Supporting Information

Bimetallic Au-Ag on Patterned Substrate derived from Discarded Blu-ray discs: Simple, Inexpensive, Stable and Reproducible SERS Substrates

Aroonsri Ngamaroonchote, Kullavadee Karn-orachai*

National Nanotechnology Center (NANOTEC), National Science and Technology Development

Agency (NSTDA), Pathum Thani 12120, Thailand

* Corresponding author. Tel.: +66 2 564 7100

E-mail address: kullavadee.kar@nanotec.or.th

Optimization of r-AgBD-ROM substrate fabrication

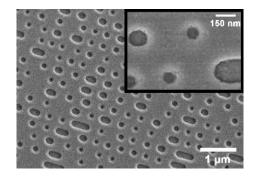


Figure S1. FE-SEM images of AgBD-ROM. Insert is an enlarged image.

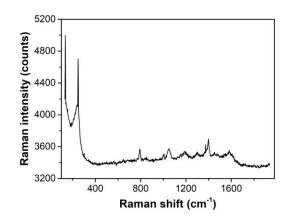


Figure S2. Raman spectra background of r-AgBD-ROM.

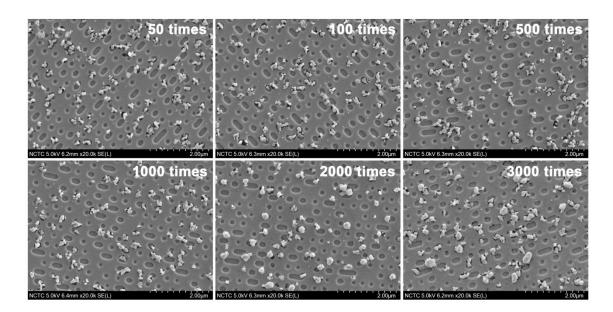


Figure S3. FE-SEM images of r-AgBD-ROM fabricated under different the number of step-

scan.

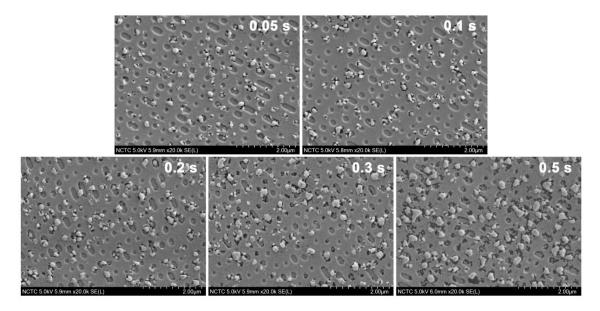


Figure S4. FE-SEM images of r-AgBD-ROM fabricated under different duration time.

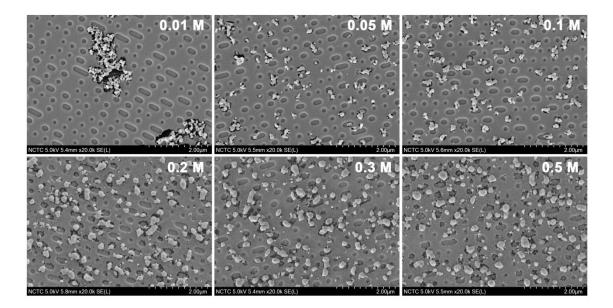
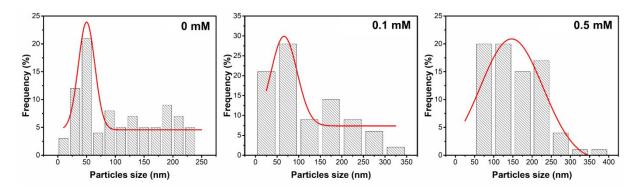



Figure S5. FE-SEM images of r-AgBD-ROM fabricated under different KCl concentrations.

