Supporting Information for

Transport of anions across dialytic membrane induced by complexation towards dendritic receptors

Petra Cuřínová,^{a,c} Maximilian Winkler,^a Alena Krupková,^{a,c} Ivana Císařová,^d Jan Budka,^b Chang Nga Wun,^b Vratislav Blechta,^a Marek Malý,^c Lucie Červenková Šťastná,^{a,c} Jan Sýkora,^{*,a} and Tomáš Strašák^{*,a,c}

A list of contents:

Spectral characterization of compounds	S2
NMR titration data	S13
Detailed description of preliminary experiments	S23
Details for the final dialytic experiment	S24
Computer Modelling	S25

^a Institute of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, 16502 Prague 6, Czech Republic.

^b Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic.

^c Faculty of Science, J. E. Purkyně University, České mládeže 8, 40096 Ústí nad Labem, Czech Republic.

^d Department of Inorganic Chemistry, Faculty of Sciences, Charles University, Hlavova 2030, 12800 Prague 2, Czech Republic.

Spectral characterization of compounds

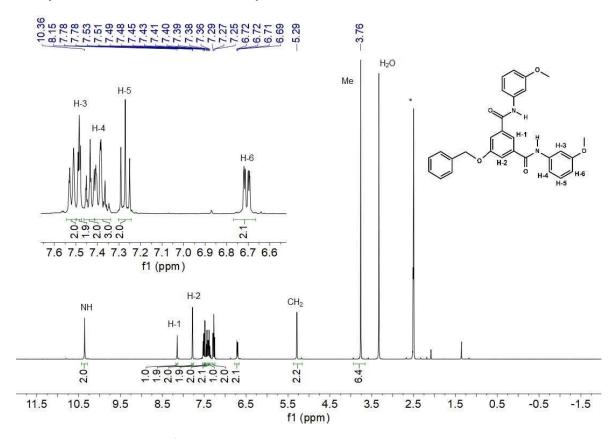


Figure S1. Receptor M1 ¹H NMR (400 MHz), DMSO-d₆.

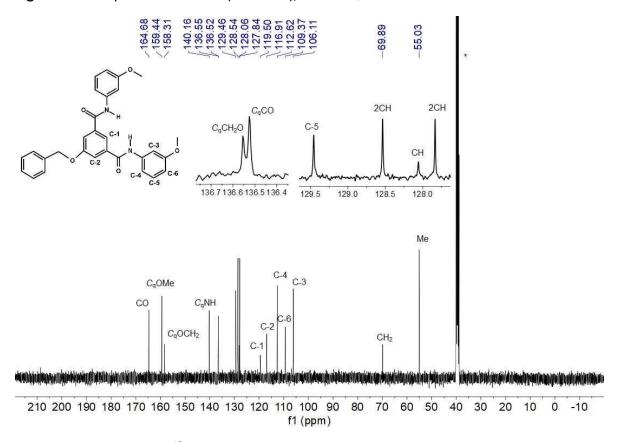


Figure S2. Receptor M1 13 C NMR (101 MHz), DMSO- d_6 .

