Supporting Information for # Transport of anions across dialytic membrane induced by complexation towards dendritic receptors Petra Cuřínová,^{a,c} Maximilian Winkler,^a Alena Krupková,^{a,c} Ivana Císařová,^d Jan Budka,^b Chang Nga Wun,^b Vratislav Blechta,^a Marek Malý,^c Lucie Červenková Šťastná,^{a,c} Jan Sýkora,^{*,a} and Tomáš Strašák^{*,a,c} #### A list of contents: | Spectral characterization of compounds | S2 | |---|-----| | NMR titration data | S13 | | Detailed description of preliminary experiments | S23 | | Details for the final dialytic experiment | S24 | | Computer Modelling | S25 | ^a Institute of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, 16502 Prague 6, Czech Republic. ^b Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic. ^c Faculty of Science, J. E. Purkyně University, České mládeže 8, 40096 Ústí nad Labem, Czech Republic. ^d Department of Inorganic Chemistry, Faculty of Sciences, Charles University, Hlavova 2030, 12800 Prague 2, Czech Republic. # **Spectral characterization of compounds** Figure S1. Receptor M1 ¹H NMR (400 MHz), DMSO-d₆. Figure S2. Receptor M1 13 C NMR (101 MHz), DMSO- d_6 . Figure S3. Receptor M1 1 H- 1 H COSY (400 MHz), DMSO- d_{6} . **Figure S4.** Receptor **M1** 1 H- 13 C HMBC (400, 101 MHz), DMSO- d_6 . Figure S5. Receptor M1 1 H- 13 C HSQC (400, 101 MHz), DMSO- d_{6} . **Figure S6.** 5-Hydroxy-N,N'-bis(3-methoxyphenyl)isophthalamide, 1 H NMR (400 MHz), DMSO- d_6 . **Figure S7.** 5-Hydroxy-N,N'-bis(3-methoxyphenyl)isophthalamide, ¹³C NMR (101 MHz), DMSO- d_6 . **Figure S8.** 5-Hydroxy-N,N'-bis(3-methoxyphenyl)isophthalamide, $^1\text{H-}^1\text{H}$ COSY (400 MHz), DMSO- d_6 **Figure S9.** 5-Hydroxy-N,N'-bis(3-methoxyphenyl)isophthalamide, 1 H- 13 C HMBC (400, 101 MHz), DMSO- d_6 . **Figure S10.** 5-Hydroxy-N,N'-bis(3-methoxyphenyl)isophthalamide, 1 H- 13 C HSQC (400, 101 MHz), DMSO- d_{6} . Figure S11. Receptor Dm1 ¹H NMR (400 MHz), DMSO-d₆. Figure S12. Receptor Dm1 13 C NMR (101 MHz), DMSO- d_6 . Figure S13. Receptor Dm1 ¹H-¹H COSY (400 MHz), DMSO-d₆. **Figure S14.** Receptor **Dm1** 1 H- 13 C HMBC (400, 101 MHz), DMSO- d_{6} . Figure S15. Receptor Dm1 ¹H-¹³C HSQC (400, 101 MHz), DMSO-d₆. Figure S16. Receptor Dm1 ²⁹Si NMR (80 MHz), DMSO- d_6 . Figure S17. Receptor Dm2 ¹H NMR (400 MHz), DMSO-d₆. Figure S18. Receptor Dm2 13 C NMR (101 MHz), DMSO- d_6 . Figure S19. Receptor Dm2 1 H- 1 H COSY (400 MHz), DMSO- d_{6} . **Figure S20.** Receptor **Dm2** $^{1}\text{H}^{-13}\text{C}$ HMBC (400, 101 MHz), DMSO- d_{6} . **Figure S21.** Receptor **Dm2** ¹H-¹³C HSQC (400, 101 MHz), DMSO-*d*₆. Figure S22. Receptor Dm2 ²⁹Si NMR (80 MHz), DMSO- d_6 . #### **NMR** titration data # Compound M1 Figure S23. ¹H NMR titration of M1 by TBA⁺H₂PO₄⁻ in CDCl₃ **Figure S24.** ¹H NMR titration of **M1** by TBA⁺H₂PO₄⁻ in DMSO- d_6 . Figure S25. ¹H NMR titration of M1 by TBA+Cl- in CDCl₃. **Figure S26.** ¹H NMR titration of **M1** by TBA+Cl⁻ in DMSO- d_6 . Figure S27. ¹H NMR titration of M1 by TBA⁺Br⁻ in CDCl₃. **Figure S28.** ¹H NMR titration of **M1** by TBA⁺Br⁻ in DMSO- d_6 . Figure S29. ¹H NMR titration of M1 by TBA+AcO- in CDCl₃. **Figure S30.