ELECTRONIC SUPPORTING INFORMATION FOR

Chiral Cobalt(III) tris(1,2-Diamine) Catalysts that Incorporate Nitrogenous Base Containing Anions for the Bifunctional Activation of Nucleophiles and Electrophiles in Enantioselective Addition Reactions

Connor Q. Kabes, ${ }^{\ominus}$ Reagan F. Lucas, Jack H. Gunn, and John A. Gladysz* ${ }^{*}$ Department of Chemistry, Texas A\&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA. E-mail: gladysz@mail.chem.tamu.edu

Contents

General Information s2
Syntheses of nitroolefin substrates s2
Syntheses of catalysts s3
Nitroolefin addition products accessed by the general procedure s9
Di- t-butyl azodicarboxylate addition products accessed by the general procedure s13
References s15
NMR spectra of catalysts s17
HPLC Traces s28

General Information

All operations were carried out under air atmospheres. NMR spectra were recorded on standard FT spectrometers at ambient probe temperatures (500 MHz) or $298 \mathrm{~K}(400 \mathrm{MHz})$. Chemical shifts (δ / ppm) were generally referenced to solvent signals: ${ }^{1} \mathrm{H}$, residual CHCl_{3} (7.26), ac-etone- d_{5}, (2.05), or $\mathrm{CHD}_{2} \mathrm{CN}(1.94) ;{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$ (77.16) or acetone- d_{6} (29.84). IR spectra were recorded on a Shimadzu IRAffinity-1 spectrometer (Pike MIRacle ATR system, diamond/ZnSe crystal). Capillary thermolyses were monitored with an Optimelt MPA 100 instrument. Microanalyses were conducted by Atlantic Microlab. HPLC analyses were carried out with a Shimadzu instrument package (pump/autosampler/detector LC-20AD/SIL-20A/SPD-M20A).

The di- t-butyl azodicarboxylate (98%, Aldrich) was recrystallized from heptane (warm until dissolved) and petroleum ether $\left(30-60^{\circ} \mathrm{C}\right.$; added cold and sample kept at room temperature until precipitation). The (E)-cinnamaldehyde, 4-formylbenzoic acid methyl ester, nicotinic acid, 2-methoxynicotinic acid, 6-aminonicotinic acid, 6-chloronicotinic acid, 6-methylnicotinic acid, isonicotinic acid, picolinic acid, 3-(dimethylamino)benzoic acid, 2-pyridinesulfonic acid, ammonium acetate, $N . N$-dimethylaniline, dimethyl malonate, diethyl malonate, di- t-butyl malonate, $\mathrm{Ph}_{2} \mathrm{SiMe}_{2}$, trans- β-nitrostyrene, and routine chemicals not specifically noted were used as received from common commercial sources.

Syntheses of nitroolefin substrates

Nitroolefins $6 \mathrm{a}-\mathrm{d}$ and $\mathbf{6} \mathrm{h}-\mathrm{k}$ were used from a previous work, in which they were prepared by Henry reactions with nitromethane. ${ }^{\text {S1 }}$ Nitroolefins $\mathbf{6 f , n}$ were available commercially, and $\mathbf{6 e}, \mathbf{1}$, m were synthesized by literature procedures. ${ }^{\text {s } 2}$
trans-p-(methoxycarbonyl)- β-nitrostyrene (6 g). ${ }^{53} \mathrm{~A}$ round-bottom flask was charged with 4-formylbenzoic acid methyl ester ($0.250 \mathrm{~g}, 1.52 \mathrm{mmol}, 1.0$ equiv), nitromethane (1.5 mL), and ammonium acetate $(0.035 \mathrm{~g}, 0.457 \mathrm{mmol}, 30 \mathrm{~mol} \%)$. The mixture was refluxed (2 h) and allowed to cool. The thick slurry was transferred to a sintered glass frit, and the solvent was pulled through by vacuum. The residue was triturated with a minimal amount of methanol, and
the solid transferred to a vial and dried by oil pump vacuum ($\mathrm{rt}, 14 \mathrm{~h}$) to give $\mathbf{6 g}$ as a yellowgreen solid ($0.124 \mathrm{~g}, 0.598 \mathrm{mmol}, 39 \%$), $\mathrm{mp} 178.4-181.8^{\circ} \mathrm{C}$ (open capillary). IR (powder film, cm^{-1}): 3103, 3051, 2959, 1710, 1635, 1517, 1497, 1281, 1105, 960, 770.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(400 \mathrm{MHz}) 8.11\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.02\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=13.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=13.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.62\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(100$ MHz) 166.1, 138.8, 137.7, 134.3, 133.2, 130.6, 129.1, 52.7 ($8 \times \mathrm{s}$).
($1 E, 3 E$)-1-phenyl-4-nitro-1,3-butadiene (60). A round-bottom flask was charged with (E)-cinnamaldehyde ($0.25 \mathrm{~mL}, 2.0 \mathrm{mmol}, 1.0$ equiv), nitromethane (1.5 mL), and ammonium acetate $(0.046 \mathrm{~g}, 0.595 \mathrm{mmol}, 30 \mathrm{~mol} \%)$. The mixture was refluxed (2 h) and allowed to cool. The solvent was removed by rotary evaporation. The red oily residue was dissolved in a minimum of DCM, and loaded onto a silica column that was packed and eluted with EtOAc/hexanes (15:85 $\mathrm{v} / \mathrm{v})$. The solvent was removed from the combined product containing fractions by rotary evaporation and oil-pump vacuum ($\mathrm{rt}, 14 \mathrm{~h}$) to give 60 as an oily residue that slowly became a vermillion semi-solid $(0.174 \mathrm{~g}, 1.00 \mathrm{mmol}, 50 \%) .{ }^{\mathrm{s} 4}$

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 7.78\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=13.0,11.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=0.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.24\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=13.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=15.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=15.5,11.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(100 \mathrm{MHz}) 146.2$, $139.3,138.8,135.3,130.5,129.2,127.9,120.7(8 \times \mathrm{s})$.

Syntheses of catalysts

$\Lambda-(S, S)-2^{3+} 4 \mathrm{a}^{-} \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Isolated according to the general procedure (main text) from $\Lambda-(S, S)-2^{3+} 2 \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and isonicotinic acid $(0.011 \mathrm{~g})$ as an orange solid $(0.048 \mathrm{~g}$, $0.027 \mathrm{mmol}, 91 \%$), $\mathrm{mp} 125.7-129.6^{\circ} \mathrm{C}$ (open capillary, dec to green liquid). Anal. Calcd. for $\mathrm{C}_{80} \mathrm{H}_{64} \mathrm{BClCoF}_{24} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1752.62): C 54.83, H 3.91, N, 5.59; found C 54.98, H 3.91, N 5.36. IR (powder film, cm^{-1}): 3068, 1681, 1609, 1539, 1385, 1354, 1273, 1119, 679.