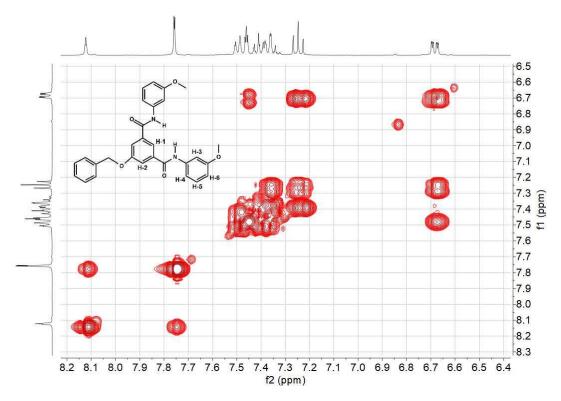
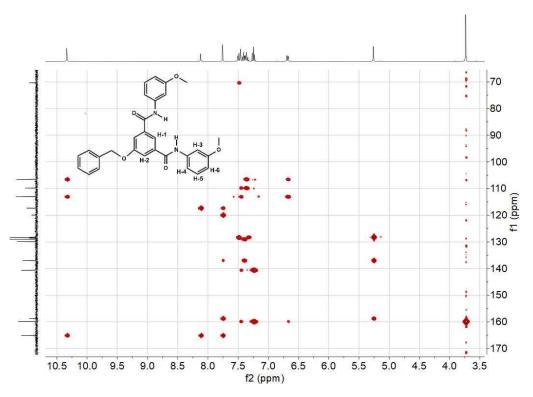
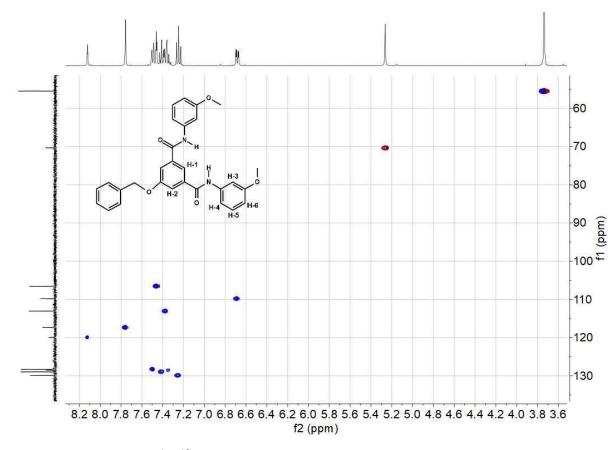
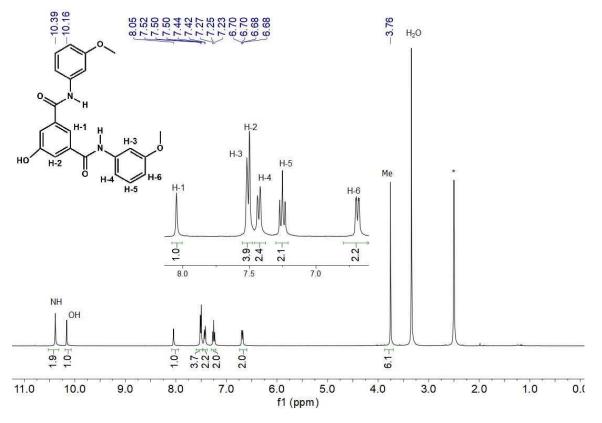
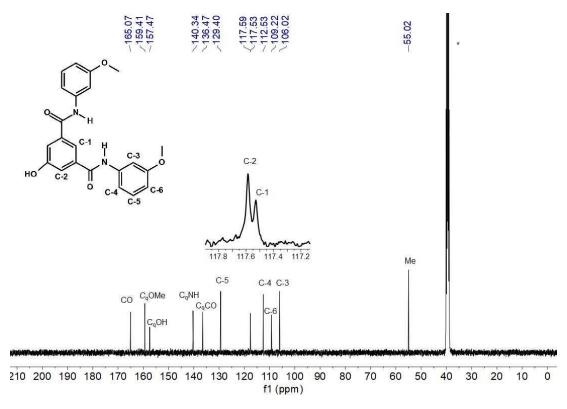
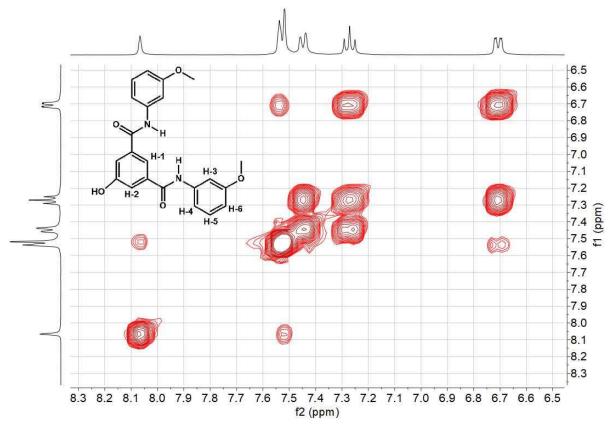
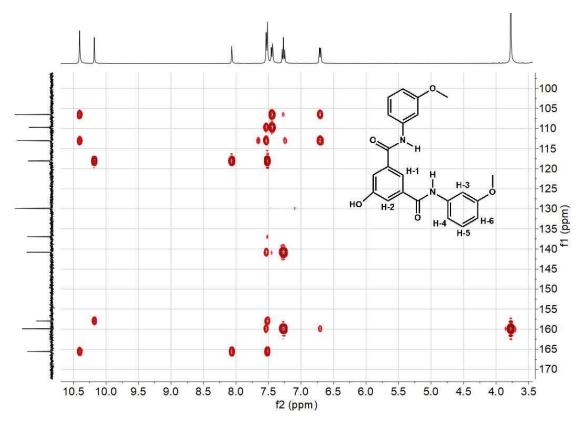



Figure S3. Receptor M1 1 H- 1 H COSY (400 MHz), DMSO- d_{6} .

Figure S4. Receptor **M1** 1 H- 13 C HMBC (400, 101 MHz), DMSO- d_6 .


Figure S5. Receptor M1 1 H- 13 C HSQC (400, 101 MHz), DMSO- d_{6} .


Figure S6. 5-Hydroxy-N,N'-bis(3-methoxyphenyl)isophthalamide, 1 H NMR (400 MHz), DMSO- d_6 .

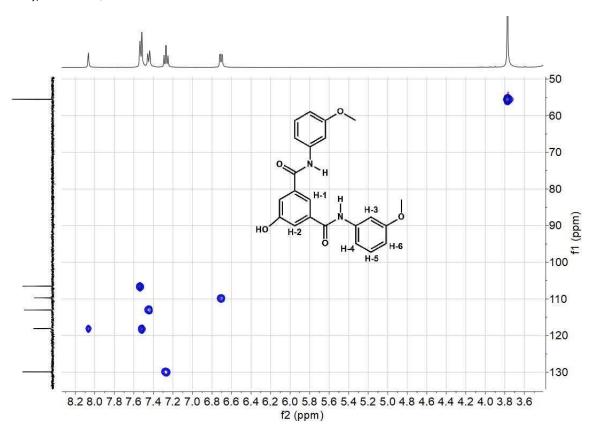

Figure S7. 5-Hydroxy-N,N'-bis(3-methoxyphenyl)isophthalamide, ¹³C NMR (101 MHz), DMSO- d_6 .

