Supporting Information

Photosensitive Ru(II) Complexes as Inhibitors of the Major Human Drug Metabolizing Enzyme CYP3A4

Nicholas Toupin,¹ Sean J. Steinke,² Sandeep Nadella,¹ Ao Li,¹ Thomas N. Rohrabaugh, Jr., ²

Eric R. Samuels,^{3#} Claudia Turro,^{2,*} Irina F. Sevrioukova,^{4,*} and Jeremy J. Kodanko^{1,5,*}

¹Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202,

²Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210,

³Departments of Pharmaceutical Sciences and ⁴Molecular Biology and Biochemistry, University of California, Irvine, CA 92697

⁵Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201

Table of Contents

Compound Synthesis and Characterization		
Photochemical Studies	S11	
Structural Studies		
Biological Studies		
Stability Studies	S21	
Compound Structures		
References		

1. Compound Synthesis and Characterization

Scheme S1. Synthesis of 4

N-(**pyridin-3-ylmethyl)-3-(tritylthio)propanamide (S2).** To a solution of EDC (110 mg, 0.58 mmol) in DCM (16 mL), 3-(tritylthio)propionic acid (**S1**, 200 mg, 0.580 mmol) was added. While stirring, 3-picolylamine (0.060 mL, 0.580 mmol) was added to the mixture. The resulting reaction mixture was stirred at room temperature for 16 h under nitrogen atmosphere. Upon completion, the mixture was washed with saturated NaHCO₃ solution. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was then purified over silica (5% MeOH/EtOAc) to give S2 as a colorless oil (170 mg, 68%): ¹H NMR (400 MHz CDCl₃) δ 8.52 (s, 1H), 8.48 (d, 1H, *J* = 4.4 Hz), 7.69 (d, 1H, *J* = 8.0 Hz), 7.39 (d, 6H, *J* = 7.6 Hz), 7.30–7.24 (m, 6H), 7.23–7.18 (m, 4H), 6.07 (s, 1H), 4.38 (d, 2H, *J* = 6.0 Hz), 2.52 (t, 2H, *J* = 7.2 Hz), 2.09

(t, 2H, J = 7.2 Hz); ¹³C NMR (100 MHz CDCl₃) δ 171.2, 148.1, 147.7, 144.6, 136.8, 134.6, 129.5, 128.0, 126.7, 123.9, 66.9, 40.9, 35.5, 27.6; ESMS calcd for C₂₈H₂₇N₂OS ([M+H]⁺) 439; found 439.

tert-butyl (*S*)-(1-((3-oxo-3-((pyridin-3-ylmethyl)amino)propyl)thio)-3-phenylpropan-2yl)carbamate (4). To a solution of compound S2 (133 mg, 0.300 mmol) in DCM (9.0 mL), TFA (9.0 mL) was added. While stirring, triethylsilane (0.490 mL, 3.03 mmol) was added slowly to the obtained yellow-colored solution. The mixture was stirred at room temperature for 1 h under a nitrogen atmosphere until the yellow color disappeared. The reaction mixture was concentrated under reduced pressure. The thiol intermediate was obtained after recrystallization (EtOAc/cold hexanes). Without further purification, the thiol intermediate (110 mg, 0.560 mmol) was added to a solution of K₂CO₃ (155 mg, 1.12 mmol) and S3¹ (152 mg, 0.380 mmol) in DMF. The reaction mixture was heated at 50 °C for 3 h. Upon completion, the reaction mixture was extracted with EtOAc and washed with ice-cold water. The organic layer was collected, dried over Na₂SO₄ and concentrated under reduced pressure. The trib compound as colorless oil (57 mg, 44%): ¹H, ¹³C NMR and ESMS data agreed with data for **4** from the literature.¹

Figure S1. ¹H NMR spectrum (top) of compound **2** in CDCl₃ and ¹³C NMR spectrum (bottom) of compound **2** in CDCl₃.

Figure S2. ¹H NMR spectrum (top) of compound **4** in CD₃OD and ¹³C NMR spectrum (bottom) of compound **4** in CD₃OD.

Figure S3. ¹H NMR spectrum (top) of complex **7** in CD₃OD and COSY spectrum (bottom) of complex **7** in CD₃OD.

Figure S4. ¹H NMR spectrum of 8 in CD₃OD

Figure S5. ¹H NMR spectrum of 9 in CD₃OD

Figure S6. ¹H NMR spectrum of **10** in CD₃OD

Figure S7. ¹H NMR spectrum of **11** in CD₃OD

2. Photochemical Studies

Figure S8. Changes in the electronic absorption spectrum of 8 in CH₃CN following irradiation $(\lambda_{irr} = 500 \text{ nm})$ under an Ar atmosphere, $t_{irr} = 0 - 10 \text{ min}$.