NMR (acetone- $\left.d_{6}, \delta / \mathrm{ppm}\right):{ }^{55}{ }^{1} \mathrm{H}(500 \mathrm{MHz})$ isonicotinate at 8.69-8.63 $\left(\mathrm{d},{ }^{3} J_{\mathrm{HH}}=5.8 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.92-7.86\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=5.8 \mathrm{~Hz}, 2 \mathrm{H}\right) ; \mathrm{BAr}_{\mathrm{f}}{ }^{-}$at $7.84-7.77(\mathrm{~m}, 8 \mathrm{H}, o), 7.68(\mathrm{~s}, 4 \mathrm{H}, p)$; dpen at
8.54 (br s, 4H, NHH', overlapping isonicotinate), 7.63-7.46 (m, 12H), 7.36-7.16 (m, 18H), 5.26 (br s, $4 \mathrm{H}, \mathrm{NHH}$ '), $5.17\left(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \mathrm{CHNH}_{2}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz}) \mathrm{BAr}_{\mathrm{f}}{ }^{-}$at $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=50.0\right.$ $\mathrm{Hz}, i), 135.5(\mathrm{br} \mathrm{s}, o), 130.0\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=2.9 \mathrm{~Hz}, m\right), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=271.6 \mathrm{~Hz}\right.$, CF_{3}), 118.4 (sept, $\left.{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p\right)$; dpen at $137.6(\mathrm{~s}, i-\mathrm{Ph}), 129.8,129.7,129.6(3 \times \mathrm{s}, o-, m-, p$ $\mathrm{Ph}), 63.5\left(\mathrm{~s}, \mathrm{CHNH}_{2}\right)$; isonicotinate at $172.8\left(\mathrm{~s}, \mathrm{COO}^{-}\right), 150.7,145.9,124.2(5 \times \mathrm{s})$.
$\Lambda-(S, S)-2^{3+} 4 b^{-} \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Isolated according to the general procedure from Λ^{-} $(S, S)-2^{3+} 2 \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and nicotinic acid $(0.011 \mathrm{~g})$ as an orange solid $(0.046 \mathrm{~g}, 0.026 \mathrm{mmol}$, 88%), mp 119.1-122.2 ${ }^{\circ} \mathrm{C}$ (open capillary, dec to green liquid). Anal. Calcd. for $\mathrm{C}_{80} \mathrm{H}_{64} \mathrm{BClCo}-$ $\mathrm{F}_{24} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1752.62): C 54.83, H 3.91, N, 5.59, Cl, 2.00; found C $54.56, \mathrm{H} 3.98, \mathrm{~N} 5.39$. IR (powder film, cm^{-1}): 3063, 1609, 1539, 1387, 1354, 1275, 1119.

NMR (acetone- $\left.d_{6}, \delta / \mathrm{ppm}\right):{ }^{5}{ }^{1} \mathrm{H}(500 \mathrm{MHz})$ nicotinate at $9.24\left(\mathrm{dd},{ }^{4} J_{\mathrm{HH}}=2.1 \mathrm{~Hz},{ }^{5} J_{\mathrm{HH}}=\right.$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.65\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=4.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.34\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 4.8 \mathrm{~Hz},{ }^{5} J_{\mathrm{HH}}=0.9,1 \mathrm{H}\right) ; \mathrm{BAr}_{\mathrm{f}}^{-}$at $7.85-7.78(\mathrm{~m}, 8 \mathrm{H}, o), 7.70$ (s, 4H, p); dpen at 8.68 (br s, $5 \mathrm{H}, \mathrm{NHH}^{\prime}$, overlapping nicotinate), 7.62-7.46 (m, 12H), 7.35-7.22 $(\mathrm{m}, 18 \mathrm{H}), 5.25\left(\mathrm{br} \mathrm{s}, 5 \mathrm{H}, \mathrm{NHH}\right.$ '), $5.18\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CHNH}_{2}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz}) \mathrm{BAr}_{\mathrm{f}}^{-}$at 162.6 (q, $\left.{ }^{1} J_{\mathrm{BC}}=50.0 \mathrm{~Hz}, i\right), 135.5(\mathrm{br} \mathrm{s}, o), 130.0\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=2.9 \mathrm{~Hz}, m\right), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=\right.$ $271.9 \mathrm{~Hz}, \mathrm{CF}_{3}$), 118.4 (sept, $\left.{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p\right)$; dpen at $137.6(\mathrm{~s}, i-\mathrm{Ph}), 129.72,129.71,129.6$ (3 $\times \mathrm{s}, o-, m-, p-\mathrm{Ph}), 63.5\left(\mathrm{~s}, \mathrm{CHNH}_{2}\right) ;$ nicotinate at $173.1\left(\mathrm{~s}, \mathrm{COO}^{-}\right), 152.1,151.8,137.4,133.7$, $123.6(5 \times \mathrm{s}) ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ vs. internal $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}_{3}$ at -63.72$)-63.2(\mathrm{~s})$.
$\Delta-(S, S)-2^{3+} 4 b^{-} \mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Isolated according to the general procedure from Δ $(S, S)-2^{3+} 2 \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}-\cdot \mathrm{H}_{2} \mathrm{O}$ and nicotinic acid $(0.011 \mathrm{~g})$ as an orange solid $(0.051 \mathrm{~g}, 0.029 \mathrm{mmol}$, 88%), mp $117.5^{\circ} \mathrm{C}$ (open capillary; dec to green liquid with gradual darkening at lower temperatures). Anal. Calcd. for $\mathrm{C}_{80} \mathrm{H}_{64} \mathrm{BClCoF}_{24} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1752.62): C 54.83, H 3.91, N, 5.59; found C 55.38, H 4.08, N 5.70. IR (powder film, cm^{-1}): 3067, 1684, 1596, 1457, 1382, 1354, 1275, 1120, 682.

NMR (acetone- $\left.d_{6}, \delta / \mathrm{ppm}\right):{ }^{55}{ }^{1} \mathrm{H}(500 \mathrm{MHz})$ nicotinate at 9.14 (apparent $\left.\mathrm{s}, 1 \mathrm{H}\right), 8.59(\mathrm{dd}$, $\left.{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.23\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36-7.29(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{BAr}_{\mathrm{f}}^{-}$at
7.82-7.74 (m, 8H, o), $7.68(\mathrm{~s}, 4 \mathrm{H}, p)$; dpen at 7.87 (br s, 1H, NHH', overlapping nicotinate), 7.587.46 (m, 12H), 7.28-7.13 (m, 18H), 5.98 (br s, 1H, NHH'), $5.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CHNH}_{2}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125$ $\mathrm{MHz}) \mathrm{BAr}_{\mathrm{f}}^{-}$at $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=49.8 \mathrm{~Hz}, i\right), 135.5(\mathrm{br} \mathrm{s}, o), 130.0\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=\right.$ $2.9 \mathrm{~Hz}, m), 125.3\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=271.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.4\left(\mathrm{sept},{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p\right)$; dpen at $137.7(\mathrm{~s}, i-$ $\mathrm{Ph}), 129.6,129.4,129.2(3 \times \mathrm{s}, o-, m-, p-\mathrm{Ph}), 66.0\left(\mathrm{~s}, \mathrm{CHNH}_{2}\right)$; nicotinate $\mathrm{at}^{\mathrm{s} 6}$ 152.0, 151.5, 137.2, 129.7, $123.6(5 \times \mathrm{s})$.
$\Lambda-(S, S)-2^{3+} 4 \mathrm{c}^{-} \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-}$. Isolated according to the general procedure from $\Lambda-(S, S)-2^{3+}$ $2 \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-}-2 \mathrm{H}_{2} \mathrm{O}$ and picolinic acid $(0.011 \mathrm{~g})$ as an orange solid ($\left.0.051 \mathrm{~g}, 0.029 \mathrm{mmol}, 98 \%\right), \mathrm{mp}$ $129.9{ }^{\circ} \mathrm{C}$ (open capillary; dec to green liquid with gradual darkening at lower temperatures). Anal. Calcd. for $\mathrm{C}_{80} \mathrm{H}_{64} \mathrm{BClCoF}_{24} \mathrm{~N}_{7} \mathrm{O}_{2}$ (1716.59): C 55.98, H 3.76, N, 5.71; found C 56.27, H 3.88, N 5.71. IR (powder film, cm^{-1}): 3029, 1609, 1579, 1549, 1387, 1354, 1274, 1118, 696.