Figure S8. 5-Hydroxy-N,N'-bis(3-methoxyphenyl)isophthalamide, $^1\text{H-}^1\text{H}$ COSY (400 MHz), DMSO- d_6

Figure S9. 5-Hydroxy-N,N'-bis(3-methoxyphenyl)isophthalamide, 1 H- 13 C HMBC (400, 101 MHz), DMSO- d_6 .

Figure S10. 5-Hydroxy-N,N'-bis(3-methoxyphenyl)isophthalamide, 1 H- 13 C HSQC (400, 101 MHz), DMSO- d_{6} .

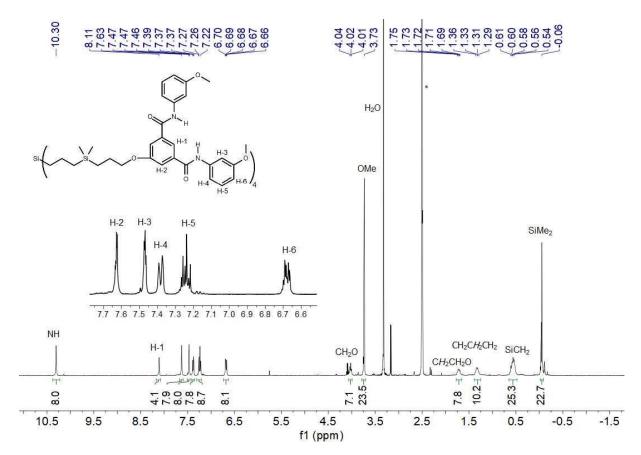


Figure S11. Receptor Dm1 ¹H NMR (400 MHz), DMSO-d₆.

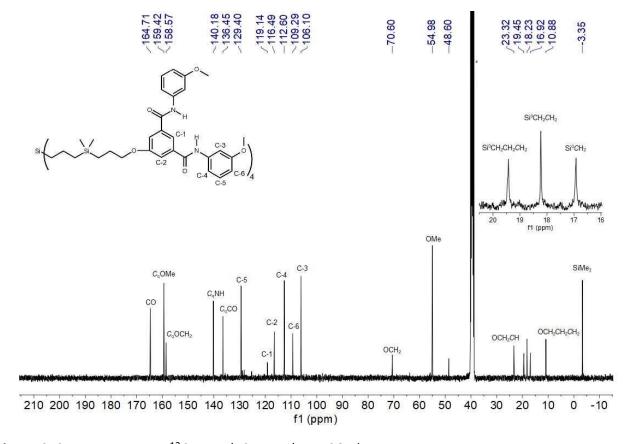


Figure S12. Receptor Dm1 13 C NMR (101 MHz), DMSO- d_6 .

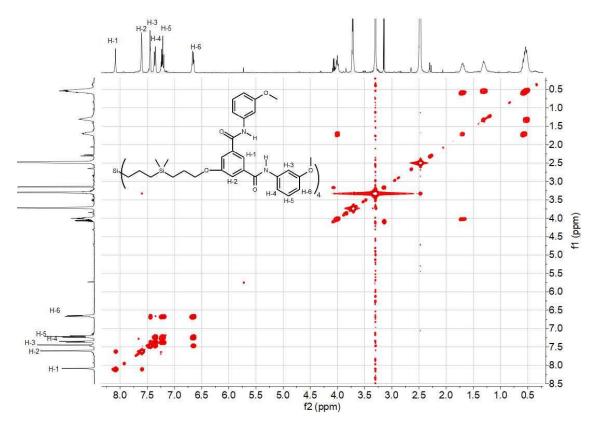
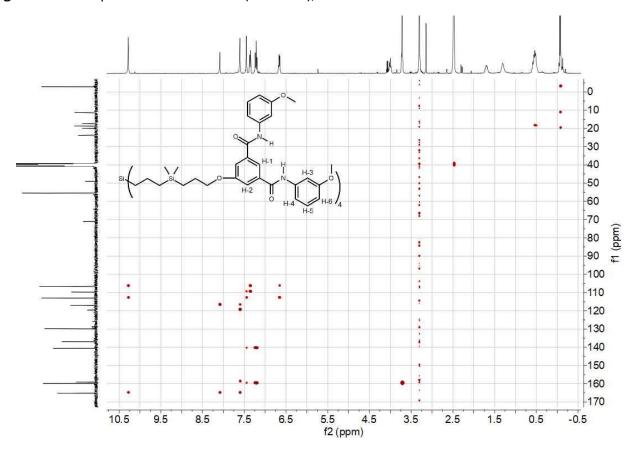



Figure S13. Receptor Dm1 ¹H-¹H COSY (400 MHz), DMSO-d₆.

Figure S14. Receptor **Dm1** 1 H- 13 C HMBC (400, 101 MHz), DMSO- d_{6} .

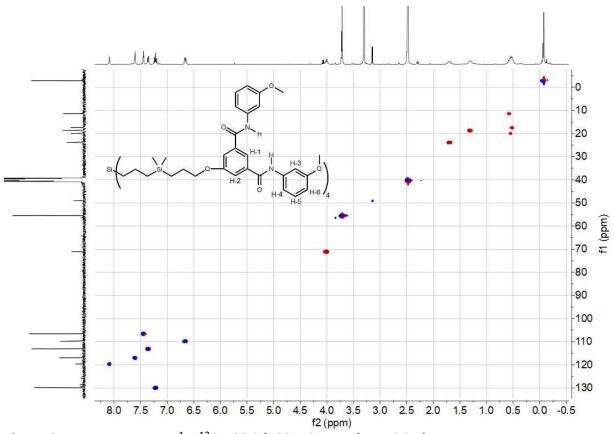


Figure S15. Receptor Dm1 ¹H-¹³C HSQC (400, 101 MHz), DMSO-d₆.