Figure S9. Changes in the electronic absorption spectra of 9 in CH₃CN following irradiation (λ_{irr} = 500 nm) under an Ar atmosphere, t_{irr} = 0 – 8 min

Figure S10. Changes in the electronic absorption spectra of 10 in CH₃CN following irradiation ($\lambda_{irr} = 500$ nm) under an Ar atmosphere, $t_{irr} = 0 - 10$ min.

Figure S11. Changes in the electronic absorption spectra of 11 in CH₃CN following irradiation ($\lambda_{irr} = 500$ nm) under an Ar atmosphere, t_{irr} = 0 - 8 min.

3. Structural Studies

Figure S12. Crystal structure of CYP3A4 bound to the intact caged compound **8** at 2.5 Å resolution. **A**, Orientation of 8 in the active site. **B**, Omit electron density rendered around **8** at 3σ level (shown in green mesh). **C**, Orientation of free **6** in the active site of CYP3A4 (7KVH structure) shown for comparison. **D**, Aromatic and hydrophobic residues stabilizing the CYP3A4-**8** inhibitory complex.

Ligand	7	8
PDB ID	7KS8	7KSA
Data statistics Space group Unit cell parameters	I222 a = 77 Å, b = 101 Å, c = 127 Å; α, β, γ = 90°	I222 a = 75 Å, b = 95 Å, c = 121 Å; α, β, γ = 90°
Molecules per asymmetric unit	1	1
Resolution range (Å) Total reflections Unique reflections Redundancy Completeness Average <i>II o</i> I R _{merge} R _{pim} CC 1/ ₂	79.23 - 2.50 (2.64 – 2.50) ^a 66,754 16,978 3.9 (3.9) 97.3 (98.0) 7.3 (0.9) 0.070 (2.562) 0.038 (1.234) 0.996 (0.306)	74.88 - 2.50 (2.64 – 2.50) 73,951 15,117 4.9 (4.9) 99.0 (99.6) 10.4 (1.1) 0.061 (1.672) 0.030 (0.825) 0.999 (0.302)
Refinement statistics R/R _{free} ^b	21.1/26.2	22.8/26.6
Number of atoms: Protein Solvent	3641 0	3548 9
R.m.s. deviations: Bond lengths, Å Bond angles, °	0.011 1.155	0.009 0.956
Wilson B-factor, $Å^2$	85	83
Protein Ligand	107 109	125 187
Ramachandran plot ^e (residue Preferred Allowed Outliers	es; %) 428 (96.0%) 17 (4.0%) 0	402 (92.6%) 31 (7.2%) 1 (0.2%)

Table S1. X-day data collection and model refinement statistics

^a Values in brackets are for the highest resolution shell. ^b $R_{\rm free}$ was calculated from a subset of 5% of the data that were excluded during refinement. ^cAnalyzed with PROCHECK.

4. Biological Studies

Figure S13: DU-145 cells were seeded in a 96-well plate at a density of 7000 cells per well and incubated overnight (~18 h). The media was aspirated from each well and quadruplicate wells were treated with media containing one of compounds **4** or **6-11** (5 μ M) in 1% DMSO with vinblastine co-treatment (5 nM). After 1 h incubation at 37 °C, the plates were irradiated using a blue LED light source ($t_{irr} = 20 \text{ min}$, $\lambda_{irr} = 460-470 \text{ nm}$) (**Orange**) or left in the dark (**Blue**) and incubated for 72 h. MTT assay was then performed. Viability data were obtained by averaging blank-normalized absorbance values for control cells and expressing average absorbance for the treated samples as percent control. P-values are vs. dark viabilities for each compound; ***P< 0.01 **P< 0.05 *P< 0.10.

		Compound 27			
		10 µМ	5 μΜ	2.5 μM	1 μΜ
Vinblastine	10 nM	0.4793	0.4601	0.6999	0.8307
	5 nM	0.5423	0.6211	1.1318	2.0838
	2.5 nM	0.769	2.08	>10	5.4274
	1 nM	0.6343	0.8954	>10	>10
	0.5 nM	0.771	1.2049	1.2833	>10

Figure S14: Chou-Talalay determination of drug synergy between **27** and vinblastine. Values shown in colored boxes denote combination indices (CI). CI > 1: antagonism, CI = 1: additive effect, CI < 1: synergy. CI Values were obtained using Compusyn software.