Optimization of Au-r-AgBD-ROM substrate fabrication

The Au-r-AgBD-ROM substrates fabricated under 0, 0.1 and 0.5 mM HAuCl₄ solution were chosen as representative substrates to investigate particle size and size distribution of AgNPs and Au-AgNPs. The histogram of particle size distribution evaluted from 78-91 particles in SEM images ($3x3 \mu m^2$) using imageJ software is shown in Figure S6. The average particle size and polydispersity index (PDI) were obtained by Gaussian fitting. The average particle size were 50 ± 14.3 , 66.12 ± 30.12 , and 146.62 ± 81.94 nm for Au-r-AgBD-ROM fabricated under 0, 0.1 and 0.5 mM HAuCl₄ solution, respectively. The PDI values were 0.29, 0.46, and 0.56 for Aur-AgBD-ROM fabricated under 0, 0.1 and 0.5 mM HAuCl₄ solution, respectively.

Figure S6. Histogram of NPs size distributions on the Au-r-AgBD-ROM fabricated under 0, 0.1 and 0.5 mM HAuCl₄ solution. The red curves represent a Gaussian fitting.

Elemental composition analysis of SERS substrates during EC treatment and Au coating methods

Table S1 The atomic percentage of elements on the as-prepared substrates obtained

from XPS measurements

Peaks

Atomic compositions (%)

	AgBD-ROM	r-AgBD-ROM	Au-r-AgBD-ROM
Ag3d _{3/2} (metal)	16.91	3.42	15.78
Ag3d _{5/2} (metal)	24.98	5.04	23.32
Ag3d _{3/2} (Ag-O-Ag)	-	6.86	4.56
Ag3d _{5/2} (Ag-O-Ag)	-	10.13	6.74
01s (C-O)	7.13	9.53	5.07
Ols (Ag-O-Ag/O-H/Au-O)	10.64	7.46	2.19
O1s (Absorb with H ₂ O)	-	1.54	2.19
C1s (C-C)	22.82	28.06	22.18
C1s (C-O)	8.34	17.37	8.25
C1s (C=O)	5.59	5.99	3.07
C1s (O=C-O)	3.59	2.43	2.25
C1s (shake-up)	-	2.17	-
Au4f _{5/2} (metal)	-	-	1.51
Au4 $f_{7/2}$ (metal)	-	-	2.01
$Au4f_{5/2}$ (Au^+)	-	-	0.38
$Au4f_{7/2}(Au^{+})$	-	-	0.50

Possible model for SERS enhancement phenomenon

Table S2 Surface roughness (RMS) and surface area of AgBD-ROM and r-AgBD-ROM

obtained from AFM measurement.

substrate	RMS	Surface area (nm ²)
AgBD-ROM	2.232	25.008

Surface area reported in Table S2 were calculated from S ratio, which represents the ratio between the real interfacial area and scan area ($5 \times 5 \ \mu m^2$).

SERS substrate performance

LOD calculation

The equation used to estimate the limit of detection (LOD) in this study was displayed below.¹

$$LOD = \frac{I_{avg(blank)} + 1.645(SD_{blank} + SD_{low conc}) - b}{a}$$
(S1)

Where $I_{avg(blank)}$ and SD_{blank} are the average intensity and the standard deviation of a blank solution (n=10), respectively. $SD_{low conc}$ is the standard deviation of the low concentration sample. *a* and *b* are the slope and y-intercept of the sensitivity calibration curve, respectively.

EF calculation

The SERS enhancement factors (EFs) of our SERS substrates were evaluated using methylene blue (MB) as a Raman probe. SERS substrates (r-AgBD-ROM and Au-r-AgBD-ROM) and reference substrate (AgBD-ROM) in the dimension of 1×1 cm² were soaked in 1 mL of 10 μ M MB aqueous solutions for overnight and dried in an N₂ stream. The standard equation used to calculate EFs in this study was displayed below.²

$$EF = \frac{I_{SERS}/N_{SERS}}{I_{REF}/N_{REF}}$$
(S2)

where I_{SERS} and I_{REF} are the average intensities of characteristic Raman peak of MB at 1628 cm⁻¹ from SERS and reference substrates, respectively, in the same scattering geometry. N_{SERS} and