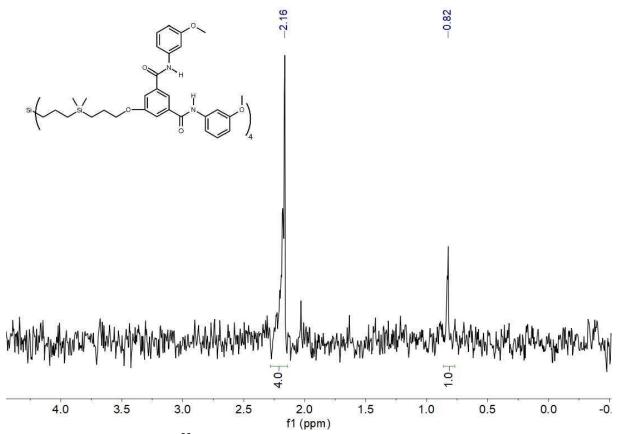


Figure S16. Receptor Dm1 ²⁹Si NMR (80 MHz), DMSO- d_6 .

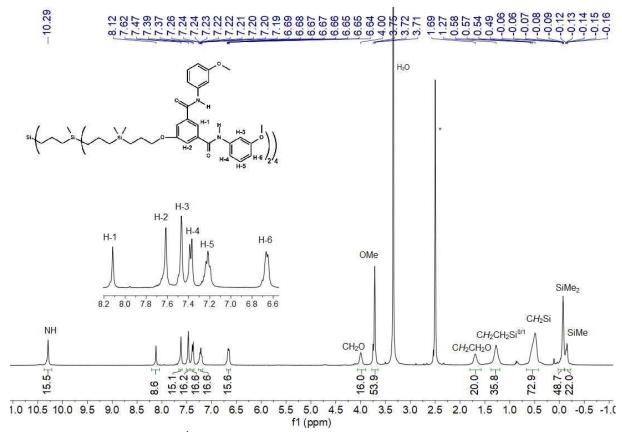


Figure S17. Receptor Dm2 ¹H NMR (400 MHz), DMSO-d₆.

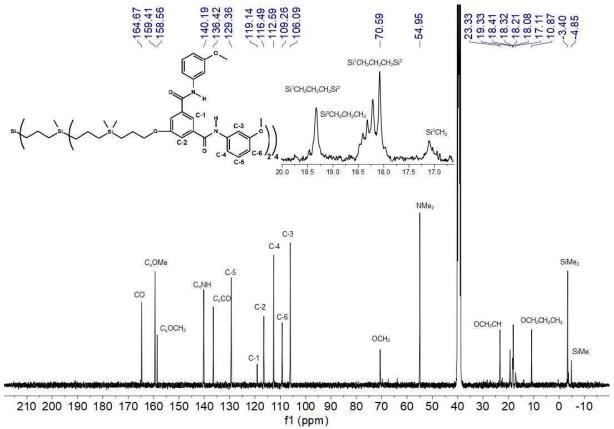


Figure S18. Receptor Dm2 13 C NMR (101 MHz), DMSO- d_6 .

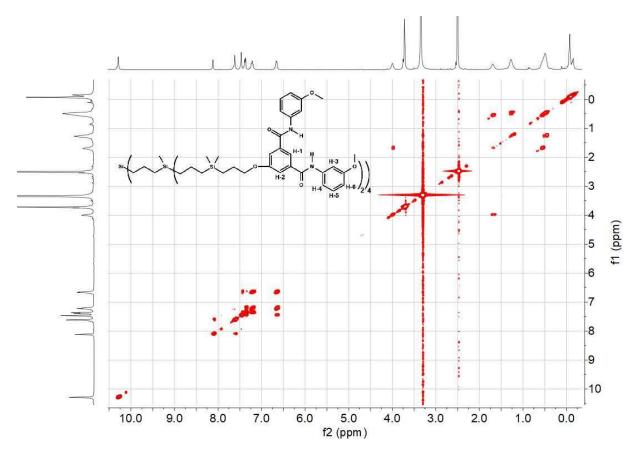
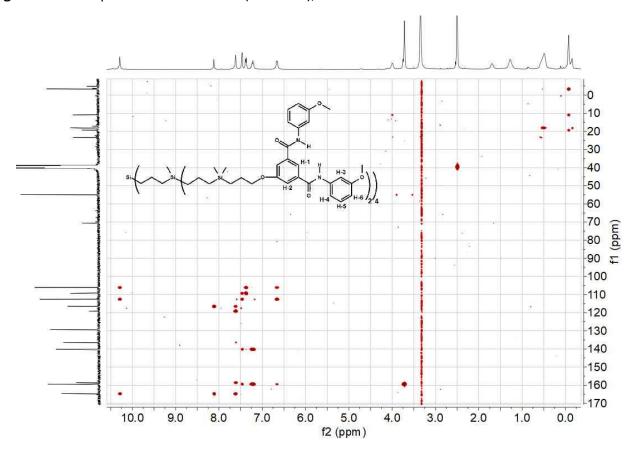
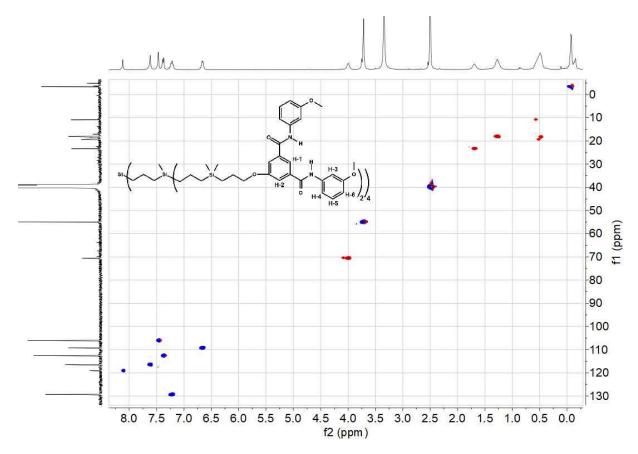




