Supporting Information

Biomass-derived Porous carbon anchoring MnFe₂O₄ Hollow sphere and needle-like NiS for Flexible All-Solid-State Asymmetric Supercapacitor.

Priyanka Makkar^a, Ankur Malik^b and Narendra Nath Ghosh^a*

^aNano-materials Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani K K

Birla Goa Campus, Goa-403726, India.

^bDepartment of Chemistry, Indian Institute of Technology, Roorkee, India

*Corresponding author. Tel. /fax: +91 832 2580318/25570339.

*E-mail address: naren70@yahoo.com (N. N. Ghosh)

2.1. Synthesis of activated porous carbon from coconut fiber. The synthesis of biomass-derived porous carbon from coconut fibers is a two-step process. In the first step, the 2 g of coconut fibers were treated hydrothermally by dispersing in 50 ml of 1 M H_2SO_4 solution. The solution is transferred to a 60 ml hydrothermal Teflon container for pretreatment at 200 °C for 24 hrs. After pretreatment, the fibers were cooled to room temperature naturally followed by filtration and washing several times with DI water. The fibers were dried at 70 °C overnight. In the second step, the pretreated coconut fibers were chemically activated using KOH (1:1 ratio of coconut fibers and KOH). And heated at 900 °C for 3 h in a nitrogen atmosphere. After cooling to room temperature, the product was washed with DI water. Finally, the product was dried in an oven at 70 °C for 12 hr.

Synthesis of MnFe₂O₄ hollow sphere. The MnFe₂O₄ hollow spheres are synthesized by the hydrothermal technique.¹ The salts of MnCl₂·4H₂O and FeCl₃·6H₂O (molar ratio 1:2) were dissolved in ethylene glycol followed by the addition of sodium acetate (NaAc) and poly(ethylene glycol) (PEG) (weight ratio 1:3.6) The mixture was stirred vigorously for 30 min until the dissolution of NaAc and PEG occurred completely. Then the reaction mixture was poured into a Teflon-lined stainless-steel autoclave for heating at 200 °C for 22 h. Then the precipitate was collected from the reaction mixture by the external magnet, followed by thorough washing with distilled water, ethanol, and acetone. The precipitate was dried at 60 °C for overnight.

Synthesis of Needle-shaped NiS. Needle-shaped NiS was synthesized by a two-step synthesis methodology.² Firstly, the green-colored Ni(OH)₂ precursor was synthesized by dissolving 0.872 g of Ni(NO₃)₂6H₂O and 0.364 g of urea in 40 mL of deionized water under vigorous stirring to obtain a pale green solution. Then, 0.012 g tri-sodium citrate was added to the resulting dispersion. After stirring for 30 min, the resulting solution was transferred into a 50 mL Teflon-lined stainless autoclave and kept at 150 °C for 24 h. The green precipitates were collected followed by washing with deionized water and

absolute ethanol several times by centrifugation. The collected precipitate was dried at 60 °C for 8 h. In the second step, the 0.106 g of the obtained green precursor was dispersed into 40 mL of absolute ethanol followed by the addition of 0.228 g of thiourea. After thorough stirring for 5 min, the mixed solution was transferred into a 50 mL Teflon lined stainless autoclave and heated at 120 °C for 24 h. The black precipitates were collected by centrifugation, washed with deionized water and absolute ethanol several times, and dried under 60 °C for 8 h.

Chemicals required. Sodium nitrate (NaNO₃), hydrazine hydrated (N₂H₄.H₂O), polyvinylpyrrolidone (PVP), sodium hydroxide (NaOH), polyvinyl alcohol (PVA), acetone, Ethanol, sodium acetate (NaAc), nickel(II) chloride hexahydrate (NiCl₂.6H₂O), and sulphuric acid (H₂SO₄), were procured from Fischer Scientific. Ethylene glycol was purchased from Merck, India. Manganese chloride tetrahydrate (MnCl₂.4H₂O), iron chloride hexahydrate (FeCl₃.6H₂O), potassium hydroxide, and polyethylene glycol (PEG) were purchased from Molychem. N-methyl-2-pyrrolidinone (NMP) was purchased from Sigma Aldrich.