 N_{REF} are the number of MB molecules absorbed on SERS substrates and reference substrate, respectively. N_{SERS} and N_{REF} were calculated by using the following equations:

$$N_{SERS} \text{ or } N_{REF} = C_{absorb} V_{soak} N_A \tag{S3}$$

$$C_{absorb} = C_{soak} - C_{remain} \tag{S4}$$

where C_{soak} , C_{absorb} and C_{remain} are molar concentrations of MB solution using to soak the substrates (10⁻⁶ M), absorbed on the substrates and remaining in solution, respectively. V_{soak} is the volume (L) of MB solution using to soak the substrates (10⁻³ L) and N_A is Avogadro's number (6.02×10^{23} mol⁻¹). C_{remain} was examined from the decrease of UV-VIS absorption intensity of remaining MB aqueous solutions. To calculate C_{remain} , the standard calibration curve of MB in a concentration range of 2 – 10 µM was constructed with UV-VIS absorbance measurements.

The calibration plot constructed from UV-VIS absorbance at 663 nm of MB standard solution (in water) was displayed in Figure S6. C_{remain} was estimated from the linear regression obtained from the calibration curve (y = 0.0862x + 0.0854, R² = 0.999). C_{absorb} , N_{SERS} , and N_{REF} can be calculated using Equation S3 and Equation S4. The calculated parametric values of each substrate were reported in Table S3. N_{SERS} and N_{REF} calculated from Equation S3 are the number of MB molecules absorbed on the entire area of substrate. MB molecules under irradiated area (5 microns in diameter, area = 19.625×10^{-8} cm²) on the substrate were also estimated as shown in Table S3. Based on the calculations in Equation S1, EFs from r-AgBD-ROM are determined to be 3.2×10^3 and 2.1×10^3 , respectively.

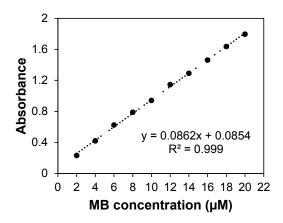


Figure S7. The calibration plot constructed from UV-VIS absorbance at 663 nm of MB standard solution (in water).

Table S3. The calculated parametric values of each substrate.

			N _{SERS} or N _{REF}	N _{SERS} or N _{REF}	I _{SERS} or I _{REF}
Substrates	Cremain	Cabsorb	(molecules)	In scattering	(counts)
Substrates	(M)	(M)		area	
				(molecules)	
AgBD-ROM					
(reference	7.99 x 10 ⁻⁶	2.01 x 10 ⁻⁶	1.21 x 10 ¹⁵	23.74 x 10 ⁷	10.39
substrate)					
r-AgBD-ROM					
(SERS	7.86 x 10 ⁻⁶	2.14 x 10 ⁻⁶	1.29 x 10 ¹⁵	25.32 x 10 ⁷	35940.21
substrate)					
Au-r-AgBD-					
ROM (SERS	7.66 x 10 ⁻⁶	2.34 x 10 ⁻⁶	1.41 x 10 ¹⁵	27.67 x 10 ⁷	25425.73
substrate)					

SERS practical application

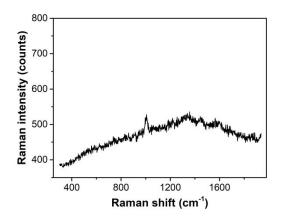


Figure S8. Raman spectra of bare Au-r-AgBD-ROM.

Table S4. Assignments of main peaks for Raman and SERS spectra of acetaminophen recorded

Acetaminophen		
Bulk powder	SERS	Assignments ³
1654		amide I
1613	1618	v CC (ring)
1562	1567	v CC, $\sigma^{\rm ip}$ HNC
1450		$\sigma^{ m as} { m CH}_3$
1374		$\sigma^{ m s}{ m CH}_3$
1328	1327	amide III band (v CN/ v CN (Ø)/CNH band)
1260	1275	$v \text{ CO}, \sigma^{\text{ip}} \text{ HCC}, v \text{ CC}$
1241	1244	v CC, $\sigma^{\rm ip}$ HOC
1172	1189	$\sigma^{\rm ip}$ HCC, ν CC
859	859	v CC (ring)
797		v CNC (ring)

on powder state and the Au-r-AgBD-ROM, respectively.