Figure S19. Receptor Dm2 1 H- 1 H COSY (400 MHz), DMSO- d_{6} .

Figure S20. Receptor **Dm2** $^{1}\text{H}^{-13}\text{C}$ HMBC (400, 101 MHz), DMSO- d_{6} .

Figure S21. Receptor **Dm2** ¹H-¹³C HSQC (400, 101 MHz), DMSO-*d*₆.

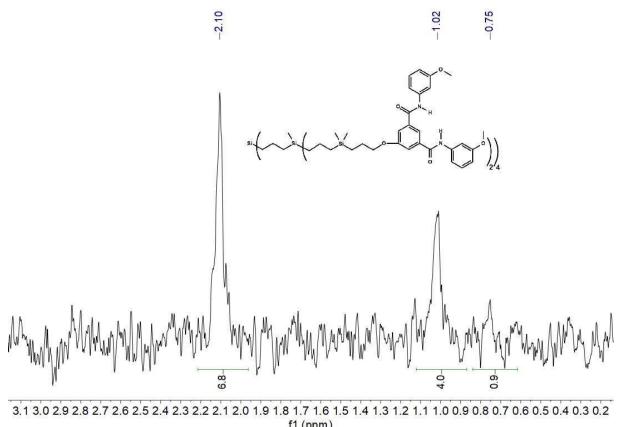
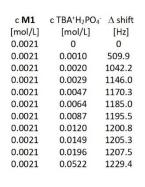



Figure S22. Receptor Dm2 ²⁹Si NMR (80 MHz), DMSO- d_6 .

NMR titration data

Compound M1

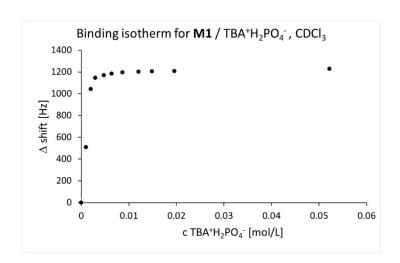
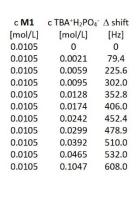
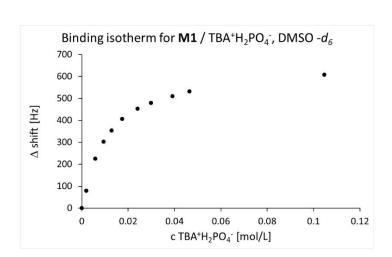
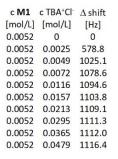





Figure S23. ¹H NMR titration of M1 by TBA⁺H₂PO₄⁻ in CDCl₃

Figure S24. ¹H NMR titration of **M1** by TBA⁺H₂PO₄⁻ in DMSO- d_6 .

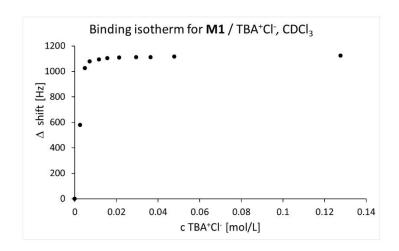
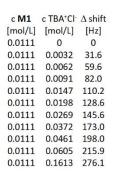
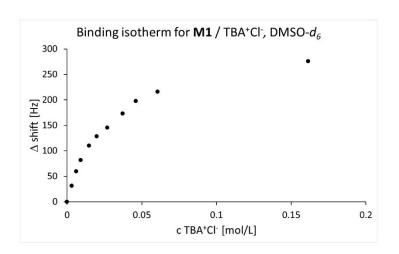
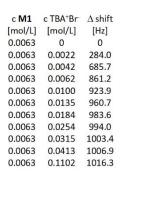





Figure S25. ¹H NMR titration of M1 by TBA+Cl- in CDCl₃.

Figure S26. ¹H NMR titration of **M1** by TBA+Cl⁻ in DMSO- d_6 .

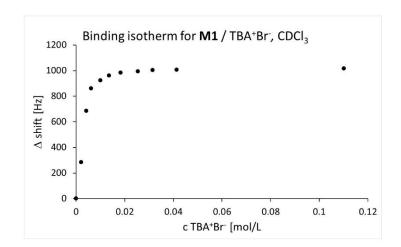
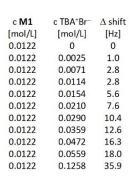
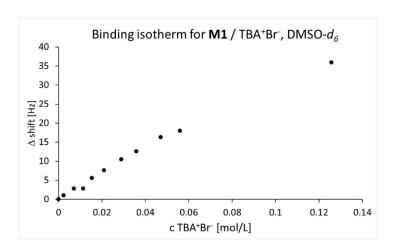





Figure S27. ¹H NMR titration of M1 by TBA⁺Br⁻ in CDCl₃.

