Supporting Information

WO₃ Nanoflakes Coupled with Hexagonal Boron Nitride Nanosheets for Triethylamine Sensing

Wendi Tian[†], Yan Wang[†]*, Yan Zhang[†], Jianliang Cao[†], Rong-Feng Guan[‡]**

*State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization,
Henan Polytechnic University, Jiaozuo 454000, China
*Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province,

Yancheng Institute of Technology, yancheng, 224051, China

*Corresponding author: Prof. Yan Wang, yanwang@hpu.edu.cn **Corresponding author: Prof. Rong-Feng Guan, rongfengg@163.com

O species	WO ₃	position (eV)	WO ₃ / <i>h</i> -BN-5	position (eV)
OL	75.6%	530.12	67.2%	529.83
$\mathbf{O}_{\mathbf{V}}$	24.3%	531.01	26.3%	531.65
O _C	-	-	6.4%	533.16

Table S1. The proportion and position of O species in WO₃ and WO₃/*h*-BN-5 nanocomposite.

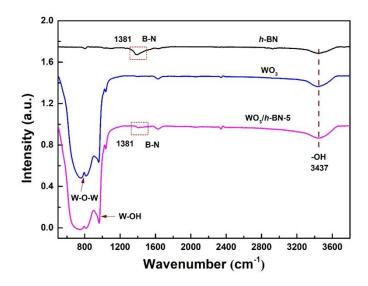


Fig. S1. FT-IR spectrum of single *h*-BN, WO₃ and the WO₃/*h*-BN-5 hybrid.

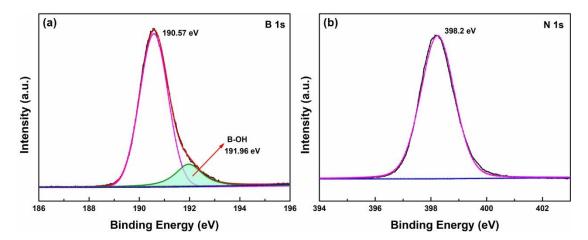


Fig. S2. XPS analysis of B 1s element (a) and N 1s element (b).

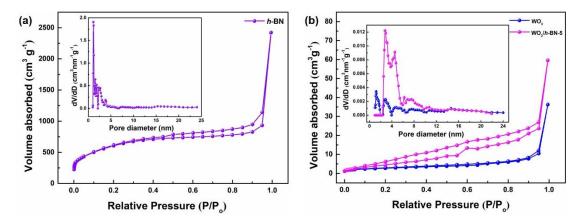


Fig. S3. N₂ adsorption-desorption isotherm and BJH pore size distribution (insert) of *h*-BN (a) and pure WO₃, WO₃/*h*-BN-5 (b).

Fig. S4. Temperature-dependent responses of the sensors based on different samples.

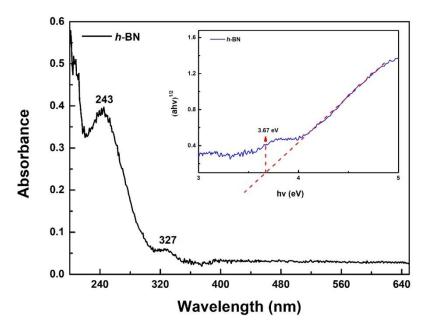


Fig. S5. The UV-vis DRS and $(\alpha hv)^{\frac{1}{2}}$ -hv plot (inset) of single *h*-BN.