2.2. Characterization. The in-depth characterization of the synthesized nanocomposite, room temperature powder X-ray diffraction (XRD) patterns of the synthesized materials were recorded using a powder X-ray diffractometer (Mini Flex II, Rigaku, Japan) with Cu K α ($\lambda = 0.15405$ nm) radiation at a scanning speed of 3° min⁻¹. Raman spectra were recorded on a Horiba via Raman microscope with a 633 nm laser excitation, the surface area of the porous carbon was calculated by Bruner-Emmett-Teller (BET) N₂ adsorption-desorption isotherms, Field emission scanning electron microscopy (FESEM) images of samples were obtained using Quanta 250 FEG (FEI), and Energy-dispersive X-ray spectra (EDS) of the synthesized material was recorded using an EDAX ELEMENT electron microscope, X-ray photoelectron spectra (XPS) of the synthesized materials were recorded using PHI 5000 Versa Probe III,

Physical Electronics. IVIUMSTAT (10V/5A/8MHz) workstation was used to perform the electrochemical studies.

2.3. Electrochemical Measurements. In the present study, the electrochemical properties of the synthesized materials were investigated by assembling the three-electrode cell. Here, to fabricate the working electrodes, pure PC, MnFe₂O₄, MnFe₂O₄-PC, and MnFe₂O₄-NiS-PC nanocomposites were used as active materials. First, a viscous paste was prepared by mixing 80 wt% of active material, 10 wt% polyvinylidene difluoride in N-methyl-2-pyrrolidinone, and 10 wt% acetylene black. The working electrode was fabricated by loading ~ 2 mg of this paste on Ni foam with the dimension of (1.5 cm × 1.5 cm × 0.2 mm) and then dried at 80 °C for 12 h under vacuum. In the three-electrode system, a Hg/HgO electrode and a Pt wire were used as the reference electrode and the counter electrode, respectively. Electrochemical measurements were conducted using two electrolytes (i) 3 M KOH aqueous solution, and (ii) an aqueous mixture of 3 M KOH and 0.1 M K₄[Fe(CN)₆].

2.3.1. Design of Asymmetric Device. The voltammetric charges (Q) were calculated based on the following equations:

$$Q = C_{\text{single}} \times \Delta V \times m \tag{S1}$$

where m is the mass of the electrode (g), ΔV is the potential window (V), and C_{single} is the specific capacitance (F g⁻¹) of each electrode measured in a three-electrode setup (calculated from cyclic voltammograms at a scan rate of 10 mV s⁻¹).

Balancing of charge is carried out by substituting the above equation for both anode and cathode considering their charge/mass ratio as:

$$\frac{q_{+}}{q_{-}} = \frac{m_{+}}{m_{-}} = \frac{C_{sp-} \times \Delta V^{-}}{C_{sp+} \times \Delta V^{+}}$$
(S2)

Equations:

Three-electrode Setup

The values of C_s , energy density (E), and power density (P) for a three-electrode setup was determined by using the following equations:

$$C_s = \frac{i\Delta t}{m\Delta V} \tag{S3}$$

$$E = \frac{C_s \times (\Delta V)^2}{2} \tag{S4}$$

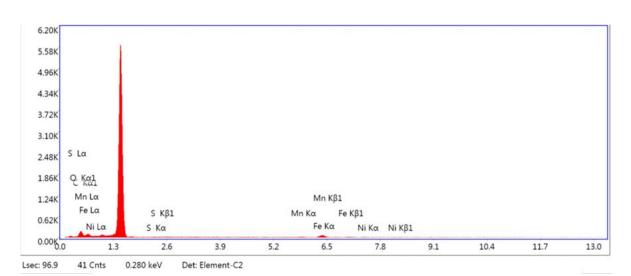
$$P = \frac{E}{\Delta t} \tag{S5}$$

where C_s is the specific capacitance based on the mass of the electroactive material (F g⁻¹), i (A) represents the charge or discharge current, Δt (s) is the discharge time, m (g) represents the mass of supercapacitive material and ΔV is the applied potential window, E is the average energy density (Wh kg⁻¹), P is the power density (W kg⁻¹), and Δt is the discharge time (s).