Figure S28. ¹H NMR titration of **M1** by TBA⁺Br⁻ in DMSO- d_6 .

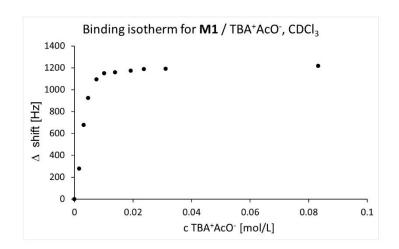
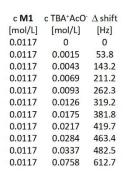
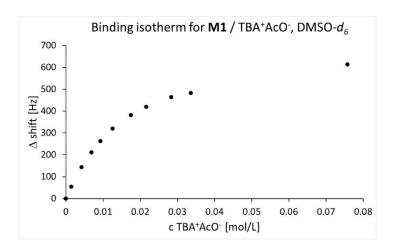
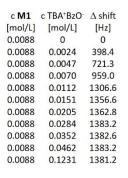





Figure S29. ¹H NMR titration of M1 by TBA+AcO- in CDCl₃.

Figure S30. ¹H NMR titration of **M1** by TBA⁺AcO⁻ in DMSO- d_6 .

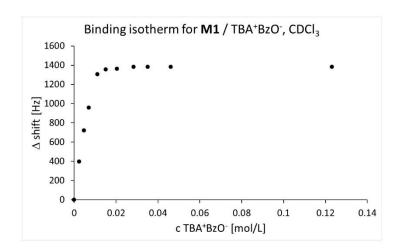
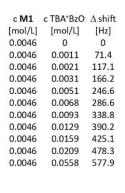
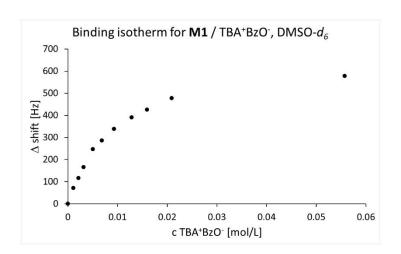
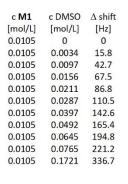





Figure S31. ¹H NMR titration of M1 by TBA+BzO- in CDCl₃.

Figure S32. ¹H NMR titration of **M1** by TBA+BzO- in DMSO- d_6 .

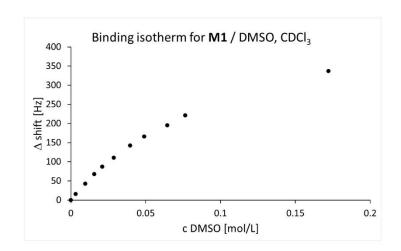
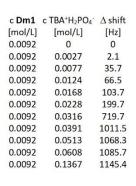



Figure S33. ¹H NMR titration of M1 by DMSO in CDCl₃.

Compound Dm1

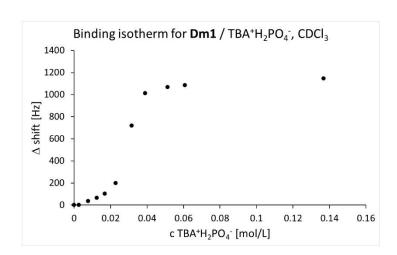
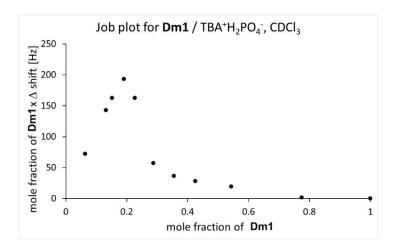
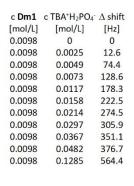
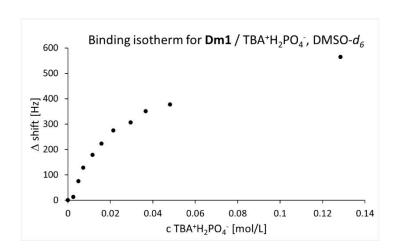
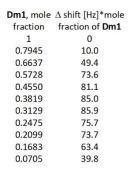
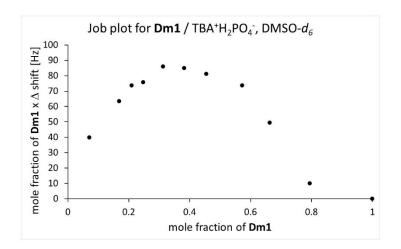


Figure S34. ¹H NMR titration of **Dm1** by TBA⁺H₂PO₄⁻ in CDCl₃.

Dm1, mole	Δ shift [Hz]*mole
fraction	fraction of Dm1
1	0
0.7747	1.6
0.5436	19.4
0.4259	28.3
0.3544	36.8
0.2880	57.5
0.2261	162.7
0.1909	193.2
0.1524	162.8
0.1317	143.0
0.0631	72.4


Figure S35. Job plot of the system Dm1 / TBA+H₂PO₄- in CDCl₃.