** ¹H NMR titration of **M1** by TBA⁺AcO⁻ in DMSO- d_6 . Figure S31. ¹H NMR titration of M1 by TBA+BzO- in CDCl₃. **Figure S32.** ¹H NMR titration of **M1** by TBA+BzO- in DMSO- d_6 . Figure S33. ¹H NMR titration of M1 by DMSO in CDCl₃. # Compound Dm1 Figure S34. ¹H NMR titration of **Dm1** by TBA⁺H₂PO₄⁻ in CDCl₃. | Dm1, mole | Δ shift [Hz]*mole | |-----------|--------------------------| | fraction | fraction of Dm1 | | 1 | 0 | | 0.7747 | 1.6 | | 0.5436 | 19.4 | | 0.4259 | 28.3 | | 0.3544 | 36.8 | | 0.2880 | 57.5 | | 0.2261 | 162.7 | | 0.1909 | 193.2 | | 0.1524 | 162.8 | | 0.1317 | 143.0 | | 0.0631 | 72.4 | Figure S35. Job plot of the system Dm1 / TBA+H₂PO₄- in CDCl₃. **Figure S36.** ¹H NMR titration of **Dm1** by TBA⁺H₂PO₄⁻ in DMSO- d_6 . **Figure S37.** Job plot of the system **Dm1** / TBA⁺H₂PO₄⁻ in DMSO- d_6 . # Compound Dm2 Figure S38. ¹H NMR titration of Dm2 by TBA⁺H₂PO₄⁻ in CDCl₃. Figure S39. Job plot of the system Dm2 / TBA+H₂PO₄- in CDCl₃. **Figure S40.** ¹H NMR titration of **Dm2** by TBA⁺H₂PO₄⁻ in DMSO- d_6 . **Figure S41.** Job plot of the system **Dm2** / TBA⁺H₂PO₄⁻ in DMSO- d_6 . # **Detailed description of dialytic experiments** **Figure S42.** Schematic depiction of preliminary experiments; a) ions in comp. I and no receptor in comp. II, b) no ions in comp. I and receptor in comp. II, and c) ions in comp. I and receptor in comp. II. **Table S1.** Setting of the preliminary experiments, corresponding to Figure S43. | Setting | Time [h] | V _I [mL] | V _{II} [mL] | C _{Dm1}
[mol/L] | C _{P-I}
[mol/L] | C _{P-II}
[mol/L] | n _{transfi}
[mmol] | | |---------|----------|---------------------|----------------------|-----------------------------|-----------------------------|------------------------------|--------------------------------|--| | a) | 0
24 | 3.00
3.00 | 0.50
0.50 | 0 | 0.0100
0.0086 | 0
0.0080 | 0
0.0040 | | | b) | 0
24 | 3.00
3.00 | 0.50
0.50 | 0.0100
0.0100 | 0 | 0 | 0 | | | c) | 0
24 | 3.00
2.85 | 0.50
0.65 | 0.0100
0.0077 | 0.0100
0.0080 | 0
0.0100 | 0
0.0065 | | | c) | 0
24 | 3.00
2.10 | 0.50
1.40 | 0.0100
0.0036 | 0.0230
0.0185 | 0
0.0230 | 0
0.0322 | | **Figure S43.** Comparison of ¹H NMR spectra of compartment II taken in time 0 (dark blue) and in 24h (light blue) and the indication of the signals used for integration. #### **Details for the final dialytic experiments** **Table S2.** Detailed description of dialytic experiments | Entry | Receptor ID
n _{Dm} : n _P | Time
[h] | V _I
[mL] | V _{II}
[mL] | Ç⊦-
[mol/L] | C _{P-II}
[mol/L] | Δ¢-
[mol/L] | n _{P-I}
[mmol] | n _{P-II}
[mmol] | Σn
[mmol] | C _{Dm-II}
[mol/L] | n _{Dm-II}
[mmol] | n _{transf} | |-------|---|-------------|------------------------|-------------------------|----------------|------------------------------|----------------|----------------------------|-----------------------------|--------------|-------------------------------|------------------------------|---------------------| | | IIDm. IIP | | | [IIIL] | [IIIOI/L] | [IIIOI/L] | | [IIIIIIII] | [IIIIIIII] | | | | | | 1 | Dm1 | 0 | 3.10 | 0.50 | 0.0101 | 0.0101 | 0 | 0.0312 | 0.0050 | 0.0362 | 0.0084 | 0.0042 | 0 | | | 1:1 | 24 | 2.75 | 0.85 | 0.0097 | 0.0108 | 0.0011 | 0.0266 | 0.0091 | 0.0357 | 0.0050 | 0.0038 | 0.0041 | | 2 | Dm1 | 0 | 3.10 | 0.50 | 0.0258 | 0.0258 | 0 | 0.0776 | 0.0128 | 0.0904 | 0.0091 | 0.0045 | 0 | | | 1:3 | 24 | 2.55 | 0.96 | 0.0230 | 0.0311 | 0.0081 | 0.0587 | 0.0297 | 0.0885 | 0.0047 | 0.0041 | 0.0169 | | 3 | Dm1 | 0 | 3.10 | 0.50 | 0.0504 | 0.0504 | 0 | 0.1505 | 0.0250 | 0.1755 | 0.0091 | 0.0045 | 0 | | | 1:5.5 | 24 | 2.68 | 0.80 | 0.0483 | 0.0556 | 0.0073 | 0.1294 | 0.0446 | 0.1741 | 0.0056 | 0.0041 | 0.0197 | | 4 | Dm1 | 0 | 3.10 | 0.50 | 0.0818 | 0.0818 | 0 | 0.2464 | 0.0408 | 0.2872 | 0.0071 | 0.0035 | 0 | | | 1:11.5 | 24 | 2.61 | 0.90 | 0.0797 | 0.0834 | 0.0037 | 0.2080 | 0.0752 | 0.2832 | 0.0039 | 0.0032 | 0.0344 | | 5 | Dm1 | 0 | 3.10 | 0.50 | 0.0493 | 0.0493 | 0 | 0.1479 | 0.0246 | 0.1725 | 0.0049 | 0.0025 | 0 | | | 1:10 | 24 | 2.73 | 0.77 | 0.0478 | 0.0504 | 0.0026 | 0.1302 | 0.0389 | 0.1692 | 0.0032 | 0.0022 | 0.0143 | | 6 | Dm2 | 0 | 3.10 | 0.50 | 0.0247 | 0.0247 | 0 | 0.0783 | 0.0124 | 0.0907 | 0.0084 | 0.0042 | 0 | | | 1:3 | 24 | 2.72 | 0.95 | 0.0224 | 0.0257 | 0.0033 | 0.0608 | 0.0244 | 0.0852 | 0.0045 | 0.0038 | 0.0120 | | | | | | | | | | | | | | | | | 7 | Dm2 | 0 | 3.10 | 0.50 | 0.0253 | 0.0253 | 0 | 0.0765 | 0.0126 | 0.0892 | 0.0044 | 0.0022 | 0 | | | 1:6 | 24 | 2.77 | 0.75 | 0.0247 | 0.0284 | 0.0038 | 0.0682 | 0.0214 | 0.0896 | 0.0029 | 0.0020 | 0.0088 | | 8 | Dm2 | 0 | 3.10 | 0.50 | 0.0496 | 0.0496 | 0 | 0.1574 | 0.0258 | 0.1832 | 0.0037 | 0.0019 | 0 | | | 1:13 | 24 | 2.93 | 0.76 | 0.0471 | 0.0569 | 0.0098 | 0.1381 | 0.0432 | 0.1812 | 0.0026 | 0.0017 | 0.0173 | | | | | | | | | | | | | | | | | 9 | Dm2 | 0 | 3.10 | 0.50 | 0.0495 | 0.0495 | 0 | 0.1485 | 0.0248 | 0.1733 | 0.0025 | 0.0012 | 0 | | | 1:20 | 24 | 2.63 | 0.87 | 0.0465 | 0.0530 | 0.0065 | 0.1225 | 0.0458 | 0.1684 | 0.0014 | 0.0011 | 0.0211 | | 10 | Dm2 | 0 | 3.10 | 0.50 | 0.0914 | 0.0914 | 0 | 0.2833 | 0.0457 | 0.3289 | 0.0029 | 0.0015 | 0 | | 10 | 1:30 | 24 | 2.41 | 1.19 | 0.0314 | 0.0914 | 0.0070 | 0.2114 | 0.0437 | 0.3237 | 0.0023 | 0.0013 | 0.0666 | #### Abbreviations used in Table S1 and Table S2: **n**_A amount of substance of TBA⁺H₂PO₄⁻ [mmol] **n**_{Dm} amount of substance of respective dendrimer [mmol] **V**_I volume contained in compartment I [mL] V_{II} volume contained in compartment II [mL] **c**_{A-1} molar concentration of TBA⁺H₂PO₄⁻in compartment I [mol/L] **c**_{A-II} molar concentration of TBA⁺H₂PO₄⁻in compartment II [mol/L] c_{Dm} molar concentration of respective dendrimer in compartment II [mol/L] **n**_{A-I} amount of substance of TBA⁺H₂PO₄⁻ in compartment I [mmol] **n**_{A-II} amount of substance of TBA⁺H₂PO₄⁻ in compartment II [mmol] **n**_{transf} amount of substance of TBA⁺H₂PO₄⁻ transferred over the membrane [mmol]. # **Computer Modelling** **Figure S44.** Visualization of the simulated systems i.e. dendrimers **Dm1** (left), **Dm2** (right) surrounded by 3000 DMSO molecules in simulation box. **Figure S45.** Selected part of the radial distribution functions of the dendrimers hydrogen atoms in case of **Dm1** and **Dm2**. The r value, where the g(r) is approaching zero determines the largest dendrimer dimension.