Two-electrode Asymmetric Cell

The values of C_s , energy density (E), and power density (P) for two-electrode asymmetric setup was determined by using the following equations:

$$C_s = \frac{i\Delta t}{m\Delta V} \tag{S6}$$


$$E = \frac{C_s \times (\Delta V)^2}{2} \tag{S7}$$

$$P = \frac{E}{\Delta t} \tag{S8}$$

where C_s is the specific capacitance based on the mass of the electroactive material (F g⁻¹), i (A) represents the charge or discharge current, Δt (s) is the discharge time, m (g) represents the mass of supercapacitive material and ΔV is the applied potential window, E is the average energy density (Wh kg⁻¹), P is the power density (W kg⁻¹), and Δt is the discharge time (s).

Coulombic Efficiency

% coulombic efficiency =
$$\frac{n_{td}}{n_{tc}} \times 100$$
 (S9)

Element	Weight %	Atomic %	Net Int.
СК	18.4	31.0	4.0
ок	43.6	55.1	19.9
SK	0.8	0.5	0.8
MnK	5.7	2.1	2.5
FeK	25.2	9.1	9.4
NiK	6.3	2.2	1.8

Figure S1. EDS spectra of synthesized MnFe₂O₄-NiS-PC nanocomposite.

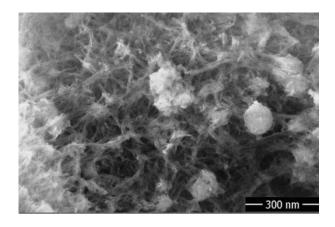
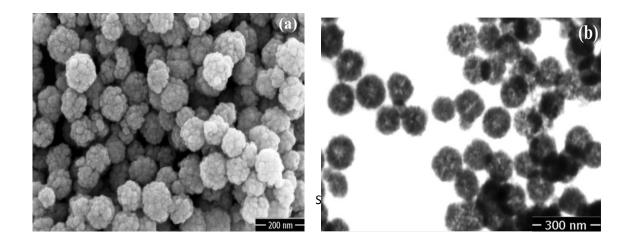
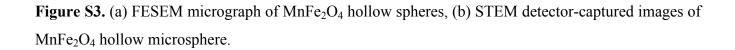




Figure S2. FESEM micrograph of needle-shaped NiS.

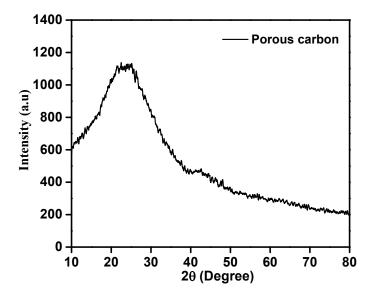


Figure S4. XRD pattern of pure PC.

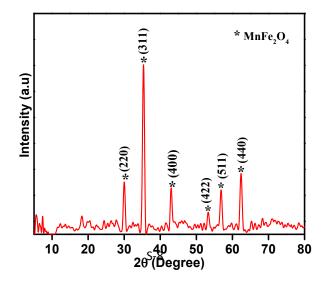


Figure S5. XRD pattern of pure MnFe₂O₄.

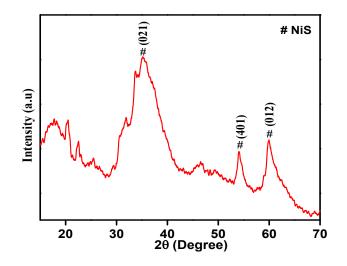


Figure S6. XRD pattern of pure NiS.