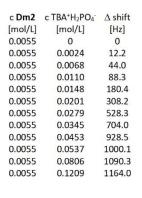

Figure S36. ¹H NMR titration of **Dm1** by TBA⁺H₂PO₄⁻ in DMSO- d_6 .

Figure S37. Job plot of the system **Dm1** / TBA⁺H₂PO₄⁻ in DMSO- d_6 .

Compound Dm2

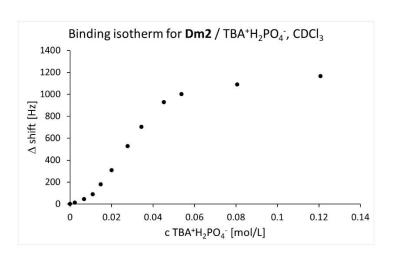
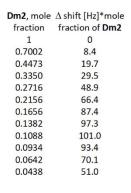
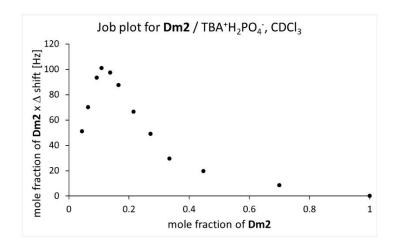
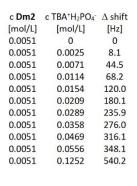
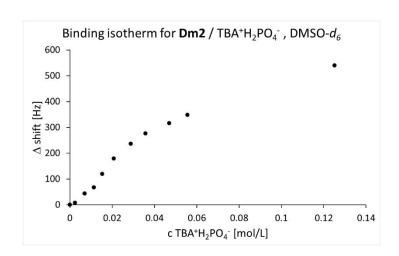
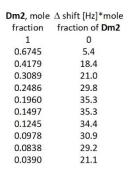
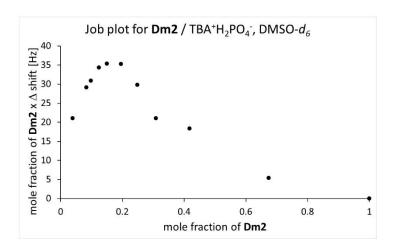



Figure S38. ¹H NMR titration of Dm2 by TBA⁺H₂PO₄⁻ in CDCl₃.


Figure S39. Job plot of the system Dm2 / TBA+H₂PO₄- in CDCl₃.

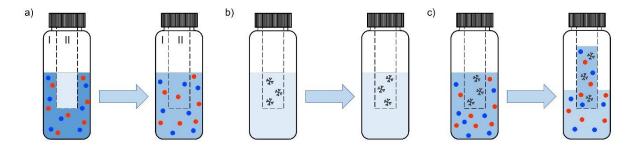

Figure S40. ¹H NMR titration of **Dm2** by TBA⁺H₂PO₄⁻ in DMSO- d_6 .

Figure S41. Job plot of the system **Dm2** / TBA⁺H₂PO₄⁻ in DMSO- d_6 .

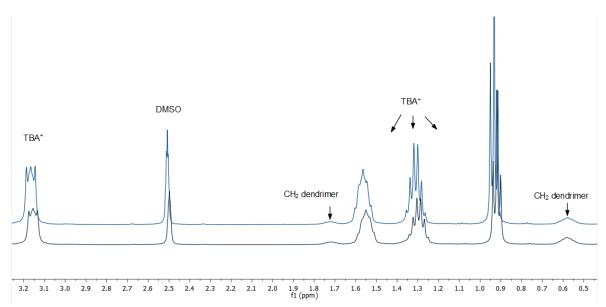

Detailed description of dialytic experiments

Figure S42. Schematic depiction of preliminary experiments; a) ions in comp. I and no receptor in comp. II, b) no ions in comp. I and receptor in comp. II, and c) ions in comp. I and receptor in comp. II.

Table S1. Setting of the preliminary experiments, corresponding to Figure S43.

Setting	Time [h]	V _I [mL]	V _{II} [mL]	C _{Dm1} [mol/L]	C _{P-I} [mol/L]	C _{P-II} [mol/L]	n _{transfi} [mmol]	
a)	0 24	3.00 3.00	0.50 0.50	0	0.0100 0.0086	0 0.0080	0 0.0040	
b)	0 24	3.00 3.00	0.50 0.50	0.0100 0.0100	0	0	0	
c)	0 24	3.00 2.85	0.50 0.65	0.0100 0.0077	0.0100 0.0080	0 0.0100	0 0.0065	
c)	0 24	3.00 2.10	0.50 1.40	0.0100 0.0036	0.0230 0.0185	0 0.0230	0 0.0322	

Figure S43. Comparison of ¹H NMR spectra of compartment II taken in time 0 (dark blue) and in 24h (light blue) and the indication of the signals used for integration.