NMR (acetone- $\left.d_{6}, \delta / \mathrm{ppm}\right) \cdot{ }^{55}{ }^{1} \mathrm{H}(500 \mathrm{MHz})$ picolinate at $8.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=\right.$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.43-7.35(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{BAr}_{\mathrm{f}}^{-}{ }^{-}$at $7.83-7.79(\mathrm{~m}, 8 \mathrm{H}, o), 7.69$ (br s, 4H, p); dpen at 8.40 (br s, 4H, NHH'), 7.57-7.44 (m, 12H), 7.31-7.09 (m, 18H), 5.68 (br s, $4 \mathrm{H}, \mathrm{NHH}$), $5.15\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CHNH}_{2}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz}) \mathrm{BAr}_{\mathrm{f}}{ }^{-}$at $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=50.0 \mathrm{~Hz}, i\right)$, $135.5(\mathrm{br} \mathrm{s}, o), 130.0\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=2.9 \mathrm{~Hz}, m\right), 125.3\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=271.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 118.4 (sept, $\left.{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p\right)$; dpen at $137.6(\mathrm{~s}, i-\mathrm{Ph}), 129.63$ (double intensity), 129.58, ($2 \times \mathrm{s}$, $o-, m-, p-\mathrm{Ph}), 63.6\left(\mathrm{~s}, \mathrm{CHNH}_{2}\right) ;$ picolinate at $172.7\left(\mathrm{~s}, \mathrm{COO}^{-}\right), 156.5,149.7,137.3,125.4,125.1$ $(5 \times s)$.
$\Lambda-(S, S)-2^{3+} 4 d^{-} \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Isolated according to the general procedure from Λ^{-} $(S, S)-2^{3+} 2 \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and pyridine-2-sulfonic acid $(0.014 \mathrm{~g})$ as an orange solid $(0.051 \mathrm{~g}$, $0.029 \mathrm{mmol}, 96 \%$), $\mathrm{mp} 126.4-136.7^{\circ} \mathrm{C}$ (open capillary; dec to green liquid). Anal. Calcd. for $\mathrm{C}_{79} \mathrm{H}_{64} \mathrm{BClCoF}_{24} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1788.67): C 53.05, H 3.83, N, 5.48; found C 53.31, H 3.73, N 5.39. IR (powder film, cm^{-1}): 3216, 3079, 1610, 1457, 1354, 1274, 1118, 1024, 681.

NMR (acetone- $\left.d_{6}, \delta / \mathrm{ppm}\right):{ }^{55}{ }^{1} \mathrm{H}(500 \mathrm{MHz})$ 2-pyridinesulfonate at $8.55\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=4.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 8.10-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{BAr}_{\mathrm{f}}^{-}$at 7.81-7.78(m, 8H, o), $7.67(\mathrm{~s}, 4 \mathrm{H}, p)$; dpen at ca. 7.5 (NHH', overlapping Ar-CH, 2H), 7.49-7.39 (m, 12H), 7.31-7.12 (m, 18H), 5.25
(br s, 4H, NHH'), $5.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CHNH}_{2}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz}) \mathrm{BAr}_{\mathrm{f}}^{-}$at $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=50.0 \mathrm{~Hz}\right.$, i), $135.5(\mathrm{br} \mathrm{s}, o), 130.0\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=2.9 \mathrm{~Hz}, m\right), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=274.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 118.4 (sept, $\left.{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p\right)$; dpen at $136.9(\mathrm{~s}, i-\mathrm{Ph}), 129.8,129.64,129.62(3 \times \mathrm{s}, o-, m-, p-\mathrm{Ph})$, $63.4\left(\mathrm{~s}, \mathrm{CHNH}_{2}\right) ;$ 2-pyridinesulfonate at $162.7,150.2,139.2,126.1,121.8(6 \times \mathrm{s})$.
$\Lambda-(S, S)-2^{3+} 4 \mathrm{e}^{-} \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Isolated according to the general procedure from Λ^{-} $(S, S)-2^{3+} 2 \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 3-(dimethylamino)benzoic acid (0.015 g) as an orange solid $(0.053 \mathrm{~g}, 0.030 \mathrm{mmol}, 99 \%), \mathrm{mp} 99.8-106.9^{\circ} \mathrm{C}$ (open capillary; dec to green liquid). Anal. Calcd. for $\mathrm{C}_{83} \mathrm{H}_{70} \mathrm{BClCoF}_{24} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1793.45): C 55.55, H 4.16, N, 5.46; found C 56.39, H 4.39, N 5.42. IR (powder film, cm^{-1}): 1597, 1525, 1382, 1353, 1123, 696, 682.

NMR (acetone- $\left.d_{6}, \delta / \mathrm{ppm}\right):{ }^{55}{ }^{1} \mathrm{H}(500 \mathrm{MHz})$ 3-(dimethylamino)benzoate at 7.51-7.39 (m, $3 \mathrm{H})$, 6.9-6.82 $(\mathrm{m}, 1 \mathrm{H}), 2.98\left(\mathrm{~s}, 6 \mathrm{H}\right.$, overlapping with $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \mathrm{BAr}_{\mathrm{f}}^{-}$at $7.83-7.78(\mathrm{~m}, 8 \mathrm{H}, o), 7.69$ (br s, 4H, p); dpen at 8.96 (br s, 4H, NHH'), 7.63-7.51 (m, 12H), 7.33-7.19 (m, 18H), 5.11 (br s, $9 \mathrm{H}, \mathrm{NHH}$ and $\left.\mathrm{CHNH}_{2}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz}) \mathrm{BAr}_{\mathrm{f}}^{-}$at $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=50.0 \mathrm{~Hz}, i\right), 135.5(\mathrm{br} \mathrm{s}$, o), $130.0\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=2.9 \mathrm{~Hz}, m\right), 125.3\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=271.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.4$ (sept, $\left.{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p\right)$; dpen at $137.9(\mathrm{~s}, i-\mathrm{Ph}), 129.7,129.67,129.61,(3 \times \mathrm{s}, o-, m-, p-\mathrm{Ph}), 63.5(\mathrm{~s}$, CHNH_{2}); 3-(dimethylamino)benzoate at $175.2\left(\mathrm{~s}, \mathrm{COO}^{-}\right), 151.4,139.4,128.9,128.2,119.0$, $115.0(6 \times \mathrm{s})$.
$\Lambda-(S, S)-2^{3+} 4 f^{-} \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Isolated according to the general procedure from Λ $(S, S)-2^{3+} 2 \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.100 \mathrm{~g}, 0.060 \mathrm{mmol}), 6$-chloronicotinic acid $(0.028 \mathrm{~g}, 0.180 \mathrm{mmol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.021 \mathrm{~g}, 0.198 \mathrm{mmol})$ as an orange solid $(0.103 \mathrm{~g}, 0.058 \mathrm{mmol}, 96 \%), \mathrm{mp} 129.4-$ $133.3^{\circ} \mathrm{C}$ (open capillary; dec to green liquid). Anal. Calcd. for $\mathrm{C}_{83} \mathrm{H}_{70} \mathrm{BClCoF}_{24} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (1769.05): C 54.32, H 3.70, N, 5.54; found C 54.32, H 3.73, N 5.52. IR (powder film, cm^{-1}): $3040,1609,1585,1537,1393,1354,1275,1119$.

NMR (acetone- $\left.d_{6}, \delta / \mathrm{ppm}\right):{ }^{55}{ }^{1} \mathrm{H}(500 \mathrm{MHz})$ 6-chloronicotinate at 8.99-8.94 $(\mathrm{m}, 1 \mathrm{H}), 8.37$ $\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.49\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{5} J_{\mathrm{HH}}=0.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; \mathrm{BAr}_{\mathrm{f}}^{-}$at 7.89-7.77 (m, 8H,o), 7.70 (s, 4H, p); dpen at 8.55 (br s, $\left.5 \mathrm{H}, \mathrm{NHH}^{\prime}\right), 7.60-7.52(\mathrm{~m}, 12 \mathrm{H}), 7.39-$ $7.23(\mathrm{~m}, 18 \mathrm{H}), 5.29$ (br s, $\left.5 \mathrm{H}, \mathrm{NHH}^{\prime}\right), 5.20\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CHNH}_{2}\right) ; 3.01$ (br s, $\left.4 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125$
$\mathrm{MHz}) \mathrm{BAr}_{\mathrm{f}}^{-}$at $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=50.0 \mathrm{~Hz}, i\right), 135.5(\mathrm{br} \mathrm{s}, o), 130.0\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=\right.$ $2.9 \mathrm{~Hz}, \mathrm{~m}), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=271.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.4\left(\mathrm{sept},{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p\right)$; dpen at $137.6(\mathrm{~s}, i-$ $\mathrm{Ph})$, 129.8, 129.7, $129.6(3 \times \mathrm{s}, o-, m-, p-\mathrm{Ph}), 63.5\left(\mathrm{~s}, \mathrm{CHNH}_{2}\right) ; 6$-chloronicotinate at $171.9(\mathrm{~s}$, $\left.\mathrm{COO}^{-}\right), 153.3,152.2,140.8,133.1,124.1(5 \times \mathrm{s})$.
$\Lambda-(S, S)-2^{3+} 4 g^{-} \mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Isolated according to the general procedure from Λ^{-} $(S, S)-2^{3+} 2 \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 2-methoxynicotinic acid $(0.014 \mathrm{~g})$ as an orange solid $(0.053 \mathrm{~g}$, $0.030 \mathrm{mmol}, 99 \%$), mp $102.7-106.7^{\circ} \mathrm{C}$ (open capillary; dec to green liquid). Anal. Calcd. for $\mathrm{C}_{81} \mathrm{H}_{66} \mathrm{BClCoF}_{24} \mathrm{~N}_{7} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1782.65): C 54.58, H 3.96, N, 5.50; found C $55.14, \mathrm{H} 3.90, \mathrm{~N}$ 5.46. IR (powder film, cm^{-1}): 3067, 1593, 1580, 1499, 1354, 1275, 1119.