Figure S15: IC₅₀ Plots were constructed using data obtained from CYP3A4, (A: Light, B: Dark) CYP1A2 (ND) or CYP2C9 (C: Light, D: Dark) Inhibitor Screening Kits (BioVision) following manufacturer protocols. Stock solutions of **9** were prepared in MeCN, plated and combined with assay buffer and irradiated with a blue LED light source ($t_{irr} = 20 \text{ min}$, $\lambda_{irr} = 460-470 \text{ nm}$) or left in the dark. Experiments with compound **9** did not exceed 10 µM due to solubility limitations in assay buffer.

Figure S16: IC₅₀ Plots were constructed using data obtained from CYP3A4, (**A**: Light, **B**: Dark) CYP1A2 (**C**: Light, **D**: Dark) or CYP2C9 (**E**: Light, **F**: Dark) Inhibitor Screening Kits (BioVision) following manufacturer protocols. Stock solutions of **7** were prepared in MeCN, plated and combined with assay buffer and irradiated with a blue LED light source ($t_{irr} = 20$ min, $\lambda_{irr} = 460-470$ nm) or left in the dark.

Figure S17: IC₅₀ Plots were constructed using data obtained from CYP3A4, (A: Light, B: Dark) CYP1A2 or CYP2C9 (C: Dark) Inhibitor Screening Kits (BioVision) following manufacturer protocols. Stock solutions of 4 were prepared in MeCN, plated and combined with assay buffer and irradiated with a blue LED light source ($t_{irr} = 20 \text{ min}$, $\lambda_{irr} = 460-470 \text{ nm}$) or left in the dark

5. Stability Studies

Stock solutions of compounds 7-12 (10 μ M) were prepared in phenol red free Dulbecco's modified Eagle's medium (DMEM) at room temperature. UV-vis absorbance spectra were collected after solution preparation. Vials containing stock solution were wrapped in foil to prevent interaction with light and incubated at 37 °C for 23.5 h. Vials were then removed from the incubator and equilibrated to room temperature for 30 min followed by absorbance spectra measurements. Vials were then incubated for another 23.5 h in the 37 °C incubator and equilibrated at room temperature for 30 min, followed by measurement of the final absorbance spectra.

Figure S18: UV/vis absorbance spectra of **7** recorded in DMEM media before (**Blue**) and after incubation at 37 °C for 24 h (**Orange**) and 48 h (**Gray**).

Figure S19: UV/vis absorbance of **8** in DMEM media before (**Blue**) and after incubation at 37 °C for 24 h (**Orange**) and 48 h (**Gray**).

Figure S20: UV/vis absorbance of **9** in DMEM media before (**Blue**) and after incubation at 37 °C for 24 h (**Orange**) and 48 h (**Gray**).

Figure S21: UV/vis absorbance of **10** in DMEM media before (**Blue**) and after incubation at 37 °C for 24 h (**Orange**) and 48 h (**Gray**).

Figure S22: UV/vis absorbance of **11** in DMEM media 0 h (**Blue**), 24 h (**Orange**), and 48 h (**Gray**) post incubation at 37 °C.

Figure S23: UV/vis absorbance of **12** in DMEM media 0 h (**Blue**), 24 h (**Orange**), and 48 h (**Gray**) post incubation at 37 °C.

Figure S24: UV/vis absorbance of DMEM media 0 h (**Blue**), 24 h (**Orange**), and 48 h (**Gray**) post incubation at 37 °C.

6. Compound Structures

+

[Ru(bpy)₃]Cl₂ (**12**)

[Ru(phen)₃](PF₆)₂ (13)

[Ru(bpy)₂(phpy)]Cl (14)

2+

[Ru(bpy)₂(acac)]PF₆ (15)

- [Ru(bpy)₂(bete)](PF₆)₂ (**16**)
- [Ru(bpy)₂(bpte)]Cl₂(17)

[Ru(bpy)₂(dppn)](PF₆)₂ (**18**)

[Ru(dppz)₂(bpy)]Cl₂ (19)

 $[Ru(\eta^6-p-cym)(DBM)Cl] (20)$

 $[Ru(\eta^6-p-cym)(hfa)Cl] (21)$

 $[Ru(\eta^6-p-cym)(bpy)Cl]Cl (22)$

 $[Ru(bpy)_2(NHC-OMe)]PF_6(23)$

[Ru(tpy)(dppn)(py)](PF₆)₂ (**25**)

$[Ru(bpy)_2(NHC-COOEt)]PF_6(24)$

[Ru(tpy)(acac)(py)]PF₆ (26)

References.

1. Kaur, P.; Chamberlin, A. R.; Poulos, T. L.; Sevrioukova, I. F., Structure-Based Inhibitor Design for Evaluation of a CYP3A4 Pharmacophore Model. *J. Med. Chem.* **2016**, *59* (9), 4210-4220.