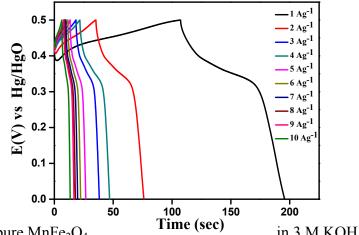
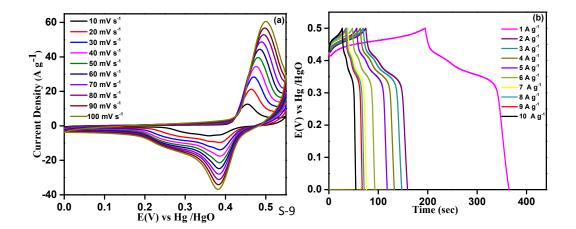



Figure S7. GCD curves of pure MnFe₂O₄

Figure S8. (a) CV profile at a scan rate of 10-100 mV s⁻¹. (b) GCD curves at current density varying from 1-10 A g⁻¹ of MnFe₂O₄-PC electrode in 3 M KOH in three-electrode setup.

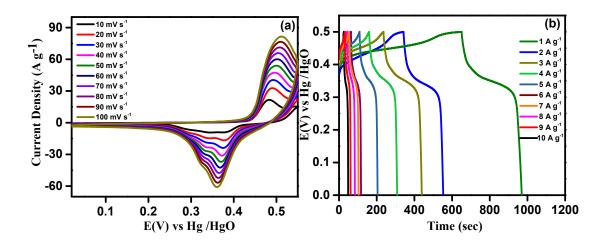
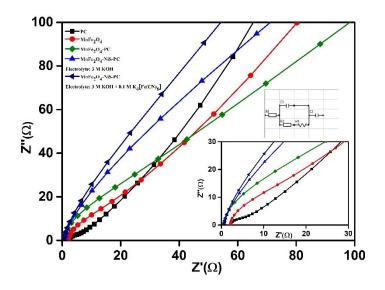



Figure S9. (a) CV curves, (b) GCD curves of MnFe₂O₄-NiS-PC in 3 M KOH in three-electrode setup.

Figure S10. Nyquist plots of pure MnFe₂O₄, PC, MnFe₂O₄-PC and MnFe₂O₄-NiS-PC and inset shows the high frequency region of the impedance spectra and equivalent circuit used for fitting the Nyquist plots. All measurements are taken in three-electrode setup.

S.No.	Material	Equivalent Series Resistance (R ₁ = R _S) Ω	Charge Transfer Resistance $(R_2 = R_{ct})$ Ω	W1 (Warburg) Ω	$C_1 = C_{DL}$ (F)	$C_2 = C_{PS}$ (F)
1.	PC (3 M KOH)	2.39	2.56	2.95E-03	1.94E-03	1.00E-01
2.	MnFe ₂ O ₄ (3 M KOH)	2.12	10.13	1.04E-02	6.43E-05	2.09E-02
3.	MnFe ₂ O ₄ -PC (3 M KOH)	1.86	2.07	3.51E-02	1.19E-03	5.67E-02
4.	MnFe ₂ O ₄ -NiS- PC (3 M KOH)	1.51	1.82	4.83E-03	1.48E-03	2.36E-02
5.	MnFe ₂ O ₄ -NiS- PC (3 M KOH + 0.1 M K ₄ [Fe(CN) ₆]	1.12	1.33	2.95E-03	1.94E-03	1.00E-01

Table S1. Fitting results of the EIS data of synthesized nanocomposites in three-electrode setup.

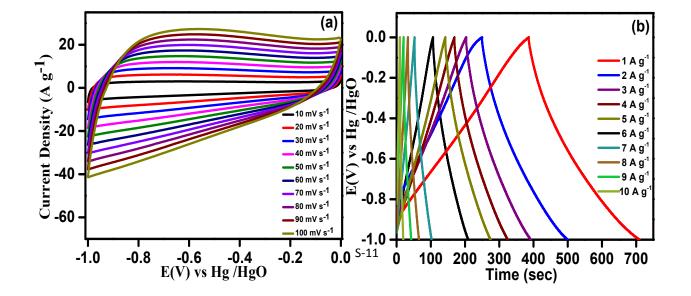


Figure S11. (a) CV curve, (b) GCD curves of porous carbon.

