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Fig. S1. (a) Vials image of β-CD-GSH-CuNCs with varying amounts of β-CD 
showing the intensity of fluorescent colour under the UV irradiation at 365 nm. (b) 
Fluorescence spectral change in β-CD-GSH-CuNCs with different amounts of β-CD.
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Fig. S2. The emission spectra of β-CD-GSH-CuNCs at different excitation 
wavelengths.
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Fig. S3. (a) HR-TEM image of β-CD-GSH-CuNCs and (b) enlarged particles 
highlighted by circle. (c) Statistical analysis histogram of calculated particles.
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Fig. S4. FE-SEM image of the isolated solid (inset) β-CD-GSH-CuNCs and the EDX 
elemental mapping showing the presence of Cu, S, O, N and C elements.
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Fig. S5. Energy-dispersive X-ray (EDX) spectrum for the elemental characterisation 
of β-CD-GSH-CuNCs.

S5

Fig. S6. Infrared spectra of (i) β-CD, (ii) β-CD-GSH-CuNCs, (iii) β-CD-GSH-
CuNCs@PLP and (iv) β-CD-GSH-CuNCs@PLP in presence of Al3+.
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Fig. S7. The Benesi-Hildebrand plot of PLP with β-CD-GSH-CuNCs for calculating 
binding constant.
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Fig. S8. Emission spectra of β-CD-GSH-CuNCs@PLP in presence of various metal 
ions.
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Fig. S9. Fluorescence emission spectra of β-CD-GSH-CuNCs, β-CD-GSH-
CuNCs@PLP, β-CD-GSH-CuNCs +Al3+ without PLP and β-CD-GSH-CuNCs@PLP 
with Al3+.
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Fig. S10. (a) Emission and (b) UV-Vis spectral changes of β-CD/PLP inclusion 
complex after addition of Al3+ (1.76×10-5 M). 
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Fig. S11. DLS results of β-CD-GSH-CuNCs@PLP in the absence (a) and presence of 
Al3+ (b).
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Fig. S12. UV-Vis spectrum of β-CD-GSH-CuNC, β-CD-GSH-CuNCs@PLP and β-
CD-GSH-CuNCs@PLP with Al3+.
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Fig. S13. Bar graph shows Al3+ ion detection in the presence of various interfering 
metal ions.
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Fig. S14.  CIE 1931 chromaticity diagram showing point (A) the colour coordinates 
of β-CD-GSH-CuNCs, point (B) the colour coordinates when the PLP concentration 
was 210-4 M, and point (C) the colour coordinates when the Al3+ (2.410-6 M) was 
added to in situ generated β-CD-GSH-CuNCs@PLP.
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Table S1. Summary of other recently published nanosensors for the detection of Al3+ 
ions.
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Fig. S1. (a) Vials image of β-CD-GSH-CuNCs with varying amounts of β-CD showing the 

intensity of fluorescent colour under the UV irradiation at 365 nm. (b) Fluorescence spectral 

change in β-CD-GSH-CuNCs with different amounts of β-CD.
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Fig. S2. The emission spectra of β-CD-GSH-CuNCs at different excitation wavelengths.

Fig. S3. (a) HR-TEM image of β-CD-GSH-CuNCs and (b) enlarged particles highlighted by 

circle. (c) Statistical analysis histogram of calculated particles.
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Fig. S4. FE-SEM image of the isolated solid (inset) β-CD-GSH-CuNCs and the EDX elemental 

mapping showing the presence of Cu, S, O, N and C elements.
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Fig. S5. Energy-dispersive X-ray (EDX) spectrum for the elemental characterisation of β-CD-

GSH-CuNCs.
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Fig. S6. Infrared spectra of (i) β-CD, (ii) β-CD-GSH-CuNCs, (iii) β-CD-GSH-CuNCs@PLP and 

(iv) β-CD-GSH-CuNCs@PLP in presence of Al3+.
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Fig. S7. The Benesi-Hildebrand plot of PLP with β-CD-GSH-CuNCs for calculating binding 

constant.

Fig. S8. Emission spectra of β-CD-GSH-CuNCs@PLP in presence of various metal ions.
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Fig. S9. Fluorescence emission spectra of β-CD-GSH-CuNCs, β-CD-GSH-CuNCs@PLP, β-

CD-GSH-CuNCs +Al3+ without PLP and β-CD-GSH-CuNCs@PLP with Al3+.
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Fig. S10. (a) Emission and (b) UV-Vis spectral changes of β-CD/PLP inclusion complex after 

addition of Al3+ (1.76×10-5 M). 
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Fig. S11. DLS results of β-CD-GSH-CuNCs@PLP in the absence (a) and presence of Al3+ (b).

Fig. S12. UV-Vis spectrum of β-CD-GSH-CuNC, β-CD-GSH-CuNCs@PLP and β-CD-GSH-

CuNCs@PLP with Al3+.
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Fig. S13. Bar graph shows Al3+ ion detection in the presence of various interfering metal ions.

Fig. S14.  CIE 1931 chromaticity diagram showing point (A) the colour coordinates of β-CD-

GSH-CuNCs, point (B) the colour coordinates when the PLP concentration was 210-4 M, and 

point (C) the colour coordinates when the Al3+ (2.410-6 M) was added to in situ generated β-

CD-GSH-CuNCs@PLP.
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Table S1. Comparison with other recently published nanosensors for the detection of Al3+ ions.

Fluorescent nanosensors Medium  LOD 
(µM)

Ref.

Mercaptosuccinic acid stabilized AgAu alloy 
nanoclusters (MSA−AgAu NCs)

H2O 0.8 1

Gallic acid-functionalized AgNPs H2O 0.92  2

Xylenol orange functionalized gold nanoparticles (XO-
AuNPs)

H2O 0.04 3

Cysteamine-capped copper nanoclusters(Cys-CuNCs) acetic-acetate 
buffer

26.7 4

Pyridoxal derivative functionalized gold nanoparticles H2O 0.51 5

Dithiothreitol capped copper nanoclusters(DTT-
CuNCs)

HAc-NaAc 
buffer

0.01 6

glutathione (GSH)-capped Au NCs(GSH)-capped Au 
NCs)

acetate buffer 20 7

Polyacrylate functionalized gold nanoparticles (PAA-
AuNPs)

H2O 2 8

N-(2-hydroxynaphthylidene)-2-aminoethanethiol 
capped AuNPs (HNAET–AuNPs)

H2O 0.29 9

Glutathione-silver nanoclusters (AgNCs) H2O 0.1 10

β-CD-GSH-CuNCs@PLP H2O 0.187 Our 
study 
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