Deep Neural Network (DNN) Workflow 

To determine CCSs from DMS data, we have implemented a simple feed forward neural network 

(NN) as depicted in Figure 3. The output of the feed forward network is represented by Y, which 

is a single scalar value that depends on the inputs to the network, Xi, the network weights, wi, and 

the network biases, bi. Note that the inputs, weights, and biases are matrix quantities. The network 

is implemented with pytorch 1.7.1. Prior to model training, the complete data set (N), which is 

composed of mass data and DMS data for the 410 analytes, is randomly split such that ca. 70% of 

the molecules are used to create a model set (M) and ca. 30% of the molecules are used to create 

a validation set (V). The model set is used to train the NN model and the validation set is used only 

to assess model performance following training (i.e., V is left “out of the bag” and does not 

influence model training). The split will be randomized again with weight and biases from the 

previous iteration retained until program termination. A manual filter of desired mean percent error 

is added to retain NN parameters that produces prediction with high accuracy due to the random 

nature in training. Note that lowercase letters are used to specify node indices, activations, and 

responses, while uppercase letters indicate layers, inputs, and the output, Y. 

 

 

Figure S4. Schematic diagram of the feed forward neural network developed for determining 

CCS from DMS data. Network inputs (Xi; i.e., m/z and DMS data) are mapped to the output (Y; 

i.e., CCS) by optimization of the biases (b) and weights (w) for the i nodes of the L layers.  
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Neural network node activations, 𝑎𝑖
𝑙, for node i of layer l are computed using the functional form 

shown in Equation (S1). 

 

𝑎𝑖
𝑙 = ∑ 𝑤𝑗,𝑙

𝑖 ∙ 𝑥𝑗
𝑙−1

𝑛𝑜𝑑𝑒𝑠(𝑙−1)

𝑗𝜖𝑙−1

+ 𝑏𝑖,𝑙 (S1) 

   

Note that the weights in Figure S5, shown as 𝑤̅𝑙, are sets of rank 2 tensors separated by layer, l. 

Each individual weight as shown in Equation (1), 𝑤𝑗,𝑙
𝑖 , connects a node, j, in the previous layer to 

a node, i, in the current layer, l. The biases are layer separated vectors, shown in Figure 3 as 𝑏̅𝑙 for 

the biases in the lth layer. In Equation S1 the node activations at a particular node, i, and in a 

particular layer, l, is denoted by 𝑏𝑖,𝑙. The sum in Equation S1 connects all nodes in the previous 

layer to each individual node i in layer l. The response at each node, 𝑥𝑗
𝑙−1 in Equation S1, is 

computed from the activations via the activation function as shown in Equation S2. 

 𝑥𝑗
𝑙 = 𝑓(𝑎𝑗

𝑙) (S2) 

   

During model development, different activation functions are used for testing, however rectified 

linear unit (ReLU) is the chosen function used to produce results.1  

Neural network weights and biases are updated based upon the output cost function, CY, given in 

Equation S3. 

 𝐶𝑌 =
1

𝑁
∑ (𝑌−𝑌𝛼)

2𝑁
𝑖=1  (S3) 

Calculation of the cost function is performed at the output of the NN using the model output, Yα, 

and the expected output, Y. The cost function decreases as the neural network outputs converge to 

the values of the known training set. 

Weight and bias updates are handled via momentum, specifically through the Adam routine, 

implemented as described in the work of Kingma and Ba.2 Briefly, parameter updates are based 

upon the gradients of the quadratic cost function and the prototype cost function separately. At 

every iteration of training, a parameter, Φ, which represents either a weight or bias, is updated 

according to Equation S4 

 Φ𝑡+1 = Φ𝑡 − ∆𝑡
𝐶 (S4) 

 

where Φt+1 and Φt represent the parameter at the next iteration, t+1, and the current iteration, t. 

Updates to the parameters are defined by ∆𝑡
𝐶, which depends on the gradient of the quadratic cost. 

Each of the parameter updates, ∆𝑡, is defined as in Equation S5. 

 ∆𝑡= 𝛼′𝑡 ∙ 𝛻′𝑡/√𝑣𝑡 + 𝜉 (S5) 

   



S8 

 

 
𝛼′𝑡 = 𝛼 ∙

√1 − (𝛽2)𝑡

1 − (𝛽1)𝑡
 (S6) 

   

 𝛻′𝑡 = 𝛻′𝑡−1 ∙ 𝛽1 + (1 − 𝛽1) ∙ 𝛻𝑡 (S7) 

   

 𝑣𝑡 = 𝑣𝑡−1 ∙ 𝛽2 + (1 − 𝛽2) ∙ (𝛻𝑡)
2 (S8) 

   

Equations S6, S7, and S8 follow from the work of Kingma and Ba, and the representation for the 

step size, Equation S5, follows their suggestions for code simplicity.2 In Equations S6 and S7, ∇t 
represents the parameter gradients back-propagated through the network at each training iteration, 

t. The constants β1 = 0.9 and β2 = 0.999 are unchanged from the original works and ξ = 1∙10-8 is a 

small number to avoid zero division. In Equation S11, α is a constant and determines the initial 

step size for the optimizations. The quadratic update is given the possibility for different initial 

step values in our implementation. We have found for this work that an initial step size of α = 0.01 

works best for the quadratic momentum updates.  

A set of model/validation split of 70:30 to 95:05 is used to assess mean absolute percent errors 

(MAPEs) across several model/validation split. The NN model is built using pytorch 1.7.1 in 

accordance with Figure S5 using ReLU as the activation function with 5 layers, 9 input nodes, 14 

nodes per hidden layer and 1 output node for CCS prediction. The model set itself is also split into 

a 90:10 training/test split for internal validation, preventing the NN from over fitting the data. 

However, due to the limited size of the database, the NN performs, at best, with a 2.92 ± 0.33% 

MAPE (Table S1). The MAPE decreases as the size of the model set increases, suggesting that a 

larger database may allow the NN to predict CCSs with a higher accuracy. Performance of each 

model:Validation split can be found within the Excel sheets accompanying this supplementary 

material. The excel files contain 2 sets of predictions done by the DNN for Table 1 and Table S1.   

Table S1. Mean percent errors (MPEs) of 100 different samples for CCSs predicted by the various 

percentage of the model-validation split ranging from 70:30 (model:validation) to 90:10 filtered 

from the middle of the CCS distribution. All data are generated using ReLU activation function 

with a total of 5 layers and 14 nodes each. 

model:Validation split MAPE ± MAPE  

70:30 3.09 ± 0.21 

75:25 3.01 ± 0.19 

80:20 2.99 ± 0.25 

85:15 2.97 ± 0.26 

90:10 2.92 ± 0.33 

95:05 2.95± 0.43 

 