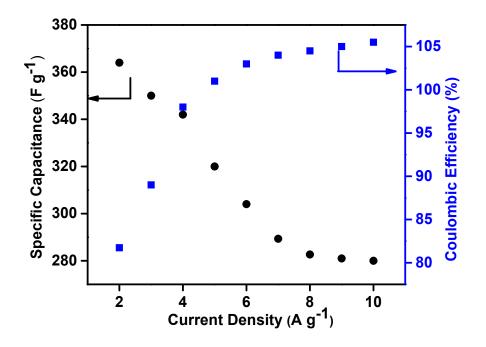
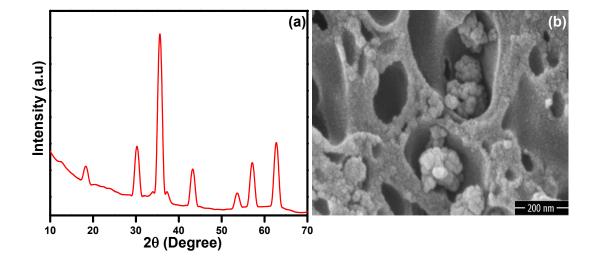
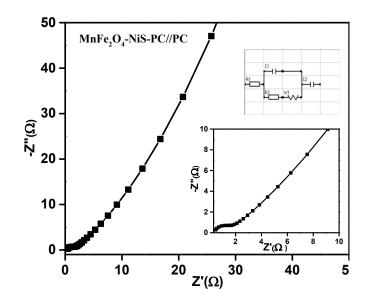




Figure S12. Variation of specific capacitance and Coulombic efficiency with changing current density.

Figure S13. (a) XRD pattern and (b) FESEM micrograph of the MnFe₂O₄-NiS-PC//PC device electrode after charge-discharge cycles

Figure S14. Nyquist plot of MnFe₂O₄-NiS-PC//PC device and inset shows the high-frequency region of the impedance spectra and equivalent circuit used for fitting the Nyquist plots.

Table S2. Fitting results of the EIS data of all-solid-state flexible asymmetric MnFe₂O₄-NiS-PC//PC device supercapacitor device

Equivalent Series Resistance $(R_1 = R_s) \Omega$	Charge Transfer Resistance $(R_2 = R_{ct}) \Omega$	W1 (Warburg) Ω	$C1 = C_{DL}$ (F)	$C2 = C_{PS}$ (F)
0.39	1.1	5.81E-02	2.08E-04	1.76E-01

Two-electrode Asymmetric Cell

The values of C_s , energy density (E), and power density (P) for two-electrode asymmetric setup was determined by using the following equations:

$$C_s = \frac{i\Delta t}{m\Delta V} \tag{S10}$$

$$E = \frac{C_s \times (\Delta V)^2}{2} \tag{S11}$$

$$P = \frac{E}{\Delta t} \tag{S12}$$

where C_s is the specific capacitance based on the mass of the electroactive material (F g⁻¹), i (A) represents the charge or discharge current, Δt (s) is the discharge time, m (g) represents the mass of supercapacitive material and ΔV is the applied potential window, E is the average energy density (Wh kg⁻¹), P is the power density (W kg⁻¹), and Δt is the discharge time (s).

 Table S3. Comparison of electrochemical performance of some two-electrode asymmetric

 supercapacitor devices.