NMR (acetone- $\left.d_{6}, \delta / \mathrm{ppm}\right):{ }^{55}{ }^{1} \mathrm{H}(500 \mathrm{MHz})$ 2-methoxynicotinate at $8.22-8.13(\mathrm{~m}, 1 \mathrm{H})$, 8.07-7.97 (m, 1H), 7.01-6.90 (m, 1H), 3.96 (s, 3H); $\mathrm{BAr}_{\mathrm{f}}^{-}$at 7.85-7.79 (m, $\left.8 \mathrm{H}, o\right), 7.70(\mathrm{~s}, 4 \mathrm{H}$, p); dpen at 8.69 (br s, 4H, NHH'), 7.64-7.46 (m, 12H), 7.36-7.17 (m, 18H), 5.21 (br s, 4H, NHH'), $5.14\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CHNH}_{2}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz}) \mathrm{BAr}_{\mathrm{f}}^{-}$at $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=49.8 \mathrm{~Hz}, i\right), 135.5$ (br s, o), $130.0\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=2.8 \mathrm{~Hz}, m\right), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=271.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.4$ (sept, $\left.{ }^{3} J_{\mathrm{CF}}=3.9 \mathrm{~Hz}, p\right)$; dpen at $137.7(\mathrm{~s}, i-\mathrm{Ph}), 129.7$ (double intensity), $129.6(2 \times \mathrm{s}, o-, m-, p$ $\mathrm{Ph}), 63.5\left(\mathrm{~s}, \mathrm{CHNH}_{2}\right) ; 2$-methoxynicotinate at $173.8\left(\mathrm{~s}, \mathrm{COO}^{-}\right), 162.5,147.8,139.9,123.9$, $117.0(5 \times \mathrm{s}), 53.5\left(\mathrm{~s}, \mathrm{OCH}_{3}\right)$.
$\Lambda-(S, S)-2^{3+} 4 \mathbf{h}^{-} \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$. Isolated according to the general procedure from $\Lambda-(S$, $S)-2^{3+} 2 \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.100 \mathrm{~g}, 0.060 \mathrm{mmol}), 6-m e t h y l n i c o t i n i c ~ a c i d(0.025 \mathrm{~g}, 0.180 \mathrm{mmol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.021 \mathrm{~g}, 0.20 \mathrm{mmol})$ as an orange solid $(0.096 \mathrm{~g}, 0.055 \mathrm{mmol}, 91 \%), \mathrm{mp} 121.6-$ $134.1{ }^{\circ} \mathrm{C}$ (open capillary; dec to green liquid). Anal. Calcd. for $\mathrm{C}_{83} \mathrm{H}_{70} \mathrm{BClCoF}_{24} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (1748.64): C 55.64, H 3.92, N, 5.61; found C 55.56, H 3.96, N 5.61. IR (powder film, cm^{-1}): 3034, 1607, 1533, 1389, 1354, 1275, 1119.

NMR (acetone- $\left.d_{6}, \delta / \mathrm{ppm}\right):{ }^{55}{ }^{1} \mathrm{H}(500 \mathrm{MHz})$ 2-methylnicotinate at 9.08 (apparent $\mathrm{s}, 1 \mathrm{H}$), $8.21\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.24,(\mathrm{~m}, 1 \mathrm{H}$, overlapping with dpen), $2.54(\mathrm{~s}, 3 \mathrm{H})$; $\mathrm{BAr}_{\mathrm{f}}{ }^{-}$at 7.85-7.77 (m, $8 \mathrm{H}, o$), 7.69 ($\mathrm{s}, 4 \mathrm{H}, p$); dpen at 8.72 (br s, 4H, NHH'), 7.62-7.46 (m, $12 \mathrm{H}), 7.36-7.19(\mathrm{~m}, 18 \mathrm{H}), 5.16\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CHNH}_{2}, \mathrm{NHH}^{\prime}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz}) \mathrm{BAr}_{\mathrm{f}}^{-}$at 162.6
$\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=50.5 \mathrm{~Hz}, i\right), 135.5(\mathrm{br} \mathrm{s}, o), 130.0\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=2.8 \mathrm{~Hz}, \mathrm{~m}\right), 125.3(\mathrm{q}$, $\left.{ }^{1} J_{\mathrm{CF}}=271.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.4\left(\mathrm{sept},{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p\right)$; dpen at $137.7(\mathrm{~s}, i-\mathrm{Ph}), 130.9(\mathrm{~s}, o-, m-, p$ $\mathrm{Ph}), 63.5\left(\mathrm{~s}, \mathrm{CHNH}_{2}\right) ;$ 2-methylnicotinate at $173.4\left(\mathrm{~s}, \mathrm{COO}^{-}\right), 160.7,151.6,137.8,130.9,122.8$ $(5 \times \mathrm{s}), 24.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.
$\Lambda-(S, S)-2^{3+} 4 \mathrm{i}^{-} \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-}-2 \mathrm{H}_{2} \mathrm{O}$. Isolated according to the general procedure from Λ $(S, S)-2^{3+} 2 \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.100 \mathrm{~g}, 0.060 \mathrm{mmol}), 6-\mathrm{aminonicotinic} \operatorname{acid}(0.025 \mathrm{~g}, 0.180 \mathrm{mmol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.021 \mathrm{~g}, 0.20 \mathrm{mmol})$ as an orange solid $(0.095 \mathrm{~g}, 0.054 \mathrm{mmol}, 90 \%), \mathrm{mp} 118.4^{\circ} \mathrm{C}$ (open capillary; dec to green liquid with gradual darkening at lower temperatures). Anal. Calcd. for $\mathrm{C}_{83} \mathrm{H}_{70} \mathrm{BClCoF}_{24} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1767.64): C $54.36 \mathrm{H} 3.93, \mathrm{~N}, 6.34$; found $\mathrm{C} 54.34, \mathrm{H} 3.87, \mathrm{~N}$ 6.11. IR (powder film, cm^{-1}): $3069,1609,1375,1354,1275,1119$.