Table S5. Assignments of main peaks for Raman and SERS spectra of ibuprofen recorded on

 powder state and the Au-r-AgBD-ROM, respectively.

Ibuprofen		
Bulk powder	SERS	Assignments ⁴
1610	1613	$v_{\rm ip} {\rm CC}_{\rm arom}$
1571	1569	$v_{ m ip} { m CC}_{ m arom}$ $v_{ m as} { m COOH}$
1344	1339	ω HCH
1210	1208	au HCCC _{alif}
1186	1186	au HCCC _{alif}
1010	1010	$\delta_{ m ip}{ m HCC}_{ m arom}$
786		$\delta_{ m ip}$ CCOOH
748		$\delta_{ m oop}$ CCOOH
640	644	$\delta_{ m oop}~{ m CCC}_{ m arom}$

Table S6. Assignments of main peaks for Raman and SERS spectra of mefenamic acid recorded

 on powder state and the Au-r-AgBD-ROM, respectively.

Mefenamic acid			
Bulk powder	SERS	Assignments ⁵	
1626		β NH, v CC (\emptyset 2), β OH + v C=O (f)	
1605	1605	β NH, v CC (\emptyset 1 and \emptyset 2), β OH + v C=O	
1585	1587	β NH (g), ν CC (Ø1 and Ø2)	
1516	1518	<i>v</i> CC (Ø2), <i>β</i> NH (g)	
1448		β NH, β CH (Ø1 and Ø2), δ CH ₃	
1408		β NH, v CC (\emptyset 1 and \emptyset 2), β OH + v C=O (e)	
1339	1334	β OH (j), ν CC (Ø2)	
1281	1269	β CH in phase (Ø1, Ø2), v CC (Ø1), v C8N, β NH	
1248	1246	β OH, β CH in phase (Ø1, Ø2), v CCOOH	
1165	1162	β CH (Ø2)	
1097		β CH (Ø1, Ø2), ω CH ₃	

1085	1085	
1044	1025	v CC (Ø2)
994		$\omega \mathrm{CH}_3$
812	817	γ CH in phase (Ø1), δ CCC in phase (Ø2), β COOH
777	786	γ CH in phase (Ø1), β COOH
705	709	CCC in phase puckering (Ø1, Ø2), y CH ₃ (C14, C15)
625	623	γ NH (k)
578		δ CCC in phase (Ø1, Ø2)

Abbreviations: \emptyset = phenyl group, \emptyset 1, \emptyset 2 = phenyl group labeled according to Figure 8 in main manuscript, v = stretching, δ = bending, β = bending in plane, γ = bending out of plane, r = rocking, w = wagging, τ = twisting, s = symmetric, as = antisymmetric

REFERENCES

 Karn-orachai, K.; Sakamoto, K.; Laocharoensuk, R.; Bamrungsap, S.; Songsivilai, S.; Dharakul, T.; Miki, K., Extrinsic surface-enhanced Raman scattering detection of influenza A virus enhanced by two-dimensional gold@silver core–shell nanoparticle arrays. *RSC Advances* 2016, 6 (100), 97791-97799.

Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface Enhanced Raman
 Scattering Enhancement Factors: A Comprehensive Study. *The Journal of Physical Chemistry C* 2007, *111* (37), 13794-13803.

3. Shende, C.; Smith, W.; Brouillette, C.; Farquharson, S., Drug stability analysis by Raman spectroscopy. *Pharmaceutics* **2014**, *6* (4), 651-62.

4. Di Foggia, M.; Bonora, S.; Tinti, A.; Tugnoli, V., DSC and Raman study of DMPC liposomes in presence of Ibuprofen at different pH. *Journal of Thermal Analysis and Calorimetry* **2016**, *127* (2), 1407-1417.

Cunha, V. R.; Izumi, C. M.; Petersen, P. A.; Magalhaes, A.; Temperini, M. L.; Petrilli, H. M.; Constantino, V. R., Mefenamic acid anti-inflammatory drug: probing its polymorphs by vibrational (IR and Raman) and solid-state NMR spectroscopies. *J Phys Chem B* 2014, *118* (16), 4333-44.