S.No.	Material	Electrolyte	Working	Power	Energy	Retention	Reference
			Potential	Density	Density		
			(V)	(W kg ⁻¹)	(Wh kg ⁻¹)		
1)	ZnFe ₂ O ₄ //	1 M KOH	-1 to 0	3000	6.7	84.4%	3
	NRG composite					(1000cycles)	
2)	MnFe ₂ O ₄ //	1 M Na ₂ SO ₄	0 to 1.8	900	25.9	90%	4

	Graphene					(4000 cycles)	
3)	Ni-Co oxide//AC	1 М КОН	-1 to 0	270	8.9	85% (2000 cycles)	5
4)	CuO//AC	3 M KOH	0 to 1.4	700	19.7	96% (3000 cycles)	6
5)	NiO//carbon	6 M KOH	0 to 1.3	-	10	74% (1000 cycles)	7
6)	Carbon spheres/ MnO ₂ // carbon spheres	0.1 M Na ₂ SO ₄	0 to 2	100	22.1	99% (1000 cycles)	8
7)	NiCo ₂ O ₄ - MnO ₂ /GF// CNT/GF	6 М КОН	0 to 1.5	187.5	55.1	89.4% (2000 cycles)	9
8)	Co ₃ O ₄ @ NiCo ₂ O ₄ //AC	1 М КОН	0 to 1.6	852	36	89.5% (10000 cycles)	10
9)	ZnS Ni ₇ S ₆ /Ni(OH ₂ / /NSGNs	5 M KOH	0 to 1.5	700.16	68.85	91.79% (10000)	11
10)	CoS//AC	3.5 M KOH	0 to1.8	1800	5.3	92% (5000 cycles)	12
11)	NiS ₂ /CoS ₂ / NC-500//AC	3 М КОН	0 to1.6	800	53.93	85.71% (20000 cycles)	13
12)	Co ₃ O ₄ @CoNi S//NOPC	-	0 to 1.6	400	46.95	95.6% (20000	14

13)	Co ₃ O ₄ NSs-	2 M KOH	0 to 1.45	2166	13.4	89%	15
	rGO//AC					(1000 cycles)	
14)	NiS//AC	3 M KOH	0 to 1.8	900	31	100%	16
						(1000 cycles)	
15)	ZnS/Ni ₃ S ₂ //	3 M KOH	0 to 1.7	849.4	51.2	71%	17
	AC					(6000 cycles)	
16)	NiS//CNFs	2 M KOH	0 to 1.55	387.5	34.9	90.2%	18
						(3000 cycles)	
17)	NiFe ₂ Se ₄ //AC	3 M KOH	0 to 1.6	800	45.6	101.4%	19
						(10000	
						cycles)	
18)	80MnFe ₂ O ₄ -	3 M KOH +	0 to 1.5	750	27.7	95%	2
	20rGO//rGO	0.1 M				(4000 cycles)	
		K ₄ [Fe(CN) ₆					
]					
19)	MnFe ₂ O ₄ -NiS-	3 M KOH +	0 to 1.5	1500	113	98%	This
	PC//	0.1 M				(10000	work
	PC	K ₄ [Fe(CN) ₆				cycles)	
]					

REFERENCES

1. Guan, B.; Li, Y.; Yin, B.; Liu, K.; Wang, D.; Zhang, H.; Cheng, C. Synthesis of hierarchical NiS micro flowers for high-performance asymmetric supercapacitor. *Chem. Eng. J.* **2017**, *308*, 1165-1173.

2. Makkar, P.; Ghosh, N. N. Facile Synthesis of MnFe₂O₄ Hollow Sphere-Reduced Graphene Oxide Nanocomposites as Electrode Materials for All-Solid-State Flexible High-Performance Asymmetric Supercapacitors. *ACS Appl. Energy Mater.* **2020**, *3*, 2653-2664.

3. Li, L.; Bi, H.; Gai, S.; He, F.; Gao, P.; Dai, Y.; Zhang, X.; Yang, D.; Zhang, M.; Yang, P. Uniformly dispersed ZnFe₂O₄ nanoparticles on nitrogen-modified graphene for high-performance Supercapacitor as Electrode. *Sci Rep.* **2017**, *7*, 43116.

4. Li, B.; Fu, Y.; Xia, H.; Wang, X. High-performance asymmetric supercapacitors based on MnFe₂O₄/graphene nanocomposite as anode material. *Mater. Lett.* **2014**, *122*, 193-196.

5. Tang, C.; Tang, Z.; Gong, H. Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors. *J. Electrochem. Soc.* **2012**, *159*, A651-A656.