NMR (acetone- $\left.d_{6}, \delta / \mathrm{ppm}\right):{ }^{5}{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 6$-aminonicotinate at $8.67\left(\mathrm{~d},{ }^{4} J_{\mathrm{HH}}=1.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 8.00\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.51,\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{5} J_{\mathrm{HH}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.70\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ; \mathrm{BAr}_{\mathrm{f}}^{-}$at $7.86-7.74(\mathrm{~m}, 8 \mathrm{H}, o), 7.68(\mathrm{~s}, 4 \mathrm{H}, p)$; dpen at $8.89(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, NHH'), 7.60-7.41 (m, 12H), 7.34-7.13 (m, 18H), 5.08 (br s, $\left.8 \mathrm{H}, \mathrm{CHNH}_{2}, \mathrm{NHH}^{\prime}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125$ $\mathrm{MHz}) \mathrm{BAr}_{\mathrm{f}}^{-}$at $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=49.7 \mathrm{~Hz}, i\right), 135.5(\mathrm{br} \mathrm{s}, o), 130.0\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=\right.$ $2.8 \mathrm{~Hz}, \mathrm{~m}), 125.3\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=271.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.4\left(\mathrm{sept},{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p\right)$; dpen at $137.7(\mathrm{~s}, i-$ $\mathrm{Ph}), 129.7$ (double intensity), $129.6(2 \times \mathrm{s}, o-, m$-, $p-\mathrm{Ph}), 63.3\left(\mathrm{~s}, \mathrm{CHNH}_{2}\right)$; 6-aminonicotinate at $174.2\left(\mathrm{~s}, \mathrm{COO}^{-}\right), 161.8,151.8,139.4,123.2,107.1(5 \times \mathrm{s}) ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ vs. internal $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}_{3}$ at -63.72)-63.2 (s).
$\Delta-(S, S)-2^{3+} 4 \mathrm{i}^{-} \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Isolated according to the general procedure from Δ $(S, S)-2^{3+} 2 \mathrm{Cl}^{-} \mathrm{BAr}_{\mathrm{f}}^{-} \cdot \mathrm{H}_{2} \mathrm{O}(0.200 \mathrm{~g}, 0.120 \mathrm{mmol}), 6$-aminonicotinic acid $(0.050 \mathrm{~g}, 0.360 \mathrm{mmol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.042 \mathrm{~g}, 0.396 \mathrm{mmol})$ as an orange solid $(0.202 \mathrm{~g}, 0.11 \mathrm{mmol}, 95 \%), \mathrm{mp} 110.5^{\circ} \mathrm{C}$ (open capillary; dec to green liquid with gradual darkening at lower temperatures). Anal. Calcd. for $\mathrm{C}_{83}-\mathrm{H}_{70} \mathrm{BClCoF}_{24} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1767.64): C 54.36, H 3.93, N, 6.34; found C 54.02, H 3.97, N 6.37. IR (powder film, cm^{-1}): $3042,1609,1456,1354,1275,1119$.

NMR (acetone- $\left.d_{6}, \delta / \mathrm{ppm}\right):{ }^{55}{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 6$-aminonicotinate at 8.79 (apparent $\mathrm{s}, 1 \mathrm{H}$), $7.94\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.48,\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.85\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$;
$\mathrm{BAr}_{\mathrm{f}}^{-}$at 7.84-7.79 (m, $8 \mathrm{H}, o$), $7.69(\mathrm{~s}, 4 \mathrm{H}, p)$; dpen at $7.75(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NHH})$) 7.57-7.42 (m, 12 H), 7.32-7.09 (m, 18H), 6.18 (br s, 4H, NHH') 5.07 (br s, $6 \mathrm{H}, \mathrm{CHNH}_{2}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz})$ $\mathrm{BAr}_{\mathrm{f}}^{-}$at $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=50.0 \mathrm{~Hz}, i\right), 135.5(\mathrm{br} \mathrm{s}, o), 130.0\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=2.8 \mathrm{~Hz}\right.$, $m), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=271.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.4\left(\mathrm{sept},{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p\right)$; dpen at $137.8(\mathrm{~s}, i-\mathrm{Ph})$, 129.5, 129.4, $129.2(3 \times \mathrm{s}, o-, m-, p-\mathrm{Ph}), 66.1\left(\mathrm{~s}, \mathrm{CHNH}_{2}\right) ; 6$-aminonicotinate at $173.5\left(\mathrm{~s}, \mathrm{COO}^{-}\right.$), 161.7, 151.8, 139.4, 123.6, $107.2(5 \times \mathrm{s})$.

Nitroolefin addition products accessed by the general procedure for Chart 4

Dimethyl 2-(2-nitro-1-phenylethyl)malonate (7a). This known compound was obtained as a colorless oil, 95%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(400 \mathrm{MHz})$ 7.35-7.26 (m, 3H), 7.23-7.18 (m, $2 \mathrm{H}), 4.97-4.80(\mathrm{~m}, 2 \mathrm{H}), 4.23\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=8.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.85\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(100 \mathrm{MHz}) 168.0,167.4,136.3,129.2,128.6,128.0,77.5,54.9,53.2$, 53.0, $43.0(11 \times \mathrm{s})$. The enantiomeric excess was determined by HPLC with a Chiralcel AD column (98:2 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{R}}=32.9 \mathrm{~min}$ (major), $43.6 \mathrm{~min}(\mathrm{mi}-$ nor), 86% ee. ${ }^{\text {s }}{ }^{1}$

Diethyl 2-(2-nitro-1-phenylethyl)malonate (7a-Et). This known compound was obtained as a colorless oil, 90%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.21(\mathrm{~m}$, $2 \mathrm{H}), 5.05-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.12(\mathrm{~m}, 3 \mathrm{H}), 4.00\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.82\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 1.26\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.04\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right)$. The enantiomeric excess was determined by HPLC with a Chiralcel AD column (90:10 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=$ 230 nm) $\mathrm{t}_{\mathrm{R}}=11.4 \mathrm{~min}$ (major), 24.4 min (minor), 80% ee..57

Diisopropyl 2-(2-nitro-1-phenylethyl)malonate (7a-iPr). This known compound was obtained as a colorless oil, 29\%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) .7 .34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.26-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 5.08\left(\mathrm{sept},{ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.92\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=12.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.87-4.79(\mathrm{~m}, 2 \mathrm{H}), 4.20\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=9.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.76\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.244\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right.$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.242\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.06\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.01\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.3\right.$ $\mathrm{Hz}, 3 \mathrm{H}$). The enantiomeric excess was determined by HPLC with a Chiralcel OD column (95:5
v / v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=10.5 \mathrm{~min}$ (major), 12.4 min (minor), 65% ee. ${ }^{s 1}$

Dimethyl 2-(2-nitro-1- β-naphthylethyl)malonate (7b). This known compound was obtained as a colorless oil, 90%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 8.18\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.87\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.62\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.4,6.8 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.53\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.0,6.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.46-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.38$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.27-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.18\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.07$ $\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel OD column (70:30 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{R}}=12.5 \mathrm{~min}$ (major), 35.5 min (minor), 84% ee. ${ }^{\mathrm{s} 1}$

Dimethyl 2-(2-nitro-1- α-naphthylethyl)malonate (7c). This known compound was obtained as a colorless oil, 95%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 8.18\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.87\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.62\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.4,6.9 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 2 \mathrm{H}), 5.27-5.24(\mathrm{~m}, 1 \mathrm{H}), 5.18\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=\right.$ $\left.13.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.07\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel AD column (90:10 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) ; $\mathrm{t}_{\mathrm{R}}=14.4 \mathrm{~min}$ (major), 19.1 min (minor), 90% ee. ${ }^{\mathrm{s} 1}$

Dimethyl 2-(2-nitro-1-(4-methoxyphenyl)ethyl)malonate (7d). This known compound was obtained as a colorless oil, 99%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz})$ 7.17-7.10 $(\mathrm{m}, 2 \mathrm{H})$, 6.88-6.79 (m, 2H), $4.89\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.82\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.19\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=9.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel AD column (80:20 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $; \mathrm{t}_{\mathrm{R}}=12.4 \mathrm{~min}$ (major), 18.0 \min (minor), 71% ee. ${ }^{51}$

Dimethyl 2-(2-nitro-1-(4-nitrophenyl)phenylethyl)malonate (7e). This known compound was obtained as a colorless oil, 85%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 8.24-8.17(\mathrm{~m}, 2 \mathrm{H})$,
7.61-7.36 (m, 2H), 5.07-4.82 (m, 2H), $4.37\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=8.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.88\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel OD-H column ($90: 10 \mathrm{v} / \mathrm{v}$ hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{R}}=22.7 \mathrm{~min}$ (minor), 35.1 min (major), 76% ee.