Details for the final dialytic experiments

Table S2. Detailed description of dialytic experiments

Entry	Receptor ID n _{Dm} : n _P	Time [h]	V _I [mL]	V _{II} [mL]	Ç⊦- [mol/L]	C _{P-II} [mol/L]	Δ¢- [mol/L]	n _{P-I} [mmol]	n _{P-II} [mmol]	Σn [mmol]	C _{Dm-II} [mol/L]	n _{Dm-II} [mmol]	n _{transf}
	IIDm. IIP			[IIIL]	[IIIOI/L]	[IIIOI/L]		[IIIIIIII]	[IIIIIIII]				
1	Dm1	0	3.10	0.50	0.0101	0.0101	0	0.0312	0.0050	0.0362	0.0084	0.0042	0
	1:1	24	2.75	0.85	0.0097	0.0108	0.0011	0.0266	0.0091	0.0357	0.0050	0.0038	0.0041
2	Dm1	0	3.10	0.50	0.0258	0.0258	0	0.0776	0.0128	0.0904	0.0091	0.0045	0
	1:3	24	2.55	0.96	0.0230	0.0311	0.0081	0.0587	0.0297	0.0885	0.0047	0.0041	0.0169
3	Dm1	0	3.10	0.50	0.0504	0.0504	0	0.1505	0.0250	0.1755	0.0091	0.0045	0
	1:5.5	24	2.68	0.80	0.0483	0.0556	0.0073	0.1294	0.0446	0.1741	0.0056	0.0041	0.0197
4	Dm1	0	3.10	0.50	0.0818	0.0818	0	0.2464	0.0408	0.2872	0.0071	0.0035	0
	1:11.5	24	2.61	0.90	0.0797	0.0834	0.0037	0.2080	0.0752	0.2832	0.0039	0.0032	0.0344
5	Dm1	0	3.10	0.50	0.0493	0.0493	0	0.1479	0.0246	0.1725	0.0049	0.0025	0
	1:10	24	2.73	0.77	0.0478	0.0504	0.0026	0.1302	0.0389	0.1692	0.0032	0.0022	0.0143
6	Dm2	0	3.10	0.50	0.0247	0.0247	0	0.0783	0.0124	0.0907	0.0084	0.0042	0
	1:3	24	2.72	0.95	0.0224	0.0257	0.0033	0.0608	0.0244	0.0852	0.0045	0.0038	0.0120
7	Dm2	0	3.10	0.50	0.0253	0.0253	0	0.0765	0.0126	0.0892	0.0044	0.0022	0
	1:6	24	2.77	0.75	0.0247	0.0284	0.0038	0.0682	0.0214	0.0896	0.0029	0.0020	0.0088
8	Dm2	0	3.10	0.50	0.0496	0.0496	0	0.1574	0.0258	0.1832	0.0037	0.0019	0
	1:13	24	2.93	0.76	0.0471	0.0569	0.0098	0.1381	0.0432	0.1812	0.0026	0.0017	0.0173
9	Dm2	0	3.10	0.50	0.0495	0.0495	0	0.1485	0.0248	0.1733	0.0025	0.0012	0
	1:20	24	2.63	0.87	0.0465	0.0530	0.0065	0.1225	0.0458	0.1684	0.0014	0.0011	0.0211
10	Dm2	0	3.10	0.50	0.0914	0.0914	0	0.2833	0.0457	0.3289	0.0029	0.0015	0
10	1:30	24	2.41	1.19	0.0314	0.0914	0.0070	0.2114	0.0437	0.3237	0.0023	0.0013	0.0666

Abbreviations used in Table S1 and Table S2:

n_A amount of substance of TBA⁺H₂PO₄⁻ [mmol]

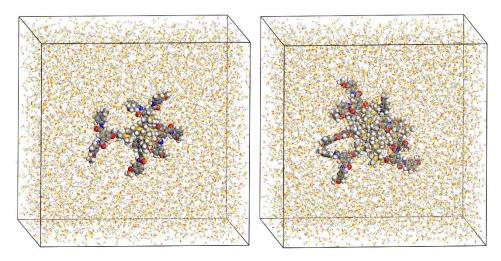
n_{Dm} amount of substance of respective dendrimer [mmol]

V_I volume contained in compartment I [mL]

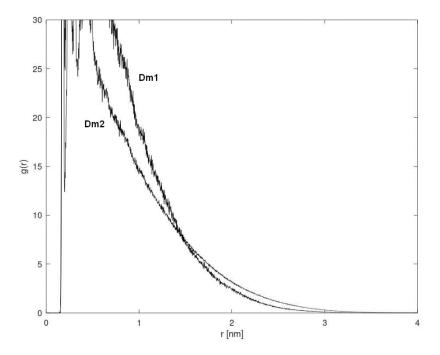
V_{II} volume contained in compartment II [mL]

c_{A-1} molar concentration of TBA⁺H₂PO₄⁻in compartment I [mol/L]

c_{A-II} molar concentration of TBA⁺H₂PO₄⁻in compartment II [mol/L]


c_{Dm} molar concentration of respective dendrimer in compartment II [mol/L]

n_{A-I} amount of substance of TBA⁺H₂PO₄⁻ in compartment I [mmol]


n_{A-II} amount of substance of TBA⁺H₂PO₄⁻ in compartment II [mmol]

n_{transf} amount of substance of TBA⁺H₂PO₄⁻ transferred over the membrane [mmol].

Computer Modelling

Figure S44. Visualization of the simulated systems i.e. dendrimers **Dm1** (left), **Dm2** (right) surrounded by 3000 DMSO molecules in simulation box.

Figure S45. Selected part of the radial distribution functions of the dendrimers hydrogen atoms in case of **Dm1** and **Dm2**. The r value, where the g(r) is approaching zero determines the largest dendrimer dimension.