Moosavifard, S. E.; El-Kady, M. F.; Rahmanifar, M. S.; Kaner, R. B.; Mousavi, M. F. Designing
 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. *ACS Appl. Mater. Interfaces* 2015, 7, 4851-4860.

7. Wang, D.-W.; Li, F.; Cheng, H.-M. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. *J. Power Sources* **2008**, *185*, 1563-1568.

8. Lei, Z.; Zhang, J.; Zhao, X. Ultrathin MnO₂ nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. *J. Mater. Chem.* **2012**, *22*, 153-160.

9. Garakani, M.A.; Abouali, S.; Xu, Z.L.; Huang, J.; Huang, J.Q.; Kim, J. K.. Heterogeneous, mesoporous NiCo₂O₄-MnO₂/graphene foam for asymmetric supercapacitors with ultrahigh specific energies. *J. Mater. Chem. A.* **2017**, *5*, 3547-3557.

10. Tao, K.; Yang, Y.; Yang, C.; Ma, Q.; Han, L. Construction of NiCo₂O₄ nanosheet-decorated leaflike Co₃O₄ nanoarrays from metal-organic framework for high-performance hybrid supercapacitors. *Dalton Trans.* **2019**, *48*, 14156-14163.

11. Saeed, G.; Bandyopadhyay, P.; Kumar, S.; Kim, N.H.; Lee, J.H. ZnS-Ni₇S₆ Nanosheet Arrays Wrapped with Nanopetals of Ni(OH)₂ as a Novel Core-Shell Electrode Material for Asymmetric

S-17

Supercapacitors with High Energy Density and Cycling Stability Performance, ACS Appl. Mater. Interfaces 2020, 12, 47377-47388.

12. Subramani, K.; Sudhan, N.; Divya, R.; Sathish. M. All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. *RSC Adv.* **2017**, *7*, 6648-6659.

13. Liu, H.; Guo, H.; Yue, L.; Wu, N.; Li, Q.; Yao, W.; Xue, R.; Wang, M.; Yang, W. Metal-organic frameworks-derived NiS₂/CoS₂/N-doped carbon composites as electrode materials for asymmetric supercapacitor. *ChemElectroChem.* **2019**, *6*, 3764-3773.

14. Yan, Y.; Ding, S.; Zhou, X.; Hu, Q.; Feng, Y.; Zheng, Q.; Lin, D.; Wei, X.. Controllable preparation of core-shell Co₃O₄@CoNiS nanowires for ultra-long life asymmetric supercapacitors. *J. Alloys and Compd.* **2021**, *867*, 158941

15. Yuan, C.; Zhang, L.; Hou, L.; Pang, G.; Oh, W.-C. One-step hydrothermal fabrication of strongly coupled Co₃O₄ nanosheets-reduced graphene oxide for electrochemical capacitors. *RSC Adv.* **2014**, *428*, 14408-14413.

16. Guan, B.; Li, Y.; Yin, B.; Liu, K.; Wang, D.; Zhang, H.; Cheng, C. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. *Chem. Eng. J.* **2017**, *308*, 1165-1173.

Zhang, Y.; Cao, N.; Li, M.; Szunerits, S.; Addad, A.; Roussel, P.; Boukherroub, R.. Self-template synthesis of ZnS/Ni₃S₂ as advanced electrode material for hybrid supercapacitors. *Electrochim. Acta* 2019, *328*, 135065.

18. Ma, X.; Zhang, L.; Xu, G.; Zhang, C.; Song, H.; He, Y.; Zhang, C.; Jia, D. Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high-performance supercapacitors. *Chem. Eng. J.* **2017**, *320*, 22-28.

Ye, B.; Cao, X.; Zhao, Q; Wang, J. Electrodeposited NiFe₂Se₄ on Nickel Foam as a Binder-Free Electrode for High-Performance Asymmetric Supercapacitors. *Ind. Eng. Chem. Res.* 2020, *59*, 14163-14171.