Dimethyl 2-(2-nitro-1-(3,4-dioxolophenyl)ethyl)malonate (7f). This known compound was obtained as a colorless oil, 90%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 6.85-6.59(\mathrm{~m}, 3 \mathrm{H})$, $5.95(\mathrm{~s}, 2 \mathrm{H}), 5.01-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.15\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=9.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel AS-H column (90:10 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{R}}=44.8 \mathrm{~min}$ (major), 53.3 min (minor), 97% ee. ${ }^{\mathrm{s} 8}$

Dimethyl 2-(2-nitro-1-(4-methoxycarbonyl)phenylethyl)malonate (7g). This known compound was obtained as a colorless oil, 73%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 8.00(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.32\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.25-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.31\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=8.8,5.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (90:10 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=28.5 \mathrm{~min}$ (major), 42.8 min (minor), 67% ee. ${ }^{59}$

Dimethyl 2-(2-nitro-1-(2-(trifluoromethyl)phenylethyl)malonate (7h). This known compound was obtained as a colorless oil, 99%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) .7 .72(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.53\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.43\left(\mathrm{ddt},{ }^{3} J_{\mathrm{HH}}=7.7,6.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.37\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.16\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.94\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}\right.$ $\left.=13.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.64\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.10\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel OD column ($95: 5 \mathrm{v} / \mathrm{v}$ hexane $/$ isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{R}}=12.0 \mathrm{~min}$ (minor), 22.6 \min (major), 91% ee. ${ }^{\text {s }}{ }^{1}$

Dimethyl 2-(2-nitro-1-(2-acetoxyphenyl)ethyl)malonate (7i). This known compound was obtained as a colorless oil, 82%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 7.32\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.1\right.$, $\left.7.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.26\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H})$,
$7.14\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.00-4.82(\mathrm{~m}, 2 \mathrm{H}), 4.49\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=8.1,5.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.92\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel OD column (90:10 v/v hexane/isopropanol, 1 $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}=17.3 \mathrm{~min}($ minor $), 24.5 \mathrm{~min}($ major $), 91 \%$ ee..$^{\mathrm{s} 1}$

Dimethyl 2-(2-nitro-1-(2-benzoyloxyphenyl)ethyl)malonate (7j). This known compound was obtained as a colorless oil, 99%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 8.36-8.22(\mathrm{~m}, 2 \mathrm{H})$, $7.75-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.98\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=\right.$ $\left.13.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.91\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.59\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=8.5\right.$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel AD column (90:10 v/v hexane/isopropanol, 1 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=16.1 \mathrm{~min}($ major $), 25.7 \mathrm{~min}($ minor $), 91 \% \mathrm{ee} .{ }^{\mathrm{s} 1}$

Dimethyl 2-(2-nitro-1-(2-benzyloxyphenyl)ethyl)malonate (7k). This known compound was obtained as a colorless oil, 95%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 7.53-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.45-7.40 (m, 2H), 7.39-7.34 (m, 1H), $7.24\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.3,7.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.17$ $\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.93\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.90(\mathrm{td}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.14\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=11.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.11\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=11.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$ $5.05\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.84\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.44\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=9.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.17\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel OD column (90:10 v/v hexane/ isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{R}}=10.8 \mathrm{~min}$ (minor), 17.9 min (major), 91% ee. ${ }^{\mathrm{s} 1}$

Dimethyl 2-(2-nitro-1-(2-bromophenyl(ethyl)malonate (71). This known compound was obtained as a colorless oil, 99%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right)$: ${ }^{1} \mathrm{H}(500 \mathrm{MHz}) 7.61\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.33-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.16\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.13(\mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{HH}}=13.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.96\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.77(\mathrm{td}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (70:30 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}=8.3 \mathrm{~min}($ minor $), 14.1 \mathrm{~min}($ minor $), 87 \%$ ee. ${ }^{\text {s } 10}$

Dimethyl 2-(2-nitro-1-(2-methylphenyl)ethyl)malonate (7m). This known compound was obtained as a colorless oil, 74%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 7.20-7.08(\mathrm{~m}, 4 \mathrm{H}), 4.90$ $\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.85\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.57$ $\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=9.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.83\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (75:25 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$) $; \mathrm{t}_{\mathrm{R}}=9.8 \mathrm{~min}$ (major), 19.1 min (minor), 82% ee. ${ }^{\mathrm{s} 11}$

Dimethyl 2-(2-nitro-1-furylethyl)malonate (7n). This known compound was obtained as a colorless oil, 87%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 7.34\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=1.9 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=0.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.29\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.22\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=3.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.98-$ $4.84(\mathrm{~m}, 2 \mathrm{H}), 4.38\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.94\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.69$ (s, 3H). The enantiomeric excess was determined by HPLC with a Chiralcel OD column (90:10 v / v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=10.7 \mathrm{~min}($ minor $), 21.4 \mathrm{~min}$ (major), 84% ee. ${ }^{\text {s }}$
(E)-Dimethyl 2-(1-nitro-4-phenylbut-3-en-2-yl)malonate (7o). This known compound was obtained as a colorless oil, 14%. The ${ }^{1} \mathrm{H}$ NMR spectrum matches those reported earlier. ${ }^{59}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.10$ $\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.83-4.62(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.71(\mathrm{~m}, 2 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel IC column (99:1 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{R}}=46.2 \mathrm{~min}$ (minor), 55.4 min (major), 73% ee. ${ }^{\mathrm{s} 9}$

Di- t-butyl azodicarboxylate addition products accessed by the general procedure for Chart 5

N, N-Bis(t-butoxycarbonyl)-1-hydrazino-2-oxocyclopentanecarboxylic acid methyl ester (10a). This known compound was obtained as a colorless oil, 99%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}$ (500 MHz) 6.70-6.03 (m, 1H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.03(\mathrm{~m}, 5 \mathrm{H}), 2.03-1.81(\mathrm{~s}, 1 \mathrm{H}), 1.53-1.29(\mathrm{~m}$, 18 H). The enantiomeric excess was determined by HPLC with a Chiralcel AD column (96:4 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$) ; $\mathrm{t}_{\mathrm{R}}=13.6 \mathrm{~min}$ (major), 20.0 min (minor), 82% ee. ${ }^{\text {s } 12}$
N, N-Bis(t-butoxycarbonyl)-1-hydrazino-2-oxocyclopentanecarboxylic acid ethyl ester (10b). This known compound was obtained as a colorless oil, 91%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}$ (500 MHz) 6.69-6.02 (m, 1H), 4.34-4.11 (m, 2H), 2.92-2.04 (m, 5H), 2.05-1.82 (m, 1H), 1.54$1.35(\mathrm{~m}, 18 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 3 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel AD column ($96: 4 \mathrm{v} / \mathrm{v}$ hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{R}}=10.6 \mathrm{~min}$ (major), 15.8 min (minor), 81% ee. ${ }^{\text {s } 12}$
N, N-Bis(t-butoxycarbonyl)-1-acetyl-1-hydrazino-2-oxocyclopentane (10c). This known compound was obtained as a colorless oil, 99%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 6.55-5.99$ $(\mathrm{m}, 1 \mathrm{H}), 2.93-1.58(\mathrm{~m}, 9 \mathrm{H}), 1.52-1.36(\mathrm{~m}, 18 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel AS-H column (90:10 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$); t_{R} $=5.8 \mathrm{~min}$ (major), 11.0 min (minor), 81% ee. ${ }^{\mathrm{s} 13}$
N, N-Bis(t-butoxycarbonyl)-2-hydrazino-2-methyl-3-oxobutyric acid ethyl ester (10d). This known compound was obtained as a colorless oil, 95%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500$ $\mathrm{MHz})$ 6.44-5.84 (m, 1H), 4.35-4.08 (m, 2H), 3.76 (s, 3H), 2.47-2.17 (m, 3 H$), 1.65-1.56(\mathrm{~m}, 3 \mathrm{H})$, 1.55-1.36 (m, 18H), $1.29\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right)$. The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column ($95: 5 \mathrm{v} / \mathrm{v}$ hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$); t_{R} $=14.0 \mathrm{~min}$ (minor), 19.4 min (major), 79% ee. ${ }^{\mathrm{s} 12}$
N, N-Bis(t-butoxycarbonyl)-1-acetyl-1-hydrazino-2-oxocyclohexane (10e). This known compound was obtained as a colorless oil, 92%. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 6.30-5.66$ $(\mathrm{m}, 1 \mathrm{H}), 3.19-1.7(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.31(\mathrm{~m}, 18 \mathrm{H})$. The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (95:5 v/v hexane/isopropanol, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$) t_{R} $=15.6 \mathrm{~min}$ (minor), 41.6 min (major), 86% ee. $^{\mathrm{s} 12}$
N, N^{\prime}-Bis(t-butoxycarbonyl)-1-hydrazino-1,2,3,4-tetrahydro-1-oxonaphthalene-2-
carboxylic acid ethyl ester (10f). This known compound was obtained as a colorless oil, 90%. NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 7.95-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.17(\mathrm{~m}, 2 \mathrm{H})$, 6.38-6.01 (m, 1H), 4.38-4.17 (m, 2H), 3.63-2.54 (m, 4H), 1.54-1.09 (m, 21H). The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (80:20 v/v hexane/isopropanol,
$1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$) $; \mathrm{t}_{\mathrm{R}}=9.3 \mathrm{~min}$ (minor), 11.6 min (major), 51% ee. ${ }^{\mathrm{s} 12}$

References

(s1) Lewis, K.G.; Ghosh, S.K.; Bhuvanesh, N.; Gladysz, J.A. Cobalt(III) Werner Complexes with 1,2-Diphenylethylenediamine Ligands: Readily Available, Inexpensive, and Modular Chiral Hydrogen Bond Donor Catalysts for Enantioselective Organic Synthesis. ACS Cent Sci 2015, 1, 50-56.
(s2) Sedef Özdemir, H.; Șahin, E.; Çakıcı, M.; Kılıç, H. Asymmetric Friedel-Crafts alkylation of pyrrole with nitroalkenes catalyzed by a copper complex of a bisphenol A-derived Schiff base. Tetrahedron 2015, 71, 2882-2890.
(s3) This synthesis was adapted from a literature procedure: Mohr, L.-M.; Bauer, A.; Jandl, C.; Bach, T. Visible light-mediated intermolecular [2+2] photocycloaddition of 1-aryl-2nitroethenes and olefins. Org. Biomol. Chem. 2019, 17, 7192-7203.
(s4) This known compound has also been synthesized by other means: Chandrasekhar, S ; Shrinidhi, A; Useful Extensions of the Henry Reaction: Expeditious Routes to Nitroalkanes and Nitroalkenes in Aqueous Media. Synth. Commun. 2014, 44, 3008-3018.
(s5) (a) For nearly all catalysts, the NHH ${ }^{1}$ H NMR signals integrated to less than the theoretical value of 6 H (a determination sometimes complicated by overlapping peaks). Complexes of this type can undergo H/D exchange with appropriate NMR solvents: Ghosh, S. K.; Lewis, K. G.; Kumar, A.; Gladysz, J. A. Syntheses of Families of Enantiopure and Diastereopure Cobalt Catalysts Derived from Trications of the Formula $\left[\mathrm{Co}\left(\mathrm{NH}_{2} \mathrm{CHArCHArNH}\right)_{3}\right]^{3+}$. Inorg. Chem. 2017, 56, 2304-2320. (b) The following reference was helpful in assigning the NMR signals associated with $\mathrm{BAr}_{\mathrm{f}}{ }^{-}$: Filippou, A. C.; Weidemann, N.; Schnakenburg, G.; Rohde, H.; Philippopoulos, A. L. Tungten-Lead Triple Bonds: Syntheses, Structures, and Coordination Chemistry of the Plumbylidyne Complexes trans- $\left.\left[\mathrm{X}\left(\mathrm{PMe}_{3}\right)_{4} \mathrm{~W} \equiv \mathrm{P}(2,6-\mathrm{Trip})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]$. Angew. Chem. Int. Ed. 2004, 43, 6512-6516 and Angew. Chem. 2004, 116, 6674-6678.
(s6) The carboxylate ${ }^{13} \mathrm{C}$ NMR signal, normally observed near 172 ppm , was not detected.
(s7) Ros Ñíguez, D.; Guillena, G.; Alonso, D.A.; Chiral 2-Aminobenzimidazoles in Deep

Eutectic Mixtures: Recyclable Organocatalysts for the Enantioselective Michael Addition of 1,3Dicarbonyl Compounds to β-Nitroalkenes. ACS Sustainable Chem. Eng. 2017, 5, 10649-10656.
(s8) Ghosh, S.K.; Ganzmann, C.; Bhuvanesh, N.; Gladysz, J.A. Werner Complexes with ω-Dimethylaminoalkyl Substituted Ethylenediamine Ligands: Bifunctional Hydrogen-Bond-Donor Catalysts for Highly Enantioselective Michael Additions. Angew. Chem. Int. Ed. 2016, 55, 4356-4360; Werner-Komplexe mit ω-Dimethylaminoalkyl-substitutierten Ethylendiaminliganden: bifunktionale H-Brückendonor-Katalysatoren für hoch enantioselektive Michael-Additionen. Angew. Chem. 2016, 128, 4429-4433.
(s9) Bécart, D.; Dimer, V.; Salaün, A.; Oiarbide, M.; Reddy Nelli, Y.; Kauffmann, B.; Fischer, L.; Palomo, C.; Guichard, G. Helical Oligourea Foldamers as Powerful Hydrogen Bonding Catalysts for Enantioselective C-C Bond-Forming Reactions. J. Am. Chem. Soc. 2017, 139, 12524-12532.
(s10) Li, F.; Li, Y-Z.; Jia, Z-S.; Xu, M-H.; Tian, P.; Lin, G-Q. Biscinchona alkaloids as highly efficient bifunctional organocatalysts for the asymmetric conjugate addition of malonates to nitroalkenes at ambient temperature. Tetrahedron 2011, 67, 10186-10194.
(s11) Ishitani, H.; Kanai, K.; Yoo, W-J.; Yoshida, T.; Kobayashi, S.; A Nickel-Diamine/ Mesoporous Silica Composite as a Heterogeneous Chiral Catalyst for Asymmetric 1,4-Addition Reactions. Angew. Chem. Int. Ed. 2019, 58, 13313-13317; Angew. Chem. 2019, 131, 1344713451.
(s12) Kumar, A; Ghosh, S. K.; Gladysz, J. A.; Tris(1,2-diphenylethylenediamine)cobalt(III) Complexes: Chiral Hydrogen Bond Donor Catalysts for Enantioselective α-Aminations of 1,3-Dicarbonyl Compounds. Org. Lett. 2016, 18, 760-763.
(s13) (a) Wang, L-K; Zhou, J-J; Lan, Y-B; Ding, S-Y; Yu, W; Wang, W; Divergent Synthesis of Chiral Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2019, 58, 9443-9447; Angew. Chem. 2019, 131, 9543-9547. (b) Our retentions times are somewhat shorter than those reported due to the age of the HPLC column.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of catalysts

$\Lambda-(S, S)-\mathbf{2}^{3+} \mathbf{4 a} \mathbf{a}^{-} \mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}-\cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetone- $d_{6}, 125 \mathrm{MHz}$

$\Lambda-(S, S)-\mathbf{2}^{3+} \mathbf{4} \mathbf{b}^{-} \mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}-\cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetone- $d_{6}, 500 \mathrm{MHz}$

$$
\prod_{\mathrm{Ph}}^{\mathrm{NH}_{2}} \mathrm{Cl}_{\mathrm{BAr}_{f}^{-}}^{-}
$$

$$
\begin{array}{ll}
\mathrm{Ph} & \mathrm{BAr}_{f}^{-}
\end{array}
$$

$\Lambda-(S, S)-\mathbf{2}^{3+} \mathbf{4 b}-\mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}-\cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetone $-d_{6}, 125 \mathrm{MHz}$

$\Lambda-(S, S)-\mathbf{2}^{3+} \mathbf{4 c} \mathbf{c}^{-} \mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}-\cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetone $-d_{6}, 500 \mathrm{MHz}$

$\Lambda-(S, S)-\mathbf{2}^{3+} \mathbf{4 c}-\mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}-\cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}$ in acetone $-d_{6}, 125 \mathrm{MHz}$

$\Lambda-(S, S)-\mathbf{2}^{3+} \mathbf{4 e} \mathbf{e}^{-} \mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}-\cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetone $-d_{6}, 500 \mathrm{MHz}$

$\Lambda-(S, S)-\mathbf{2}^{3+} \mathbf{4 e - C l}-\mathrm{BAr}_{\mathrm{f}}^{-} \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}$ in acetone $-d_{6}, 125 \mathrm{MHz}$

$\Lambda-(S, S)-\mathbf{2}^{3+} \mathbf{4 f}-\mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}-\cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetone $-d_{6}, 125 \mathrm{MHz}$

$\Lambda-(S, S)-\mathbf{2}+\mathbf{4} \mathbf{g}-\mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}-\cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetone $-d_{6}, 125 \mathrm{MHz}$

$\Lambda-(S, S)-\mathbf{2}^{3+} \mathbf{4} \mathbf{h}^{-} \mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}-\cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetone $-d_{6}, 500 \mathrm{MHz}$

$\Lambda-(S, S)-\mathbf{2}^{3+} \mathbf{4 h} \mathbf{h l}^{-}-\mathrm{BAr}_{\mathrm{f}}-\cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetone $-d_{6}, 125 \mathrm{MHz}$

1	1		1		1			1		1			1	1	1							1		1
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$\Lambda-(S, S)-\mathbf{2}^{3+} \mathbf{4 i}-\mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}-2 \mathrm{H}_{2} \mathrm{O}$ in acetone $-d_{6}, 125 \mathrm{MHz}$

$\Delta-(S, S)-\mathbf{2}^{3+} \mathbf{4 i}-\mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}-\cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetone $-d_{6}, 500 \mathrm{MHz}$

$\Delta-(S, S)-\mathbf{2}^{3+} \mathbf{4 i} \mathbf{i}^{-} \mathrm{Cl}^{-}-\mathrm{BAr}_{\mathrm{f}}-\cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetone $-d_{6}, 125 \mathrm{MHz}$

HPLC Traces (traces for racemates of nearly all of the following compounds can be found in the earlier references s 1 , s 8 , and s 12). mAU

1 PDA Multi 1/220nm 4nm
PeakTable
PDA Ch1 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	32.881	32859195	446548	93.222	94.002
2	43.618	2389229	28495	6.778	5.998
Total		35248424	475043	100.000	100.000

mAU

1 PDA Multi 1/230nm 4nm
PDA Ch1 230 nm 4 nm

	PeakTable										
Peak\#							Ret. Time	Area	Height	Area $\%$	Height $\%$
1	11.399	18230992	867742	90.622	94.700						
2	24.406	188690	48561	9.378	5.300						
Total		20117683	916303	100.000	100.000						

1 PDA Multi 1/220nm 4nm
PeakTable
PDA Ch1 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height \%
1	10.486	22512749	910958	82.386	83.565
2	12.400	481314	179158	17.614	16.435
Totala		27325896	1090115	100.000	100.000

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable

PDA Ch1 254nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	12.532	22001804	541358	91.843	96.668
2	35.454	1954107	18662	8.157	3.332
Total		23955910	560020	100.000	100.000

mAU

1 PDA Multi 1/254nm 4nm
PDA Ch1 254nm 4nm

PDeakTable									
Peak\#	Ret. Time	Area					Height	Area $\%$	Height $\%$
1	14.404	21101952	884579	95.177	96.158				
2	19.125	1069249	35341	4.823	3.842				
Total		22171200	919920	100.000	100.000				

1 PDA Multi 1/220nm 4nm
PDA Ch1 220nm 4nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	12.432	22262060	710105	85.509	85.321
2	18.022	3772708	122166	14.491	14.679
Total		26034767	832271	100.000	100.000

1 PDA Multi $1 / 220 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 220nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%			
1	22.693	613772	14494	12.114	21.477			
2	35.099	4453059	52992	87.886	78.523			
Total		5066830	67486	100.000	100.000			
mAU								
20-8-8		[racemi		-	F	P[ulti 1
20.0	22.5	25.0	27.5	30.0	32.5	35.0	37.5	40.0

1 PDA Multi 1/220nm 4nm
PeakTable
PDA Ch1 220nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	22.325	47762796	887994	49.232	63.584
2	34.477	49253418	508575	50.768	36.416
Total		97016214	1396569	100.000	100.000

1 PDA Multi 1/220nm 4nm

PeakTable

PDA Ch1 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	44.765	15100824	143230	98.312	96.516
2	53.251	259286	5171	1.688	3.484
Total		15360109	148401	100.000	100.000

mAU

1 PDA Multi 1/210nm 4nm
PeakTable
PDA Ch1 210nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	28.505	5756305	153144	83.368	87.296
2	42.762	1148382	22286	16.632	12.704
Total		6904687	175430	100.000	100.000

1 PDA Multi $1 / 220 \mathrm{~nm} 4 n m$
PeakTable
PDA Ch1 220nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	11.966	2141166	70585	4.490	8.393
2	22.596	45542705	770372	95.510	91.607
Total		47683871	840957	100.000	100.000

1 PDA Multi $1 / 220 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 220nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	17.255	1375710	28163	4.560	6.975
2	24.503	28791723	375596	95.440	93.025
Total		30167433	403759	100.000	100.000

1 PDA Multi 1/220nm 4nm
PeakTable
PDA Ch1 220nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	16.100	40843400	1156471	95.462	96.274
2	25.716	1941795	44760	4.538	3.726
Total		42785195	1201231	100.000	100.000

1 PDA Multi 1/220nm 4nm
PDA Ch1 220nm 4nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	10.770	3007142	98777	4.264	13.143
2	17.938	67524994	652767	95.736	86.857
Total		70532135	751544	100.000	100.000

1 PDA Multi 1/220nm 4nm

PeakTable
PDA Chl 220nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.262	606589	44047	6.410	15.705
2	14.124	8855877	236412	93.590	84.295
Total		9462466	280459	100.000	100.000

mAU

1 PDA Multi $1 / 220 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Chl 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	9.762	40142061	1075203	91.179	88.002
2	19.095	3883720	146590	8.821	11.998
Total		44025781	1221793	100.000	100.000

1 PDA Multi 1/220nm 4nm
PeakTable
PDA Ch1 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	10.688	4501488	124344	8.196	16.073
2	21.415	50423476	649299	91.804	83.927
Total		54924964	773643	100.000	100.000

mAU

1 PDA Multi 1/210nm 4nm
PDA Ch1 210nm 4nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	46.185	1385094	22211	13.593	16.267
2	55.376	8804661	114324	86.407	83.733
Total		10189755	136534	100.000	100.000

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable

PDA Ch1 210nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	13.570	25405995	583120	90.747	93.079
2	20.021	2590411	43358	9.253	6.921
Total		27996406	626478	100.000	100.000

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable
PDA Ch1 210 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.626	30473749	998531	90.547	94.426
2	15.791	3181424	58947	9.453	5.574
Total		33655173	1057478	100.000	100.000

1 PDA Multi $1 / 210 \mathrm{~nm} 4 n m$

PeakTable
PDA Chl 210nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	5.751	35826029	976164	90.376	90.950
2	11.014	3815109	97136	9.624	9.050
Total		39641139	1073300	100.000	100.000

mAU

1 PDA Multi 1/210nm 4nm

PeakTable
PDA Ch1 210 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	14.063	2052636	44962	10.682	15.010
2	19.442	17162791	254582	89.318	84.990
Total		19215427	299544	100.000	100.000

1 PDA Multi 1/210nm 4nm

PeakTable
PDA Ch1 210nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	15.645	6546369	70564	7.087	19.104
2	41.611	85825411	298801	92.913	80.896
Total		92371780	369365	100.000	100.000

PeakTable
PDA Chl 220nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	9.316	9744256	472899	24.366	32.157
2	11.569	30246826	997711	75.634	67.843
Total		39991081	1470610	100.000	100.000

